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Abstract

Background: The family Polypteridae, commonly known as “bichirs”, is a lineage that diverged early in the
evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than
other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an
important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among
actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the
greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic
tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular
phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species
and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny,
ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution,
including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared
throughout the osteichthyan tree of life.

Results: Our molecular phylogeny reveals 1) a basal divergence between Erpetoichthys and Polypterus, 2) polyphyly
of P. endlicheri and P. palmas, and thus 3) the current taxonomy of Polypteridae masks its underlying genetic
diversity. Ancestral state reconstructions suggest that pelvic fins were lost independently in Erpetoichthys, and
unambiguously estimate multiple independent derivations of body elongation and shortening. Our mitochondrial
phylogeny suggested species that have lower jaw protrusion and up-righted orbit are closely related to each other,
indicating a single transformation of craniofacial morphology.

Conclusion: The mitochondrial phylogeny of polypterid fish provides a strongly-supported phylogenetic
framework for future comparative evolutionary, physiological, ecological, and genetic analyses. Indeed, ancestral
reconstruction and geometric morphometric analyses revealed that the patterns of morphological evolution in
Polypteridae are similar to those seen in other osteichthyans, thus implying the underlying genetic and
developmental mechanisms responsible for those patterns were established early in the evolutionary history of
Osteichthyes. We propose developmental and genetic mechanisms to be tested under the light of this new
phylogenetic framework.
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Background

Osteichthyans (bony fish and tetrapods; Fig. 1) have
evolved remarkably diverse body plans since their initial
radiation in the Late Silurian ~420 Mya [1,2]. It is there-
fore not surprising that most major extant lineages have
been the subject of extensive evolutionary biology
research. As a result, we know much about the evolu-
tionary history and patterns of morphological evolution
in osteichthyans, most notably teleost fish and tetrapods
(amphibians, reptiles, and mammals). In the age of
genomics and advanced molecular techniques, knowl-
edge of these relationships and patterns has proven use-
ful in uncovering the developmental and genetic
mechanisms responsible for morphological diversity [e.
g., [3-9]].

However, the same cannot be said for one lineage that
diverged early in the evolutionary history of Actinopter-
ygii (ray-finned fishes) - the family Polypteridae. Com-
monly known as “bichirs”, this clade includes 12 extant
described species (as well as multiple subspecies) that
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inhabit freshwater rivers and lakes of tropical Africa
[10]. Little is known about polypterid evolution primar-
ily because of their long history of phylogenetic and
taxonomic confusion, likely owing to their unique col-
lection of “primitive” (e.g., ganoid scales, cartilaginous
skeleton, the intestine with a spiral valve) and derived
(e.g., highly modified dorsal fins, pectoral fins with
lobed base covered with scales, possession of only four
gill arches) anatomical features [11-13]. However, recent
morphological and molecular analyses have determined
that bichirs are a basal lineage of Actinopterygii (ray-
finned fishes; Fig. 1) [14-19].

Bichirs provide an attractive system to test whether
patterns of morphological evolution are shared through-
out the osteichthyan tree of life. If common patterns
exist, it would suggest that the underlying genetic and
developmental mechanisms responsible for those pat-
terns were established early in the evolutionary history
of Osteichthyes. For example, there exist multiple inde-
pendent derivations of body elongation in modern
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Actinopterygian fish [e.g., [20-23]], amphibians [e.g.,
[24]], squamate reptiles [e.g., [25-27]], and numerous
extinct tetrapod lineages [e.g., [28,29]]. The loss of pelvic
fins and limbs has occurred multiple times over the
course of osteichthyan evolution [22,27,30-32]. Further-
more, diverse changes in craniofacial morphology have
been the subject of particularly extensive research
(5,33-41].

