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Abstract: Strigolactones are low-molecular-weight phytohormones that play several roles in plants,
such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and
parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic
and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired
resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired
resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient
mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-
responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants.
In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24
enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed
disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria,
treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense
genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones
have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance.

Keywords: Arabidopsis; disease; phytohormones; strigolactones; salicylic acid; systemic acquired
resistance; GR24; strigolactone biosynthesis inhibitor; ethylene

1. Introduction

Plants are exposed to a range of biotic and abiotic stress factors, such as pathogen
attack, insect herbivory, and environmental stress. To adapt to such adverse conditions,
plants have evolved unique defense mechanisms that are regulated by phytohormones
such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA).
These phytohormones contribute to biotic stress responses through a complex network
involving synergistic and antagonistic interactions, although SA- and JA/ET-mediated
defense responses are important for the resistance against biotrophic and necrotrophic
pathogens, respectively [1–6].

In plant immunity, pathogen-associated molecular patterns (PAMPs) are first rec-
ognized by receptors on the surface of plant cells, activating a basal resistance called
PAMP-triggered immunity (PTI). Virulent pathogens have developed effector proteins
that suppress this PTI mechanism of host plants; however, resistant plants have acquired
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a strong immune mechanism, called effector-triggered immunity (ETI), which overcomes
pathogenic effectors [7]. Systemic acquired resistance (SAR), induced by SA, is a potent
innate immunity system in plants that is effective against a wide range of pathogens [8].
The induction of SAR in infected plants is accompanied by SA accumulation through
the increased expression of SA synthase, ISOCHORISMATE SYNTHASE 1 (ICS1), and
pathogenesis-related (PR) genes [9]. Further, a reduction of the SA-receptor protein NPR1
is reportedly important for SAR induction, to which an increase in total glutathione (GSH)
level contributes [10]. Additionally, probenazole and its derivative, 1, 2-benzisothiazol-
3(2H)-one-1, 1-dioxide (BIT), induce SAR by activating its signaling pathway upstream of
SA [11,12]. Furthermore, several studies have reported SAR as an effective strategy for dis-
ease control in plants [11–16], and priming of phytohormone-mediated disease resistance
has been reported as a different type of plant immunity system. Although only weak or no
expression at all of the major defense-related genes through SA- or JA-mediated signaling
pathways are observed in primed plants by interaction with arbuscular mycorrhizal (AM)
fungi [17,18], nonpathogenic bacteria [19,20], or treatment with certain chemicals [21], they
can still respond more rapidly and strongly to pathogenic infection to protect themselves.

Strigolactones (SLs) are carotenoid-derived metabolites that act as germination stimu-
lants on root parasitic weeds of the genus Striga [22]. Furthermore, SLs secreted by host
plants induce mycelial branching in rhizosphere AM fungi and stimulate symbiosis [23].
Recently, SLs have been reported to inhibit shoot branching [24,25]. Thus, SLs have been
categorized as a novel class of phytohormones.

Analysis using carotenoid-deficient mutants and carotenoid biosynthesis inhibitors
suggests that SLs are synthesized from carotenoids [26]. Moreover, several mutants, includ-
ing Arabidopsis more axillary growth (max) exhibiting increased shoot branching, have been
identified as SL biosynthesis mutants. Arabidopsis max3 and max4 mutants have mutations
in CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8, respectively, and their
phenotypes are restored upon treatment with synthetic SLs, indicating that they are SL-
deficient mutants [25]. Additionally, AtD27, which exhibits β-carotene isomerase activity
and converts all-trans-β-carotenes, is reportedly involved in SL biosynthesis. Furthermore,
carlactone (CL), an SL biosynthetic intermediate, is synthesized in plants from all-trans-
β-carotene using three different enzymes [27]. Mutant max1 is deficient in cytochrome
P450 oxygenase CYP711A, which converts CL into carlactonic acid in the SL biosynthetic
pathway [28]. Similarly, the shoot-branching mutant, SL-insensitive max2, lacks the F-box
protein that plays a role in recognizing SLs [29]. In addition, the SL-insensitive mutant d14
has a mutation in the gene encoding an α/β-hydrolyzing enzyme. After binding with SL,
the SL receptor D14 interacts with SCF (SKP1-CUL1-F-box) containing the F-box protein
MAX2, which transmits SL-mediated signals by degrading target proteins through the
ubiquitin–proteasome system [30]. The biological activities of SLs have been analyzed
using SL-related mutants and bioactive chemicals. Shoot branching is inhibited by the
synthetic SL-analog GR24, and it is improved by the SL-biosynthesis inhibitor TIS108,
which inhibits CYP711A activity [31].

