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The dynamic dysregulated network identifies
stage-specificmarkers during lung adenocarcinoma
malignant progression and metastasis
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Brain metastasis occurs in approximately 30% of patients
with lung adenocarcinoma (LUAD) and is closely associated
with poor prognosis, recurrence, and death. However, dy-
namic gene regulation and molecular mechanism driving
LUAD progression remain poorly understood. In this study,
we performed a comprehensive single-cell transcriptome
analysis using data from normal, early stage, advanced stage,
and brain metastasis LUAD. Our single-cell-level analysis re-
veals the cellular composition heterogeneity at different
stages during LUAD progression. We identified stage-spe-
cific risk genes that could contribute to LUAD progression
and metastasis by reprogramming immune-related and
metabolic-related functions. We constructed an early adva-
nced metastatic dysregulated network and revealed the
dynamic changes in gene regulations during LUAD progres-
sion. We identified 6 early advanced (HLA-DRB1, HLA-
DQB1, SFTPB, SFTPC, PLA2G1B, and FOLR1), 8 advanced
metastasis (RPS15, RPS11, RPL13A, RPS24, HLA-DRB5, LY-
PLA1, KCNJ15, and PSMA3), and 2 common risk genes in
different stages (SFTPD and HLA-DRA) as prognostic
markers in LUAD. Particularly, decreased expression of
HLA-DRA, HLA-DRB1, HLA-DQB1, and HLA-DRB5 refer
poor prognosis in LUAD by controlling antigen processing
and presentation and T cell activation. Increased expression
of PSMA3 and LYPLA1 refer poor prognosis by reprogram-
ming fatty acid metabolism and RNA catabolic process. Our
findings will help further understanding the pathobiology of
brain metastases in LUAD.
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INTRODUCTION
Lung cancer is the cancer with the fastest increasing morbidity and
mortality, and it is also one of the malignant tumors threatening
the health and life of the population. The 2 main subtypes of
lung cancer are small cell lung cancer and non-small cell lung can-
cer (NSCLC),1 histologically divided into lung adenocarcinoma
(LUAD), squamous cell carcinoma, and large cell carcinoma,
among which LUAD is the most common histological subtype.2

If detected early, surgical resection of NSCLC has a good prog-
nosis.3 However, approximately 75% of patients have advanced
Molecular Therap
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disease (stage III/IV) at the time of diagnosis.4 Because of the mu-
tation of cancer cells, the invasion degree is increased.5,6 The cells
separate from the primary tumor and travel through blood vessels
to other organs. Brain metastasis is the leading cause of prognosis,
recurrence, and death in NSCLC patients, of whom approximately
20%–40% eventually develop brain metastasis.7 Advanced cancer
and brain metastasis can shorten overall survival and decrease
quality of life. However, the spec ific aspects of the different stages
of LUAD progression remain poorly understood. It has become an
urgent task to study the molecular characteristics of different
stages of LUAD progression and further analyze the molecular
mechanisms of cancer in search of new therapeutic targets.

Cancer is a multicellular community composed of malignant epithe-
lial cells and different types of non-malignant immune and stromal
cells, which show dynamic interactions.8 Numerous studies have
shown significant tumor heterogeneity of both genetic and cellular
compositions between primary and metastatic tumors.9 Advanced
tumors consist of subclones with various genetic alterations and
functional roles.10 Tumor heterogeneity and the complex cellular
architecture play a crucial role in cancer progression and response
to treatment.11 However, the dynamic molecular features that charac-
terize the contributions of tumor heterogeneity to malignant progres-
sion, metastasis, and poor survival are largely unknown. Many
different cell types in our bodies express unique transcriptomes.
Traditional bulk sequencing can only provide an average expression
signal for a collection of cells, whereas single-cell RNA sequencing
(scRNA-seq) isolates all cells in a tissue sample and sequences each
y: Nucleic Acids Vol. 30 December 2022 ª 2022 The Author(s). 633
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cell in turn. scRNA-seq can be used to carry out non-biased high-
throughput studies with the smallest samples, measure gene expres-
sion levels more accurately, and have greater sensitivity in quantifying
rare mutations and transcripts.12 There is increasing evidence that
gene expression is heterogeneous, even in similar cell types.13,14

scRNA-seq can reveal the complicated and rare cells, adjust the rela-
tionship between genes, and reveal the trajectory in the development
of different cell lineages.15