However, the greatest impediment to elucidating the
patterns of morphological change in Polypteridae is the
lack of a well-resolved, highly-supported phylogenetic
tree. In fact, the interrelationships of polypterid species
have never been subject to molecular phylogenetic ana-
lysis. Those molecular studies that have included poly-
pterid representatives did so in the context of
determining “deep” osteichthyan and actinopterygian
relationships (Fig. 1) or surveying Hox gene clusters
[42].

Extant polypterids comprise two extant genera, Erpe-
toichthys and Polypterus. Boulenger [43] distinguished
these two genera based on the extremely elongate body
and absent pelvic fins in Erpetoichthys, and split Poly-
pterus into two taxonomic groups based on the position
of the mandible relative to the snout ("lower jaw protru-
sion” hereafter). Poll [44-46] defined five clusters of spe-
cies and an ancestral species within extant polypterids
based on anatomical features such as relative jaw length,
the location and size of the eyes, width of the suboper-
culum, and proportion of the gular plate. An analysis of
15 anatomical characters suggested, among other things,
a sister relationship between Erpetoichthys and P. weeksi,
thus rendering Polypterus polyphyletic [47]. However,
this study did not incorporate objective rooting or
optimality criteria and subsequent parsimony reanalysis
revealed that this phylogeny is largely unresolved [12].
These conflicting and inconclusive results warrant addi-
tional phylogenetic scrutiny using molecular data.

Here, we infer the first molecular phylogeny of Poly-
pteridae using all 12 recognized species including all but
three recognized subspecies to achieve three major
objectives. First, we evaluate whether the current species
taxonomy underestimates the underlying phylogenetic
diversity. Secondly, we examine patterns of evolution in
body elongation pelvic fin reduction, and craniofacial
morphological evolution in this new phylogenetic con-
text. Finally, we recommend developmental and genetic
mechanisms to be tested in the future in conjuction
with this new phylogenetic framework.

Methods

Phylogenetic analyses

We obtained fresh tissues from commercial dealers of
15 recognized species and subspecies of polypterids
including Erpetoichthys calabaricus, Polypterus ansorgii,
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P. bichir bichir, P. b. lapradei, P. delhezi, P. endlicheri
congicus, P. e. endlicheri, P. mokelembembe, P. ornatipin-
nis. P. palmas buettikoferi, P. p. polli, P. retropinnis, P.
senegalus senegalus, P. teugelsi and P. weeksii (Table 1).
One to four specimens of each taxon were included in
the phylogenetic analyses. Although we included all
recognized species of polypterids, we were unable to
obtain tissue samples for three subspecies, P. bichir
katangae, P. palmas palmas, and P. senegalus meridio-
nalis (Table 1). We obtained DNA sequences of out-
group taxa (Sturgeon [Acipenser transmontanus), Bowfin
[Amia calva], Coelacanth [Latimeria chalumnae],
Spotted gar [Lepisosteus oculatus], Paddlefish [Polyodon
spatulal, and Lungfish [Protopterus dolloi]) from Gen-
Bank (Additional file 1).

DNA samples were extracted following the same proce-
dure used in Tokita et al. [48]. A part of the mitochon-
drial 16S rRNA and cytochrome b (cyt b) genes were
amplified by PCR System GeneAmp 2700 (Applied Bio-
systems, Lincoln, USA) using an Ex Taq polymerase kit
(Takara Shuzo Co., Ltd., Otsu, Japan) and the primers
provided in Additional file 2. After initial denaturing for
5 min at 95°C, 25-30 cycles were performed with dena-
turing 1 min at 94°C, annealing 3 min at 50-60°C, and
primer extension for 3 min at 72°C, followed by a final
elongation of 7 min at 72°C. PCR products were purified
by PEG/NaCl precipitation and then sequenced using a
Big Dye Terminator Cycle Sequencing Ready Reactions
Kit v1.0 and an ABI PRISM 377 and 3130 DNA Sequen-
cer (Applied Biosystems, Lincoln, USA), using the pri-
mers provided in Additional file 2.