SLs are also involved in plant responses to environmental stress, as in drought [32,33],
salt [34], and cold [35] resistance. As SLs are carotenoid derivatives that alleviate environ-
mental stress as ABA does, interactions between SL and ABA have been proposed. Thus,
for example, Arabidopsis SL biosynthesis-deficient (max3 and max4) and SL signaling-
deficient (max2) mutants exhibit low drought tolerance and are less sensitive to ABA [36].
However, some reports indicate that Arabidopsis max2 is less drought-tolerant and more
ABA-sensitive, whereas max3 and max4 are as tolerant as the wildtype (WT) [37]. Al-
together, these studies suggest that MAX2-mediated SL signaling interacts with ABA
signaling during stress tolerance.

Furthermore, recent studies suggest the specific role of SLs in plant responses to biotic
stress: Tomato SL biosynthesis-deficient mutant ccd8 exhibits increased susceptibility to
Botrytis cinerea and Alternaria alternata [38]. Similarly, rice SL signaling-deficient mutant d14
and SL biosynthesis-deficient mutant d17 are susceptible to Magnaporthe oryzae [39]. Further,
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Arabidopsis max2, max3, max4, and d14 mutants are highly susceptible to the biotrophic
virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) [40,41]. The model
compatible-interaction system between Arabidopsis and Pst, in which the SA-mediated
defense signaling is activated upon infection, has contributed to clarifying the detailed
mechanisms at work behind the plant immune system [42]. However, the mechanism
underlying the effects of SLs on SA-mediated disease resistance remains unclear. Therefore,
to gain a better understanding of the role of SL in disease resistance, the aim of this study
is to determine the effects of SLs on SA-mediated defense responses in Arabidopsis upon
Pst infection.

2. Results
2.1. Relationship between SLs and SA Signaling Pathway in Arabidopsis

To evaluate the effects of SLs on SAR induction, we examined SAR induction in
the SL biosynthesis-deficient mutants max1, max3, and max4 and in the SL signaling-
deficient mutant max2. SAR was induced by BIT applied using soil drench treatment to
avoid its dilution during dip-inoculation with the pathogen. Furthermore, to avoid the
influence of stomatal aperture on disease resistance, we covered plants with plastic wrap
and maintained high humidity for 12 h before and after pathogen inoculation.

The effects of BIT treatment on SAR induction in the SL-related mutants were evalu-
ated using a pathogenic bacterial inoculation test, defense gene expression profiling, and
the estimation of endogenous SA content. Resistance to Pst was assessed by measuring
bacterial growth in the leaf tissues. At 3 d after inoculation, leaves of all the SL-related mu-
tants treated with BIT exhibited > 10-fold lower bacterial titers than those of the untreated
(control) plants as well as WT (Col-0) plants (Figure 1). Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) indicated that upon treatment with BIT, the expres-
sion levels of PR1 (At2g14610), PR2 (At3g57260), and PR5 (At1g75040) were upregulated in
the SL-related mutants and the WT, compared to the control plants (Figure 2). Moreover,
BIT treatment significantly upregulated ICS1 (At1g74710) expression and increased the
levels of free and total endogenous SA (free SA + SA glucoside) in the SL-related mutants
and in the WT (Figures 2 and 3). These findings suggest that SAR can be induced in SL
biosynthesis- and signaling-deficient mutants.
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Figure 1. Effects of BIT treatment on growth of Pseudomonas syringae pv. tomato DC3000 in Arabidop-
sis leaf tissues. Three-week-old plants were treated with water (control) (–) or BIT (1 mg/pot) (+) 
using the soil drenching method 3 d before inoculation with Pst (2 × 105 CFU/mL). Leaves were 
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Figure 1. Effects of BIT treatment on growth of Pseudomonas syringae pv. tomato DC3000 in Arabidopsis
leaf tissues. Three-week-old plants were treated with water (control) (–) or BIT (1 mg/pot) (+)
using the soil drenching method 3 d before inoculation with Pst (2 × 105 CFU/mL). Leaves were
homogenized at 3 d post-inoculation, and the number of CFU was estimated using their growth
on nutrient broth agar plates. Values are means ± SE from six replicates, each with three leaves.
Significant differences between the control and BIT-treated leaves are indicated by * (unpaired t-test,
p < 0.05). Different letters indicate significant differences between accessions of the same treatment
(Tukey’s multiple comparison test, p < 0.05).
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Figure 2. Expression of defense-related genes in BIT-treated plants. Leaves of three-week-old plants
were sprayed with water (control) (–) or 1 mM BIT (+) and collected after 3 d. Transcript levels were
normalized using the expression of UBQ2 (At2g36170) in the same samples. Relative mRNA levels among
treatments are presented. Values are means ± SE (n = 3). Significant differences between the control
and BIT-treated plants are indicated by * (unpaired t-test, p < 0.05). Different letters indicate significant
differences between accessions of the same treatment (Tukey’s multiple comparison test, p < 0.05).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 14 
 