In summary, we integrated scRNA-seq datasets from lung tissues,
early stage, advanced stage, and brain metastasis LUAD tissues to
characterize dynamic dysregulated networks, identify stage-specific
risk genes and explores their prognostic value during LUAD tumor
progression and metastasis (Figure 1). This study revealed the
dynamic molecular characteristics and functions of LUAD in the pro-
gression of early advanced brain metastasis, providing an important
theoretical basis for the molecular mechanism research and targeted
therapy of LUAD.

RESULTS
Identification of cellular components at different stages of LUAD

progression

To explore the changes in cell composition during the progression of
LUAD, we obtained scRNA-seq data from different tissue sources,
including normal lung tissue (normal lung), early primary LUAD tis-
sue (early LUAD), advanced primary LUAD tissue (advanced
LUAD), and brain metastasis tissue (metastatic LUAD) (Figure 2A).
We cataloged the tissue cells into 9 cell lineages based on the expres-
sion levels of canonical marker genes16 (Figure 2B, Table S1). These
include epithelial cells, stromal cells (fibroblasts, endothelial cells),
immune cells (T lymphocytes, natural killer [NK] cells, B lympho-
cytes, myeloid cells, and mast cells), and oligodendrocytes. Except
for oligodendrocytes, which were only present in metastatic LUAD,
other cell types were recognized in normal lung, early LUAD,
advanced LUAD, and metastatic LUAD (Figures 2C–2E). Compared
with normal lung tissue, T lymphocytes and B lymphocytes were
significantly enriched and NK cells were decreased in primary
LUAD tissues (early LUAD and advanced LUAD, respectively).
The results indicated that the adaptive immune process of the body
was gradually activated with the occurrence and development of can-
cer. In addition, compared with normal lung tissue, it was found that
the percentage of epithelial cells increased significantly in primary
LUAD tissue and metastatic LUAD, which were 8.0%, 18.9%, and
45.4%, respectively (Figure 2F). The results indicated that the tumor
microenvironment showed high cellular heterogeneity and dynami-
cally changing after LUAD progression and metastasis. By analyzing
the changes in cell composition caused by the occurrence, develop-
ment, and invasion of LUAD, it was found that the components
of different cell types were significantly different in the process of
normal primary LUAD brain metastasis, revealing the difference of
tissue-specific cell population. The signature genes of all cell types
showed stable expression patterns, and each classic marker gene
was only expressed in the corresponding cell types identified by us,
independent of the stage of cancer development (Figure 2G). These
634 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
results indicate that there are significant differences in the proportion
of cell components in different stages of LUAD progression.