Because of conserved codon reading frames, the cyt b
protein coding sequences could be unambiguously
aligned by eye. The 16S rRNA was also aligned by eye,
but nucleotide positions that could not be unambigu-
ously aligned were excluded from phylogenetic analysis
(data set available from the authors). In some regions of
the 16S data, the ability to align the polypterid taxa was
improved if we removed sequences for the outgroup
taxa (and their corresponding data replaced with “?” in
these regions). Because our primary goal is to test the
interrelationships of polypterids, and not necessarily
their relationship to other osteichthyans, we feel the
exclusion of these data is justified. All DNA sequences
were deposited in GenBank (Additional file 1). The final
data set for subsequent phylogenetic analysis included
925 base pairs (bp) of 16S (256 parsimony informative
characters) and 932 bp of cyt b (103, 29, and 292 parsi-
mony informative characters for the first, second, and
third codon positions), for a total of 1857 total
characters.

We employed partitioned Bayesian analyses to infer
the phylogenetic relationships among polypterids. Pre-
vious studies have demonstrated that applying separate
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Table 1 Number of vertebrae and condition of the lower jaw and pelvic fins in each species and subspecies of

Polypteridae.

Species N. of vertebrae Jaw protrusion Pelvic fin
Erpetoichthys calabaricus 110-113 (111.5) Upper Absent
Polypterus ansorgii 57 Lower Present
P. bichir bichir 67 Lower Present
P. bichir katangae* ? Lower Present
P. bichir lapradei 60-62 (61) Lower Present
P. delhezi 55 Upper Present
P. endlicheri congicus 57 Lower Present
P. endlicheri endlicheri 53-57 (55) Lower Present
P. mokelembembe 56 Upper Present
P. ornatipinnis 56-60 (58) Upper Present
P. palmas palmas* 56-59 Upper Present
P. palmas buettikoferi 56-58 (57) Upper Present
P. palmas polli 50-56 (53) Upper Present
P. retropinnis 57-58 (57.5) Upper Present
P. senegalus meridionalis* ? Upper Present
P. senegalus senegalus 53-59 (56) Upper Present
P. teugelsi 63-65 (64) Upper Present
P. weeksii 57 Upper Present

Values in parentheses are means of vertebral number used in the squared-change parsimony ancestral state reconstruction analyses. *Taxa not sampled in this

study.

models of nucleotide evolution to specific subsets of
nucleotide data (i.e., “partitioned” or “mixed-model”
analyses) improves phylogenetic reconstruction [49-51].
We therefore partitioned the data a priori into four
total partitions, one for the 16S rRNA and three for
each codon position of cyt b. We determined the appro-
priate models of sequence evolution from a pool of 16
models (K80, HKY, SYM, GTR with and without I and
I') for each partition using a JC corrected neighbor-join-
ing tree in PAUP* [52] and the Bayesian Information
Criterion [BIC: [53]]. We subsequently conducted Baye-
sian phylogenetic analyses using the most appropriate
models (GTR+I+I', GTR+I+T", HKY+I+I', and GTR+I"
for the 16S and three cyt b codon positions, respec-
tively) in the parallel version of MrBayes v3.1.1 [54,55].
Each Bayesian analysis consisted of 10’ generations,
using four chains sampled every 1000 generations and
default priors (substitution rates, Dirichlet [1, 1, 1, 1, 1,
1]; base frequencies, Dirichlet [1, 1, 1, 1]; gamma shape
parameter, uniform [0, 200]; topologies, uniform; branch
lengths, unconstrained exponential [A = 10]).