 

0.05). Different letters indicate significant differences between accessions of the same treatment 
(Tukey’s multiple comparison test, p < 0.05). 

 
Figure 2. Expression of defense-related genes in BIT-treated plants. Leaves of three-week-old plants 
were sprayed with water (control) (–) or 1 mM BIT (+) and collected after 3 d. Transcript levels were 
normalized using the expression of UBQ2 (At2g36170) in the same samples. Relative mRNA levels 
among treatments are presented. Values are means ± SE (n = 3). Significant differences between the 
control and BIT-treated plants are indicated by * (unpaired t-test, p < 0.05). Different letters indicate 
significant differences between accessions of the same treatment (Tukey’s multiple comparison test, 
p < 0.05). 

 
Figure 3. Accumulation of free and total SA in BIT-treated plants. Plants were treated with water 
(control) (–) or 1 mM BIT (+). Leaves were harvested 3 d after treatment, and free and total SA (free 
SA + SA glucoside) levels were quantified using high-performance liquid chromatography. 

Figure 3. Accumulation of free and total SA in BIT-treated plants. Plants were treated with water
(control) (–) or 1 mM BIT (+). Leaves were harvested 3 d after treatment, and free and total SA
(free SA + SA glucoside) levels were quantified using high-performance liquid chromatography.
Significant differences between control and BIT-treated plants are indicated by * (unpaired t-test,
p < 0.05). Different letters indicate significant differences between accessions of the same treatment
(Tukey’s multiple comparison test, p < 0.05).
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In the absence of SAR induction, bacterial growth on the leaf tissues was significantly
higher in the mutant max2 than in WT plants, whereas bacterial growth in mutants max1,
max3, and max4 was intermediate between those of max2 and WT (Figure 1). This finding
suggested that SL-mediated signaling is partially involved in basal resistance against Pst.
Although ICS1 levels in BIT-treated plants did not differ between the SL-related mutants
and the WT, SA levels were altered among these plants, with max2 and max4 exhibiting the
lowest and highest levels of both free and total SA, respectively (Figures 2 and 3).

Consistent with SA levels, the levels of expression of PR genes after BIT treatment
were significantly lower in max2 than in WT (Figure 2). Thus, BIT-mediated activation of
SA biosynthesis and signaling pathways were weaker in max2 than in WT, which can be
associated with high bacterial titer in the leaves of max2 (Figure 1). Additionally, the level of
activation of the SA-mediated signaling pathway and disease resistance in other SL-related
mutants was intermediate between those of max2 and WT (Figures 1 and 2). These findings
suggest that the absence of SL signaling affected the SA-mediated signaling pathway and,
consequently, the degree of disease resistance against Pst. Furthermore, the difference
between SL biosynthesis- and signaling-deficient mutants can be explained by the fact that
the inhibition of SL-mediated signaling was stronger in the mutant max2, which is defective
in the F-box protein MAX2, than in other biosynthesis-deficient mutants.