Heterogeneity of tumor cells in the pathological process of early

stage, advanced stage to brain metastasis of LUAD

To characterize the heterogeneity of tumor cells and identify stage-
specific risk genes in LUAD tissues, we identified the malignant
tumor cells in the early stage, advanced stage, and brain metastasis
LUAD (Figures 3A and 3B). Using stromal cells (fibroblasts and
endothelial cells) and immune cells (T cells, NK cells, B cells, myeloid
cells, and mast cells) as reference cells, inferCNV analysis was applied
to infer large-scale copy number variations based on the scRNA-seq
data. We identified 2,071, 4,103, and 7,448 LUAD malignant epithe-
lial cells in early stage (early MECs), advanced stage (advanced
MECs), and brain metastatic stage (metastatic MECs), respectively.
We divided epithelial cells in lung tissue into 4 subpopulations based
on canonical marker gene expression, namely, alveolar type I cells
(AGER), alveolar type II cells (SFTPC/LAMP3), Club cells
(SCGB1A1), and ciliated cells (FOXJ1/RFX2) (Figures 3C and 3D).
Alveolar cell type II is the cell type that is enriched in normal lung tis-
sue (Figure 3D). Alveolar type II cells are components of the pulmo-
nary epithelium and serve as progenitor cells of alveolar type I cells to
promote the repair and regeneration of the alveolar epithelium.17 A
trajectory analysis was performed on epithelial cells in normal lung
tissue and early MECs to assess inter-cellular heterogeneity (Fig-
ure 4A). We found that alveolar type I cells were mainly located in
state 4, alveolar type II cells were mainly located in state 5, ciliated
cells were located in state 3, and state 3 was almost full of ciliated cells.
Most of the early MECs were in state 1, and most of the cells in state 1
also belonged to the early MECs (Figure 4B). By comparing early
MECs with normal epithelial cells in cell state 1, we identified 133
normal-early risk genes, including 78 significantly upregulated genes
and 55 significantly downregulated genes (fold change [FC] > 2, false
discovery rate [FDR] <0.05). Functional analysis showed that normal-
early risk genes were mainly enriched in respiratory gaseous exchange
by respiratory system, antigen processing and presentation and T cell
activation (Figure S1A). Downregulated genes in early MECs were
mainly enriched in respiratory gaseous exchange by respiratory sys-
tem and tissue homeostasis (Figure 4C). The significantly upregulated
genes in early MECs were mainly enriched in immune-related func-
tions, such as leukocyte activation, T cell activation, negative regula-
tion of endopeptidase activity, and negative regulation of peptidase
activity. Protease activity has been reported to be pivotal in executing
antigen receptor responses and lymphocyte function.18 The dysregu-
lation of protease activity and immune-related genes were related
with cancer risk.19,20

Trajectory analysis was performed on early MECs and advanced
MECs to assess inter-cellular heterogeneity (Figure 4D). The results
showed that the early MECs were mainly located in cell state 2, and
most of the cell types in cell state 2 were early MECs (Figure 4E).
Advanced MECs were mainly located in cell state 1, and most of
the cells in cell state 1 were also advanced MECs. Therefore, cell state
2 is the specific cell state in the early stage of LUAD, and cell state 1 is



Figure 1. Molecular mechanism and functional analysis of different stages of LUAD progression
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the specific cell state in the advanced stage of LUAD. By comparing
advanced MECs with early MECs cells, we identified 151 early
advanced risk genes. Early advanced risk genes were mainly enriched
in immune-related functions, such as antigen processing and presen-
tation, humoral immune response, and T cell activation (Figure S1B).
Furthermore, we identified 124 DEGs in state 1, 33 DEGs in state 2,
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Figure 2. Identification of cellular components of scRNA-seq data from different stage of LUAD progression

(A) Overview of single-cell data from different tissues obtained from GEO. (B) tSNE map of 129,277 single cells. (C–E) tSNE plots of single cells in different tissues, colored by

cell types. (F) The proportion of each cell types in different tissues. (G) Bubble plots of the average expression levels of classic marker genes in nine cell types from different

tissue sources.
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and 283 DEGs in state 3. We found that the DEGs of cell state 1 are
mainly associated with neutrophil degranulation. The DEGs of cell
state 2 were mainly related to regulation of endogenous peptidase ac-
tivity, regulation of peptidase activity, cell chemotaxis, and cell-cell
adhesion. The DEGs of cell state 3 were mainly related to cellular
636 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
detoxification, response to hydrogen peroxide, and cell response to
toxic substances (Figure 4F). State 1 is a specific branch of advanced
MECs in the early advanced trajectory, which is significantly enriched
in neutrophil degranulation. Neutrophils have been reported to play
an important role in cancer occurrence and progression.21 Granule
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Figure 3. Identification of MECs at different stages of LUAD progression

(A, B) Heatmap showing large-scale CNV of epithelial cells in primary LUAD (A) andmetastatic LUAD (B). (C) tSNE plots of normal epithelial subclusters, colored by cell types.