To determine convergence of the Bayesian analyses,
we constructed cumulative posterior probability plots
for each clade using the cumulative function in AWTY
[56]. Stationarity was assumed when the cumulative pos-
terior probabilities of all clades stabilized. These plots
indicated that excluding the first two million generations
as burn-in was sufficient. To decrease the chance of
reaching apparent stationarity on local optima, four
separate analyses were performed. Posterior probability

estimates for each clade were then compared between
the four analyses using a scatter-plot created by the
compare command in AWTY. Posterior probability esti-
mates for clades were similar in all four analyses, and
the results of the analyses were combined and the fre-
quency of inferred relationships in these 32,000 trees
represented estimated posterior probabilities of clades.
Posterior probabilities > 0.95 are considered statistically
significant (i.e., “strong”) clade support [57].
Morphometric analysis

To investigate shape differences in the head region
among Polypterus species, we employed landmark-based
geometric morphometrics [58,59]. This approach allows
us to describe morphological transformation of certain
organismic structures visually and compare morphologi-
cal differences among taxa quantitatively [59] and has
been widely used in contemporary evolutionary biology
research [e.g., [34,40,41]]. A total of 13 taxa and 26 spe-
cimens caught in wild were included in this analysis.
Photographs of both dorsal and lateral views were taken
with a digital camera. The photo images of the speci-
mens were imported into the tpsDig2 software [60].
Eight and ten landmarks were placed for dorsal and lat-
eral views, respectively (Additional file 3). The general-
ized least squares Procrustes superimposition, which
removes information unrelated to shape such as posi-
tion, scale, and orientation, was carried out using
Coordgen 6n [61]. Based on the coordinates after the
Procrustes superimposition, the partial warp scores were
computed and principal component analysis (PCA) was



Suzuki et al. BMIC Evolutionary Biology 2010, 10:21
http://www.biomedcentral.com/1471-2148/10/21

conducted by calculating PCs based on the covariance
matrix derived from the partial warp scores using PCA-
gen6 h [62].

Ancestral state reconstruction

To evaluate the evolution of body elongation and pelvic
fin loss within polypterids, we reconstructed ancestral
states using data from extant sampled taxa, the rooted
mtDNA phylogram (using mean branch lengths from
the posterior distribution) estimated from our Bayesian
phylogenetic analyses (above), and Mesquite v2.6 [63].
We removed the non-polypterid outgroups and pruned
the data set and trees to include a single exemplar of
each species and subspecies. We collected vertebral
number for each species from FishBase [64] and pre-
served specimens. Polypterid species typically exhibit
variation in the number of vertebrae (Table 1). Because
there is currently no statistically elegant way to incorpo-
rate this information into ancestral state reconstruction
analyses (e.g., modeling vertebral number in each spe-
cies as statistical distributions) we used the mean num-
ber of vertebrae and coded it as a continuous character
[e.g., [65]]. Ancestral vertebrae number for each node
was subsequently estimated using weighted squared-
change parsimony [66]. Presence of pelvic fin was coded
as discrete binary characters and the marginal probabil-
ities of each state at each node were estimated with
maximum likelihood [67,68] using the 1-parameter sym-
metrical Markov model [69]. Ancestral states with a
marginal probability = 0.95 were considered resolved
with statistical significance.

Results and Discussion

Polypterid phylogeny and hidden diversity

Posterior probabilities (PP) for a vast majority of nodes
are statistically significant (= 0.95) and the clades with
probabilities less than 0.90 are relationships between
populations of subspecies (Fig. 2). The analyses support
a basal split between Erpetoichthys and Polypterus. In
Polypterus, the recently described P. mokelembembe [69]
is the sister taxon to all other members of the genus;
although support for this relationship is very high (PP =
0.94), it is not significant. The remaining Polypterus are
divided into two major clades, one of which (P. bichir +
P. endlicheri + P ansorgii) is characterized by lower jaw
protrusion (Table 1; see below).

These results reinforce the findings of Boulenger [43]
who recognized Erpetoichthys and Polypterus as distinct
genera, in addition to two groups within Polypterus
based on the condition of the lower jaw (P. mokelem-
bembe was not yet described). The phylogenetic position
of Erpetoichthys is not particularly surprising consider-
ing numerous biological aspects of this species. The
skull of E. calabaricus possesses a variety of unique
characteristics that are not found in Polypterus [12].
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Furthermore, the ecology of E. calabaricus quite differ-
ent than Polypterus as it inhabits coastal and estuarine
areas unlike Polypterus species that primarily inhabit
freshwater [10,70-72].