2.2. Effects of the Synthetic SL Analog GR24 on SA-Mediated Disease Resistance

To reveal the effects of SLs on SA-mediated disease resistance, we examined the ef-
fects of GR24, a synthetic SL analog, on resistance against Pst in Arabidopsis. Treatment
of WT plants with GR24 improved their resistance against Pst (Figure 4). Furthermore,
GR24-treated SLs biosynthesis-deficient mutants (max1, max3, and max4) exhibited reduced
bacterial growth in the leaf tissues compared to the untreated control plants. In contrast,
GR24 treatment did not affect disease resistance in max2 (Figure 4). These results indi-
cate that the activation of SL-mediated signaling by GR24 improved disease resistance
in Arabidopsis.
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Figure 4. Effects of GR24 treatment on growth of Pseudomonas syringae pv. tomato DC3000 in Arabidop-
sis leaf tissues. Three-week-old plants of WT and SL-related mutants (A) and SA-, ET-, and JA-related
mutants (B) were treated with 0.02% acetone (control) (–) or 10 µM GR24 (+) by drenching the soil
3 d before inoculation with Pst (2 × 105 CFU/mL). Leaves were homogenized 3 d post-inoculation,
and the number of CFUs was estimated from their growth on nutrient broth agar plates. Values are
means ± SE of six replicates, each with three leaves. Significant differences between control and
GR24-treated plants are indicated by * (unpaired t-test, p < 0.05). Different letters indicate significant
differences between accessions of the same treatment (Tukey’s multiple comparison test, p < 0.05).

To determine the role of disease resistance-related phytohormones in GR24-induced
disease resistance, induction of resistance against Pst was analyzed in SA-, JA-, and ET-
mediated signaling defective mutants npr1, jar1, and ein2, respectively. GR24 treatment
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induced disease resistance only in jar1, indicating that SA and ET—but not JA—were
involved in GR24-induced disease resistance (Figure 4).

To characterize GR24-induced disease resistance, we examined physiological changes
in the GR24-treated WT plants. The level of expression of SAR marker genes, namely
PR1, PR2, and PR5, and ICS1 did not increase in GR24-treated plants, indicating that the
mechanism of GR24-induced disease resistance was different from that of SAR (Figure 5A).
Furthermore, the expression levels of PDF1.2 (At5g44420), the JA-related gene, and ERF1
(At4g17500), the ET-related gene, were not significantly different between GR24-treated and
untreated control plants (Figure 5A), indicating that JA- and ET-mediated signaling path-
ways were not activated in GR24-treated plants. Endogenous accumulation of SAR-related
metabolites was examined three days after GR24 treatment. The levels of free SA and total
SA (free SA + SA glucoside) were not influenced by GR24 treatment (Figure 5B). Although
an increase in GSH level is important for SA-mediated signaling in SAR induction, the level
of GSH in GR24-treated plants was slightly but significantly lower than that of untreated
control plants. These findings suggest that the mechanism underlying GR24-induced
disease resistance was independent of SA-, JA-, or ET-mediated signaling pathways.
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Figure 5. Analysis of defense-related gene expression and metabolite accumulation in Arabidopsis
thaliana treated with GR24. Three-week-old plants were treated with 0.02% acetone (control) (–)
or 10 µM GR24 (+) using the soil drenching method, and leaves were collected 3 d after treatment.
(A) Expression levels of PR1, PR2, PR5, ICS1, PDF1.2, and ERF1 in GR24-treated plants. Transcript
levels were normalized using the expression of UBQ2 in the same samples. Relative mRNA levels of
each gene among the treatments are presented. Values are means ± SE (n = 4). (B,C) Accumulation
of free and total SA and GSH in GR24-treated plants. The levels of free and total SA (free SA + SA
glucoside) and GSH were quantified using high-performance liquid chromatography. Significant
differences between control and GR24-treated plants are indicated by * (unpaired t-test, p < 0.05).
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To determine the mechanism underlying GR24-induced resistance against Pst, defense
responses were investigated by analyzing gene expression upon pathogen inoculation.
Time-course analysis indicated that PR1 was significantly upregulated in GR24-treated
plants, compared with control plants, at 16 and 20 h post inoculation, whereas similar
levels were maintained up to 24 h (Figure 6). This finding suggests that the defense system
was rapidly activated in the GR24-treated plants, which should contribute to the increased
resistance against Pst. Conversely, the expression of PDF1.2 after Pst infection was not
upregulated but downregulated due to activation of SA-mediated signaling (Figure 6).
Therefore, GR24-induced disease resistance showed a priming effect that activated major
defense pathways, such as the SA-mediated defense pathway, after infection.
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Closed circle, water-treated control plants; closed square, GR24-treated plants. Significant differences
between control and GR24 treatments are indicated by * (unpaired t-test, p < 0.05).