Alveolar type I cells (AT1), alveolar type II cells (AT2), club cells (Club), and ciliated cells (Ciliated). (D) The bar chart details the proportions of different cell types.
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protein released by neutrophil degranulation is associated with tumor
progression and may promote the development of LUAD.22

Intercellular heterogeneity was evaluated by a trajectory analysis of
advanced MECs and metastatic MECs (Figure 4G). The results
showed that advanced MECs were mainly located in cell state 2,
and most of the cell types in cell state 2 were advanced MECs. Meta-
static MECs were mainly located in cell state 3, andmost of the cells in
cell state 3 were also metastatic MECs (Figure 4H). Therefore, cell
state 2 is the specific cell state of advanced stage of LUAD, and cell
state 3 is the specific cell state of brain metastasis of LUAD. By
comparing advanced MECs with metastatic MECs cells, we identified
279 advanced metastatic risk genes. Functional analysis showed that
advanced metastatic risk genes significantly influenced immune
response-related and metabolic-related functions, such as antigen
processing and presentation, T cell activation, fatty acid metabolic
process, RNA catabolic process, and response to hypoxia (Fig-
ure S1C). For example, LYPLA1 was significantly upregulated from
advanced to metastatic LUAD, which is involved in fatty acid meta-
bolic processes. Recent studies have reported that reprogramming
fatty acid metabolism could promote lymph node metastasis in cer-
vical cancer.23 Furthermore, we identified 83 DEGs in cell state 1, 73
DEGs in cell state 2, and 97 DEGs in cell state 3. We found that DEGs
in cell state 1 and cell state 2 are mainly related to regulation of endog-
enous peptidase activity, regulation of peptidase activity, and protein
targeting to membrane. The DEGs of cell state 3 are mainly related to
the regulation of exogenous signaling pathways through death
domain receptors, positive regulation of cell substrate adhesion, and
platelet degranulation (Figure 4I). State 3 is a unique branch of met-
astatic MECs in the advanced metastatic trajectory, which is signifi-
cantly enriched in biological functions such as platelet degranulation.
The interaction between cancer cells and activated platelets has been
reported to promote the metastatic behavior of tumor cells.24–26 Met-
astatic MECs in state 3 may contribute to brain metastasis of LUAD
through modulation of platelet degranulation. Our results demon-
strated differences in transcriptional trajectories, revealing different
cell expression patterns at different stages of LUAD progression.

Construction and functional analysis of early advanced

metastatic dynamic dysregulated network in LUAD

To characterize the dynamic changes during LUAD progression at
the single-cell level, we constructed early advanced and advanced
metastatic dysregulated networks by integrating interaction relation-
ships mediated by risk genes (Figures 5A and 5B). The early advanced
dysregulated network involved 151 risk genes and 83 dysregulated in-
teractions. The advanced metastatic dysregulated network involved
Molecular Therapy: Nucleic Acids Vol. 30 December 2022 637

http://www.moleculartherapy.org


A

D

G

E

H

F

I

B C

(legend on next page)

Molecular Therapy: Nucleic Acids

638 Molecular Therapy: Nucleic Acids Vol. 30 December 2022



www.moleculartherapy.org
279 risk genes and 570 dysregulated interactions. Then, an early
advanced metastatic dynamic dysregulated network was constructed
by comparing early advanced and advanced metastatic dysregulated
interactions (Figure 5C). As compared with early advanced dysregu-
lated network, the advanced metastatic dysregulated network gained
interactions 567 (73.6%) and lost 80 interactions (10.4%). These re-
sults showed the dynamic rewiring of network connections during
different stages of LUAD progression.