Our data support Boulenger’s conclusion of a close
relationship between P. weeksi and P. ornatipinnis [43].
However, the present analyses reveal phylogenetic rela-
tionships that are substantially different from other pre-
vious studies focusing on the detailed interrelationships
of the species. Analyses of 15 morphological and anato-
mical traits [47] identified close relationships among P.
ornatipinnis, P. weeksii, and Erpetoichthys calabaricus,
and among P. senagalus, P. retropinnis, P. palmas
(although subsequent parsimony reanalysis of these data
inferred an almost completely unresolved tree [12]).
However, neither of these relationships was inferred by
our analyses.

Poll [44-46] recognized close relationships among P.
ornatipinnis, P. weeksii, and P. delhezi and that between
P. senagalus and P. retropinnis based on morphological
characteristics (e.g., relative jaw length, the location and
size of the eyes). Our results statistically reject these
phylogenetic hypotheses (i.e., alternative hypotheses
have a posterior probability > 0.95). Our phylogenetic
analyses also statistically reject Poll’s hypothesis [45]
that P. ansorgii is the sister lineage to all other Poly-
pterus instead, this position is represented by P.
mokelembembe.

Our phylogenetic analyses also demonstrate that at
least two species, as currently described, are not natural
groups - P. endlicheri and P. palmas. Polypterus endli-
cheri is paraphyletic with respect to both P. bichir and
P. ansorgii. Taxonomic changes are clearly needed and
we recognize P. e. congicus and P. e. endlicheri as dis-
tinct species, P. congicus and P. endlicheri. Hanssens et
al. [73] recognized three subspecies in P. palmas: P. p.
palmas, P. p. polli, P. p. buettikoferi based on morpho-
metrical inferences. In our phylogeny, the sister relation-
ship between P. p. polli and P. delhezi is strongly
supported (PP = 1.0) as well as the relationship between
P. p. buettikoferi and P. teugelsi (PP = 1.0). Thus, the
morphometric resemblance between P. p. buettikoferi
and P. p. polli is clearly the outcome of evolutionary
convergence. To understand the evolutionary history of
P. palmas complex and make subsequent taxonomic
changes, it is necessary to include P. p. palmas in future
phylogenetic analyses.

These results imply that morphological characteristics
such as body proportion and body coloration used in
previous studies are not suitable for inferring phylogeny,
possibly because states of these characters tend to be
flexibly altered depending on the condition of the spe-
cies’ environment. Furthermore, these phylogenetic
results not only have implications for morphological
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Figure 2 Molecular phylogeny of the extant polypterid species inferred from partitioned Bayesian analyses 16SrRNA and cyt b
mitochondrial genes. Branch lengths are means of the posterior distribution. Numbers above or below the node indicate the Bayesian
posterior probability that clade is correctly estimated given the model. Posterior probabilities less than 0.50 are not shown. Colors indicate
groups defined in Fig. 4.
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evolution within Polypteridae (below), but also reveal
the hidden genetic diversity of this ancient clade of enig-
matic fish. That at least two species are polyphyletic (P.
endlicheri and P. palmas) is evidence that the current
taxonomy of Polypterus underestimates its genetic
diversity.

Perhaps more importantly, we find that P. mokelem-
bembe, a species only recently described [74], represents
the sister lineage to all other members of the genus.
This result suggests that much of the evolutionary diver-
sity of extant Polypteridae has yet to be fully discovered.