2.3. Effects of the SL Biosynthesis Inhibitor TIS108 on Disease Resistance

Pathogen inoculation assays and gene expression analyses indicated that GR24 primed
plants against Pst infection, suggesting that SLs positively regulated disease resistance. This
was further supported by the fact that in-planta Pst growth was higher in max mutants than
in WT plants (Figure 1). However, max mutants, with the absence of SLs from germination,
may have some side effects on the stress response systems during their growth.

To verify the contribution of endogenous SLs to the resistance against Pst, we exam-
ined the effects of the SL-biosynthesis inhibitor TIS108 on gene expression, metabolite
accumulation, and disease resistance. The expression levels of SAR-related genes PR1, PR2,
PR5, and ICS1; JA-related gene PDF1.2; and ET-related gene ERF1 were not affected by
TIS108 treatment (Figure 7A). Endogenous levels of free SA, total SA, and GSH were not
significantly different between the TIS108-treated and untreated control plants (Figure 7B).
Treatment with as low as 1 µM TIS108 significantly decreased disease resistance in WT
plants compared to that of the untreated control plants, suggesting that endogenous SLs
contribute to Pst resistance (Figure 8).
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Figure 7. Analysis of defense-related gene expression and metabolite accumulation in Arabidopsis
thaliana treated with TIS108. Three-week-old plants were treated with 0,02% dimethyl sulfoxide
(DMSO) (–) or 10 µM TIS108 (+) using the soil drenching method, and leaves were collected 3 d
after treatment. (A) Expression levels of PR1, PR2, PR5, ICS1, PDF1.2, and ERF1 in TIS108-treated
plants. Transcript levels were normalized using the expression of UBQ2 in the same samples. Relative
mRNA levels of each gene among the treatments are presented. Values are means ± SE (n = 4). (B,C)
Accumulation of free and total SA and GSH in TIS108-treated plants. The levels of free and total SA
(free SA + SA glucoside) and GSH were quantified using high-performance liquid chromatography.
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Figure 8. Effects of strigolactone biosynthesis inhibitor TIS108 on Pst growth in Arabidopsis leaf
tissues. Three-week-old plants were treated with 0.02% dimethyl sulfoxide (DMSO) (control) or 1 or
10 µM TIS108 by drenching the soil 3 d before inoculation with Pst (2 × 105 CFU/mL). Leaves were
homogenized 3 d post-inoculation, and the number of CFUs was estimated using their growth on
nutrient broth agar plates. Values are means ± SE of six replicates, each with three leaves. Different
letters indicate significant differences (Tukey’s multiple comparison test, p < 0.05).



Int. J. Mol. Sci. 2022, 23, 5246 9 of 14

3. Discussion

Various aspects of plant immunity are regulated by phytohormones such as SA,
JA, and ET. Previous studies have demonstrated the role of SLs in disease resistance
using SLs-biosynthesis and signaling mutants of rice and Arabidopsis [39,40]. This study
demonstrated that SLs positively regulated SA-mediated signaling during basal defense
responses but not SAR induction. Increased disease resistance upon GR24 treatment
proved to be a case of priming of the plant immune system, that is, a rapidly upregulated
expression of defense genes upon infection (Figure 6). Moreover, the reduction in disease
resistance upon treatment with the SL biosynthesis-inhibitor, TIS108, strongly supported
that SL-mediated signaling positively affected SA-mediated disease resistance (Figure 8).
These findings suggest that SLs play a positive role in plant immunity, especially in the SA-
mediated disease resistance. Similar rapid upregulation of defense-related gene expression
was observed in plants primed by symbioses with microbes or chemicals [18,19,21]. In
turn, this study is the first demonstration of a priming effect on plants by exogenous and
endogenous SLs; however, how SLs contribute to plant disease resistance in nature remains
to be elucidated. Although whether SLs-biosynthesis can be activated by pathogen attack
is unknown, SLs probably affect some unidentified mechanism along the pathway between
PAMPs recognition and expression of defense-related genes, such as SA-biosynthesis-
related genes and PR genes, which enables primed plants to counterattack pathogens more
rapidly than unprimed plants (Figure 9).
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As SLs comprise an important class of phytohormones with various roles in plant
growth and development, there may be some side effects on the physiology of SL-related
mutants due to the absence of SLs. Similarly, TIS108 treatment should also have some side
effects, as it suppressed SL-mediated signaling. However, such effects did not occur in the
short-time treatment with TIS108, which was supported by our finding that the expression
of defense-related genes and the accumulation of SA were not affected by TIS108 treatment.