We used the MCODE method to cluster the closely related nodes in
the dynamic dysregulated network of early advanced brainmetastasis,
obtaining a total of 11 significant modules (Figure 5D).We found that
module 7 contained only DEGs from advanced LUAD to brain
metastasis, and module 11 contained only DEGs from the early stage
to the advanced stage (Figure 5E). Functional enrichment analysis
was performed for genes in the module (Figure 5F). The results
show that module 1 is mainly composed of RPL and RPS family genes,
and plays an important role in tumor cell growth and proliferation.
Module 2 correlated with antigen processing and presentation, con-
sisting of both MHC-I (HLA-A, HLA-B, and HLA-C) and MHC-II
(HLA-DRA, HLA-DBQ1, HLA-DRB1, and HLA-DRB5) molecules.
These genes are downregulated in LUAD progression, indicating
increased tumor immune escape and decreased T cell recognition
and activation, further confirming the decreased immunogenicity of
cancer cells. Module 3 correlated with cellular responses, in which
chemical signals bind to the corresponding receptors to induce events
within the cell that ultimately change its behavior. Module 4 corre-
lated with the regulation of nerve cell maturation, andmost of module
4 genes are DEGs from advanced LUAD to brain metastasis. Module
5 correlated with the function of normal epithelial cells, such as gas
exchange through the respiratory system and tissue homeostasis,
suggesting that epithelial cells still function as normal epithelial cells
during the progression of LUAD. Module 8 correlated with ATP
synthesis, oxygen electron transport chains, and oxidative phosphor-
ylation. Module 9 correlated with the importation of inorganic ions
through the plasma membrane, and the transmembrane transport
of inorganic ions is closely related to a variety of life processes.

Later, DAVIDwas used to enrich the KEGGpathway of module genes
and identify the sub-pathway where the module genes were located,
allowing us to reconstruct the risk pathway dynamically related to
early advanced brain metastasis of LUAD (Figure 6). In many path-
ological conditions, such as during autoimmune, cancer and infec-
tion, major histocompatibility complex (MHC) provides peptides to
T cells leading to the initiation of adaptive immune responses.27

The results showed that MHC-I (HLA-A, HLA-B, and HLA-C) and
B2M were significantly enriched in the upstream of the T cell receptor
signaling pathway to regulate CD8 cell killing target cells and regulate
Figure 4. Pseudotemporal trajectory analysis revealing heterogeneity of tumor

(A) Developmental trajectory representation of normal epithelial cells and early MECs alo

according to cell type (top) and cell state (bottom). (B, E, and H) Major cell state composi

and I) The bubble plots show significantly enriched biological processes based on th

advanced-metastatic LUAD (I). (D) Developmental trajectory of early MECs and advanc
the activity of natural killer cells. MHC-II (HLA-DQB1, HLA-DRB1,
HLA-DRB5, and HLA-DRA) molecules are significantly enriched in
the upstream of the T cell receptor signaling pathway and regulate
the secretion of cytokines by CD4 T cells and the activation of other
immune cells. In this study, low expression of MHC-I (HLA-A,
HLA-B, and HLA-C) molecules and MHC-II (HLA-DQB1, HLA-
DRB1, HLA-DRB5, and HLA-DRA) molecules inhibited antigen pro-
cessing and presentation, indicating increased tumor immune escape
and thus promoting tumor progression. Dysregulation of the cell cy-
cle leads to uncontrolled cell proliferation, one of the molecular hall-
marks of tumorigenesis. The cell cycle is a well-organized mechanism
and is tightly controlled by regulatory molecules such as cyclins, cy-
clin-dependent kinases and their inhibitors. Cyclin D1 (CCND1), a
key regulatory protein, controls the transition from G1 to S phase
during cell division.28 In this study, CCND1 is highly expressed in
the progression of LUAD and is enriched in the downstream of the
pathway, which can promote cell cycle progression and tumor devel-
opment. Ferroptosis is a novel iron-dependent programmed cell
death mode.29 It plays a key role in inhibiting tumorigenesis by
removing cells deficient in key nutrients or damaged by infection or
environmental stress in the environment.30 Ferroptosis-protection
genes31 (AKR1C1, AKR1C2, and AKR1C3) are highly expressed in
advanced metastatic LUAD and are significantly enriched in the
upstream of chemical carcinogenesis-reactive oxygen pathway,
promoting the progression of lung cancer. GNB2, JUN, and FOS are
significantly enriched in MAPK signaling pathway, and JUN and
FOS are enriched in the downstream of the pathway, promoting can-
cer cell proliferation, angiogenesis, and cancer metastasis. These re-
sults showed reveals the dynamic changes in gene regulation and
function during different stages of LUAD progression.