As both the 16S and cyt b mitochondrial genes are
maternally inherited as a single unit, we acknowledge
that our phylogeny specifically tracks the evolutionary
history of the mitochondrial genome, and not necessa-
rily the species history. However, we note that there are
no obvious instances of recent introgression (e.g., [75])
as all of the named taxa are monophyletic. However, we
cannot exclude the possibility that incomplete lineage
sorting obscures deeper relationships (see [76] for a
review), but we also note that this is unlikely given the
rapid coalescence of mitochondrial DNA. Furthermore,
we note that, although we have not sampled the entire
mitochondrial genome for this analysis, the fact that
almost every node in our phylogeny is significantly sup-
ported (posterior probability > 0.95) is evidence that we
have indeed captured almost as much “phylogenetic sig-
nal” as is possible from the mitochondrial genome.
Nonetheless, for clarity, we refer to the phylogeny as the
“mitochondrial phylogeny” to distinguish it from the
true (albeit unknowable) species tree, and acknowledge
that a more confident species tree of polypterids awaits
future analyses of many more independently evolving
loci.

Evolution of body elongation

Our ancestral state reconstructions (Fig. 3) estimate
numerous increases and decreases of vertebral number,
and thus, changes in body elongation. However, the
most striking transformation is seen in Erpetoichthys.
Erpetoichthys possesses between 110 and 113 vertebrae
(Table 1), but the vertebral number reconstruction for
the most recent common ancestor (MRCA) of this
genus and Polypterus is ~71. It is not known whether
the already relatively high number of vertebrae recon-
structed for the MRCA is an artifact of the extremely
high number of vertebrae in Erpetoichthys biasing the
estimation of the root, or evidence that extinct stem
polypterids were already relatively elongate. Regardless,
Erpetoichthys is much more elongate than the esti-
mated common ancestor of crown polypterids.

Anguilliformity (eel-like elongated body form), such as
that seen in Erpetoichthys, is seen across diverse lineages
of vertebrates including ray-finned fishes, caecilian
amphibians, and squamate reptiles [21,23-27,77], and an
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increase in vertebral number is considered as the com-
mon primary factor underlying such body form change
[22]. Developmentally, vertebrae emerge from ‘somites’
that form one after another, with antero-posterior direc-
tion in the embryo. They bud off from the anterior end
of unsegmented ‘presomitic mesoderm’ and this budding
is regulated by a segmentation clock represented by
oscillation of ‘clock’ genes such as Lunatic fringe
[reviewed in [78,79]]. Recently, it was found that the
tempo of the segmentation clock is accelerated in snake
embryos, “ticking” around four times faster relative to
growth rate than in shorter-bodied animals like chick
and mouse and consequently generating a large number
of somites [80].

Erpetoichthys has around 100 preanal vertebrae, which
is almost double the number of other polypterid species
[[22], pers. obs.]. Although few embryological studies of
Erpetoichthys have been conducted [81,82], the yolk-sac
larva and apterolarva of this species appear to be much
more elongated and have more somites than those of
Polypterus. 1t is plausible that an increase of vertebrate
number in Erpetoichthys was brought about by a similar
developmental mechanism to that exploited in snake
embryogenesis [80,83], although the precise molecular
mechanisms that regulate tempo of segmentation clock
in vertebrate embryos have not been identified yet. The
present study implies that body elongation observed in
Erpetoichthys seems to be brought about in an early
phase of polypterid evolution, possibly by accelerating
the tempo of the segmentation clock twice as fast as
that in other polypterids.

Although the extreme degree of body elongation
observed in Erpetoichthys is not found in extant Poly-
pterus, two species: P. bichir and P. teugelsi show a
relative increase of vertebrate number (Table 1; Fig. 3).
Although the total number of vertebrae is over 60 in
both species, the mechanisms by which they achieve
this body elongation are quite different. In P. bichir,
the number of preanal vertebrae is less than 50 like
that in majority of Polypterus species but the number
of postanal vertebrae increases into over 14 [22]. On
the other hand, P. teugelsi shows relative elongation of
the trunk region, possessing at least 54 preanal verteb-
rae (pers. obs.). Instead, this species has only 10 posta-
nal vertebrae keeping the condition in majority of
Polypterus species. Thus, body elongation seems to
have been achieved independently in two Polypterus
species by employing different developmental mechan-
ism that functions in separate developmental modules
[22]. We note that this pattern is surprisingly similar
to that seen in squamate reptiles (lizards and snakes)
in which body elongation is also achieved by two dis-
tinct mechanisms elongating either the trunk or the
tail [24-26].
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Figure 3 Extant states and result of ancestral state reconstructions of vertebral number using squared-change parsimony.