In Arabidopsis SL biosynthesis- and signaling-defective mutants, as well as in WT
plants, a SAR inducer improved disease resistance by activating SA biosynthesis and SA-
mediated signaling, suggesting that SLs do not affect SAR induction (Figure 1). Further, and
consistently with a previous report [40], without SAR induction, these mutants were more
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susceptible to Pst than WT plants (Figure 1), and, compared to other SL-related mutants, the
SL-signal-perception-defective mutant max2 exhibited a different phenotype. Furthermore,
regardless of SAR induction, the disease resistance and SA-mediated signaling processes,
such as PR gene expression and SA accumulation, were suppressed in max2 compared
to WT plants (Figure 1). In contrast, SL biosynthesis-related mutants exhibited such
processes at levels that were intermediate between those observed for max2 mutant and WT
plants (Figure 1). These findings suggest that SLs are important, at least for SA-mediated
disease resistance.

When the pathogen was inoculated via foliar spray, the levels of disease resistance
were lower in max2 than in the other SLs biosynthesis-deficient mutants, which was
attributed to the increased number of open stomata in the max2 mutant [40]. In this
study, to avoid the influence of stomatal opening and closing, pathogen inoculation was
performed by dipping the plants into the bacterial suspension after keeping 100% RH
for 12 h before and after inoculation. Thus, the differences in disease resistance and SA-
mediated signaling did not result from differences in stomatal opening (Figure 1). We
hypothesize that the mutations in MAX2 affected SL-mediated signaling by altering SL-
signal perception, thereby affecting the SA-mediated disease resistance. In this case, the
differences in SA-mediated signaling processes among SL-biosynthesis-defective mutants
would likely be owing to the different physiological effects of each specific mutation,
a plausible idea that warrants further research.

Treatment with GR24 failed to induce disease resistance in the mutant npr1, indicating
that an SA signal was involved in SL-mediated disease resistance (Figure 4), which is
consistent with the altered SA-mediated disease resistance in SL-related mutants (Figure 1).
However, SAR induction via the activation of SA-mediated signaling was observed in
SL-related mutants, suggesting that SLs are not directly involved in SA-mediated disease
resistance. Alternatively, a plausible mechanism involves the regulation of SA-mediated
signaling by SL during basal resistance, including PTI. However, further investigation is
necessary to confirm the operation of this mechanism.

Treatment with GR24 effectively induced disease resistance in jar1 but not in ein2,
indicating that ET but not JA was involved in SL-mediated disease resistance (Figure 4).
Further, some reports indicate that ET is involved in SL-mediated signaling; thus, for
example, SL-induced seed germination in Striga hermonthica (Delile) Benth. requires ET
biosynthesis and signaling [43]. Additionally, SL promotes ET accumulation in etiolated
Arabidopsis seedlings by upregulating the expression of 1-aminocyclopropane-1-carboxylic
acid oxidase (ACO) [44]. Similarly, SL promotes ET biosynthesis in Arabidopsis roots [45].
In this study, ET-responsive ERF1 was not induced in GR24-treated plant leaves (Figure 5),
suggesting that ET was not involved in SL-mediated priming.

In contrast, several other reports have underlined the importance of ET in SA-mediated
disease resistance; however, such findings remain controversial. In Arabidopsis, co-
treatment with an ET biosynthetic precursor (1-aminocyclopropane-1-carboxylic acid)
and SA upregulated PR1 relative to SA treatment alone [46]. Conversely, ein3 eil1, a double
mutant of ET-responsive transcription factors, constantly accumulated SA, indicating that
ET negatively affects SA-mediated signaling pathways [47]. Nonetheless, GR24-induced
disease resistance required ET-mediated signaling through EIN2 (Figure 5), suggesting that
ET improved SA-mediated disease resistance after pathogen infection of primed plants.