Identification of prognostic markers in the dynamic

dysregulated network at different stages of LUAD progression

To identify potential prognostic markers at different stages of LUAD
progression, we performed survival analysis using 88 module genes
based on the GEPIA2 database. As a result, we identified 16 stage-spe-
cific risk genes as prognostic markers of LUAD, including 6 early
advanced risk genes (HLA-DRB1, HLA-DQB1, SFTPB, SFTPC,
PLA2G1B, and FOLR1) and 8 advanced metastatic risk genes
(RPS15, RPS11, RPL13A, RPS24, HLA-DRB5, LYPLA1, KCNJ15,
and PSMA3), 1 common risk gene SFTPD in normal early and
advanced metastatic stages, and 1 common risk gene HLA-DRA in
in normal early, early advanced, and advanced metastatic stages (Fig-
ures 7 and 8). For example, HLA-DRB1, SFTPC, and FOLR1 showed
significantly decreased expressions from the early to the advanced
stage of LUAD (Figures 7 and 8). Decreased expression of HLA-
DRB1 (p = 0.01), SFTPC (p = 3.0e-04), and FOLR1 (p = 0.02) were
associated with poorer prognosis in LUAD (Figure 7). HLA-DRB1
cells in different stages of LUAD

ng inferred pseudotime by Monocle. Each point corresponds to a single cell, colored

tion of each cell type (top) and cell types distribution in each cell state (bottom). (C, F,

e analysis of the DEGs in normal-early LUAD (C), early-advanced LUAD (F), and

ed MECs. (G) Developmental trajectory of advanced MECs and metastatic MECs.
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Figure 5. Construction and functional analysis of early advanced metastatic dynamic dysregulated network

(A) Early advanced dysregulated network. (B) Advanced metastatic dysregulated network. (C) Dynamic network of early advanced brain metastasis in LUAD. In the network,

the greenyellow node is early advanced risk gene, the red node is advancedmetastatic risk gene, and the blue nodes is early advanced metastatic risk gene. (D) Key modules

identified in the network by MCODE. (E) Histogram of the proportion of different types of genes in key modules. (F) Significant enrichment of the GO terms for module genes.

Filled colors from blue to red represent adjusted p values.
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can bind to receptors on CD4+ T cells to regulate the differentiation
and proliferation of cytotoxic T lymphocytes and other lymphocyte
subsets.32,33 Previous studies have shown that lower expression of
HLA-DRB1 in patients with advanced stage than early stage of
NSCLC.34 Previous studies have demonstrated that the loss of SFTPC
is more likely to be a marker associated with advanced lung tumors.
The downregulation of SFTPC can promote cell proliferation and pre-
640 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
dict a poor survival rate in LUAD.35 FOLR1 was reported to be
decreased in advanced p-stage than in early p-stage of NSCLC and
its higher expression is associated with a better prognosis in early
stage NSCLC.36 We found that RPS15, RPS11, RPL13A, and RPS24
were significantly downregulated from advanced to metastatic
LUAD. These genes are involved in the EIF2 signaling pathway that
related to angiogenesis and tumor metastasis.37 Patients with the



Figure 6. Stage-specific risk genes were associated with pathways contributing to LUAD progression