Pelvic fin loss

In vertebrates, the body elongation tends to co-occur
with a loss or reduction of paired appendages
[21,24-26,29,84,85]. Following this evolutionary trend,
Erpetoichthys, whose body is extremely elongated, also
lacks pelvic fins (Table 1). Maximum likelihood ances-
tral state reconstructions strongly support the conclu-
sion that pelvic fins were present in the most recent
common ancestor of Erpetoichthys and Polypterus (Mar-
ginal probability = 0.97; data not shown), and that they
were secondarily lost in the Erpetoichthys lineage. Given
that the loss of pelvic appendages is frequent in multiple
osteichthyan lineages, it is likely that the genetic
mechanism responsible for pelvic fin loss in Erpe-
toichthys is similar to other members of this group.
Translocation of Hox gene expression in trunk paraxial
and/or lateral plate mesoderm is known to be the
potential mechanism underlying limb elimination in ver-
tebrates [[86,87]; but see recent paper by Wolstering et
al. [88]]. However, this is a less likely explanation for
pelvic fin loss in Erpetoichthys because such alteration
of developmental program might also obliterate any ves-
tiges of the pelvic girdle yet Erpetoichthys retains a pair
of pelvic girdle elements (pers. obs.). Degeneration of
apical ectodermal ridge (AER) and lack of expression of
AER-associated genes might account for hindlimb

truncation in lizards [89,90] and snakes [86], but this
has never been recorded in non-tetrapods. Similarly,
failure in establishing the Zone of Polarizing Activity
(ZPA) has only been implicated in hindlimb loss in ceta-
ceans [91]. The most promising potential mechanism
responsible for pelvic fin loss in Erpetoichthys is the
elimination of expression of transcription factor-encod-
ing genes such as Pitxl and Hoxd9 in the pelvic region
- the mechanism that causes pelvic fin loss in some tele-
ost fishes [31,32,92]. Unfortunately, the pattern of pelvic
fin reduction in embryogenesis of Erpetoichthys has not
been described precisely [82] and thus, discrimination of
these various hypotheses is not yet possible. However,
future studies of these genetic and developmental
mechanisms can do so within the phylogenetic frame-
work constructed here.

Transformation of craniofacial morphology

The first three PCs of the geometric morphometrical
analysis of both dorsal and lateral views of the head
accounted for over 70% of the total shape variation. In
the comparison of the dorsal views, PC1 explains 36% of
the total variance and primarily describes positional
change of the orbit. PC2 explains 21% of the total var-
iance (Additional file 4). In the comparison of the lateral
views, PC1 explains 51% of the total variance and
describes positional change of the tip of the mandible,
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the orbit, and labial end. While, PC2 explaining 14% of
the total variance describes positional change of the
opercle.

Our morphometric analysis revealed the trend of mor-
phological change in Polypterus species where PC1 posi-
tively correlates with the size of the head (Fig. 4a and
4c). Phylogenetically closely-related P. ansorgii, P. bichir
and P. endlicheri occupied the most extreme positions
on the positive sides of both PC1 and PC2 axes. This
suggests that these three species not only tend to have a
rostrally-projected lower jaw (a condition already noted
by previous authors [43,47]), but also a medially located
and up-righted orbit, enlarged mouth, and rostroventral
distortion of the opercle. Judging from our mitochon-
drial phylogeny, the character complex seen in these
three species is a derived condition.