Nutrient stress, such as low phosphate or nitrogen, induces SL biosynthesis, which
alters SL-mediated responses in AM fungi symbioses, which effectively increase the soil
volume explored by plant roots in search for phosphorus. However, the trade-off between
growth and disease resistance is well known. In contrast to plants growing under soil
nutrient-rich conditions (i.e., excess phosphate or nitrogen for better growth), which are
more susceptible to diseases, plants growing under soil nutrient-poor conditions exhibit
higher levels of expression of defense-related genes after infection [48]. Overall, SL syn-
thesized under soil nutrient-poor conditions may not only promote symbiosis with AM
fungi but effectively prime plants for infection as well. This effect might be possible be-
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cause priming does not affect growth, while it effectively protects plants from pathogen
attack by accelerating the induction of SA-, JA-, or other phytohormone-mediated disease
resistance mechanisms.

4. Materials and Methods
4.1. Plant Material and Chemical Treatment

Arabidopsis thaliana Col-0 and seven mutants with the same ecotype, including max1-1 [24],
max2-1, max3-1, max4-1, npr1-2, jar1-1, and ein2-1, were used for the experiments [9].
Plants were grown in sterilized potting soil (Nihon hiryo, Fujioka, Japan) in plastic pots
(5 cm × 5 cm × 5 cm) inside a growth chamber under a 16:8 h light: dark photoperiod at
22 ◦C and 60% RH.

BIT [11] solutions (1 mg/mL for soil drenching and 1 mM for spraying) were prepared
by dissolving the BIT powder in sterilized distilled water. GR24 (rac-GR24) and TIS108 [31]
solutions (1 mM) were prepared from 50 mM GR24 in acetone and 50 mM TIS108 in DMSO,
respectively, by diluting with sterilized distilled water. Three-week-old plants were treated
with chemicals as indicated in the Figures.

4.2. Pathogenicity Assays

Control and chemical-treated plants were inoculated with Pst as previously de-
scribed [49].

4.3. Estimation of SA Levels

Three-week-old plants were treated with chemicals for three days. Leaf samples (ca.
100 mg) were harvested and used for extraction and measurement of SA as previously
described [12]. Briefly, leaf tissues were homogenized in 1 mL of 90% methanol and
then extracted using 1 mL of 100% methanol. These extracts were pooled and dried at
40 ◦C. The dried residues were extracted in 4 mL of water at 80 ◦C for 15 min, and equal
aliquots (1 mL) were used for free and total SA estimation. One aliquot was extracted using
2.5 mL ethyl acetate–cyclohexane (1:1) following the addition of 50 µL of concentrated
HCl, and the upper layer was dried and dissolved in 1 mL of 20% methanol in 20 mM
sodium acetate buffer (pH 5). This solution was then subjected to high-performance liquid
chromatography (HPLC) analysis to determine free SA levels. Then, 1 mL of β-glucosidase
(Merck, Darmstadt, Germany) solution (3 units/mL) was added to the remaining aliquots
and incubated for 6 h. These aliquots were prepared for HPLC analysis using the above
procedure to determine total SA levels. SA analysis was performed using an Agilent 1220
Infinity LC (Agilent, Snata Clara, CA, USA) equipped with a ZORBAX Eclipse Plus C18
(4.6 × 150 mm; Agilent) and run with 20% methanol in 20 mM sodium acetate buffer (pH 5)
at a flow rate of 1 mL/min. SA was detected and fluorometrically quantified at 295 nm
excitation and 370 nm emission wavelengths.

4.4. GSH Measurement

Three-week-old plants were treated with chemicals for three days. Leaf samples (ca.
100 mg) were harvested and used for extraction and measurement of GSH as previously
described [50].

4.5. RT-qPCR

Gene expression profiles were determined using leaf samples. Total RNA isolation,
cDNA synthesis, and RT-qPCR were performed as previously described [49]. Gene-specific
primers used in this study are listed in Supplementary Table S1. Transcript levels were
normalized using the expression of UBQ2 in the same samples [51].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23095246/s1.
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