Interestingly, P. delhezi displayed a similar tendency of
morphological change in PC1 axis of both dorsal and
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lateral views, indicating that this species actually pos-
sesses an intermediate condition where neither the
upper or lower jaw show pronounced rostral projection.
Because P. delhezi is distantly related to the lower jaw
projection clade (P. ansorgii, P. bichir and P. endlicheri),
the similar cranial shape seen in two polypterid lineages
has apparently evolved independently. In polypterid spe-
cies whose snout projected more rostrally to the tip of
mandible, the range of variation was broader than that
in species with lower jaw protrusion (Fig. 4). Further-
more, the range was broadly overlapped between two
main clades: the monophyletic group composed of P.
ornatipinnis, P. weeksii, and P. retropinnis (purple) and
that composed of P. delhezi, P. palmas, P. senegalus,
and P. teugelsi (red), showing no lineage-specific pattern
of craniofacial transformation.

There are multiple potentially productive avenues of
future genetic and developmental research into the
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Figure 4 Plots of principal component (PC) and centroid size (CS) for morphometric characters of Polypterus. a) CS and PC1 for dorsal
view, b) PC1 and PC 2 for dorsal view, ¢) CS and PC1 for ventral view, d) PC1 and PC2 for ventral view. Grouping corresponds to the clade
inferred from molecular phylogenetic analysis (Fig. 2): Blue = Polypterus ansorgei, P. bichir lapradei, P. endlicheri endlicheri, and P. e. congicus; Green
= P. mokelembembe; Purple = P. ornatipinnis, P. retropinnis, and P. weeksii; Red = P. delhezi, P. palmas buettikoferi, P. p. polli, P. senegalus senegalus,
and P. teugelsi.
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mechanisms of craniofacial development in Polypteri-
dae. In vertebrates, morphology of the lower jaw is
regulated by cranial neural crest cells, and several tran-
scription factors in BMP and/or FGF signaling pathway
appear to be involved in the process [4,38,93-97].
Although we do not know what change in develop-
mental program caused substantial transformation of
craniofacial morphology in P. ansorgii, P. bichir and P.
endlicheri, the event that occurred in relatively early
phase of polypterid evolution might have facilitate the
shift into a new ecological niche, affecting their feeding
strategy.

Conclusion

The discovery of patterns of morphological evolution
among “deep” lineages of organisms permits further
exploration of the general underlying genetic and devel-
opmental mechanisms that evolved early in evolutionary
history. Our new molecular phylogeny of Polypteridae,
in conjunction with ancestral state reconstruction and
geometric morphometric analyses reveals that many of
the patterns of morphological evolution seen in poly-
pterids are shared with other actinopterygian, and
indeed, osteichthyan lineages. Thus, this implies the
underlying genetic and developmental mechanisms
responsible for those general patterns were established
early in the evolutionary history of Osteichthyes, or per-
haps even older in the craniate tree of life. Moreover,
these patterns suggest interesting avenues of future evo-
lution and developmental research that are only possible
in a phylogenetic framework.

Additional file 1: Information of DNA sequences analyzed in this
study.

Click here for file
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21-S1.PDF]

Additional file 2: List of primers used in this study.

Click here for file
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Additional file 3: Landmark definition for morphometric analysis. (A)
Polypterus palmas buettikoferi in dorsal view, (B) P. endlicheri congicus in
dorsal view, (C) P. p. buettikoferi in lateral view, (D) P. e. congicus in lateral
view.
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Additional file 4: Thin-plate splines (TPS) of principal component 1
(PC1) and 2 (PC2) for both dorsal and ventral views of the head of
Polypterus. Arrows indicate PC value plus positive 0.1 score. (A) PC1 in
dorsal view, (B) PC2 in dorsal view, (C) PC1 in lateral view, (D) PC2 in
lateral view. Numbers along with each plot indicate landmarks defined in
Additional file 3.
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