Stage-specific risk genes affect multiple important biological pathways. Filled colors represent stage-specific risk genes, with greenyellow for early advanced risk genes, red

for advanced metastatic risk genes, and blue for early advanced metastatic risk genes.
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lower expression of RPS15, RPS11, RPL13A, and RPS24 genes had a
better prognosis. HLA-DRB5 is downregulated in the progression of
brain metastasis, which is relevant to the development of cancer
and metastatic progression,38 and the low expression of HLA-DRB5
is associated with poor prognosis. We found that LYPLA1, KCNJ15,
and PSMA3were significantly upregulated from advanced tometasta-
tic LUAD. High expression of LYPLA1 and PSMA3 were associated
with a poor prognosis in LUAD. LYPLA1 has been reported to be
significantly differentially expressed between early and late recur-
rence groups in colorectal cancer.39 Inhibition of LYPLA1 expression
can inhibit cell proliferation and migration in NSCLC.40 KCNJ15 has
been reported to be associated with the epithelial-mesenchymal tran-
sition.41 PSMA3 is involved in some metabolic pathways and pro-
cesses, and plays an important role in the occurrence, development,
and metastasis of cancer.42 The expression of HLA-DRA demon-
strated downregulation from normal tissue, early stage to advanced
stage, and lowest in brain metastasis of LUAD (Figure 8). A lower
expression of HLA-DRA in LUAD tumors was associated with
reduced patient survival (log-rank test, p = 1.5e-3) (Figure 7). Recent
studies have shown that reduced HLA-DRA correlated with a lower
immune enrichment score of CD4+ T cells43 and could predict the
response to anti-programmed death-1 immunotherapy in NSCLC.44

Furthermore, we examined the association of these prognostic genes
with the drug sensitivity profiles of NSCLC chemotherapeutic drugs
in 135 NSCLC cell lines. We found that prognostic genes showed sig-
nificant differential expression in mRNA and protein level in sensitive
vs. resistant NSCLC cell lines (2-sample t-tests; p < 0.05). For
example, HLA-DRA mRNA expression was associated with
sensitivity to gemcitabine and HLA-DRB1 mRNA expression was
associated with resistance to carboplatin. The protein expression of
HLA-DRA was associated with resistance to paclitaxel and sensitivity
to gefitinib.45 Altogether, stage-specific risk genes could serve as prog-
nostic markers and play important roles in different stages of LUAD
progression.

DISCUSSION
LUAD is the most common subtype of lung cancer, which has a poor
prognosis. In recent years, increasing research progress on LUAD
have been achieved by facilitating the analysis of single-cell transcrip-
tome sequencing. For example, single-cell transcriptomic studies re-
vealed substantial heterogeneity in cellular composition of the tumor
microenvironment8,46,47 and molecular properties in primary and
Molecular Therapy: Nucleic Acids Vol. 30 December 2022 641
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Figure 7. Identification of stage-specific prognostic genes during LUAD metastatic progression

Comparison of overall survival among patients with high (red) or low (blue) expression levels of risk genes by Kaplan–Meier analysis (with log rank values) in the cohort of LUAD

cancer patients from TCGA.
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metastatic LUAD.48,49 Liu et al. demonstrated intra-patient and intra-
tumor heterogeneity in the regulation of pathways related to LUAD
tumor progression.9 Many studies have characterized the cell differ-
entiation trajectory and topological architecture of LUAD evolu-
tion.50,51 Several studies have started to characterize the molecular
and cellular dynamics at different stages of LUAD progres-
sion.16,50,52–54 However, the dynamic gene regulation and molecular
642 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
mechanism driving the progression of LUAD from early stage,
advanced stage to metastatic stage have not been comprehensively
elucidated.

Therefore, we provided an integrative approach to characterize dy-
namic dysregulated networks and identify stage-specific risk genes
during LUAD progression from early stage, advanced stage, to



Figure 8. The dynamic changes in different stages of LUAD progression

Dynamic changes in tumor microenvironment cell composition (top), dysregulated biological functions (middle), and stage-specific risk genes (bottom) in different stages of

normal lung, early LUAD, advanced LUAD, and metastatic LUAD.
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metastatic stage. First, a trajectory analysis of MECs at different stages
showed the increased transcriptional heterogeneity during LUAD
progression and metastasis. We also identified LUAD stage-specific
risk genes by comparing the tumor cell populations from different
LUAD stage. Next, we constructed and comprehensively analyzed
the early advanced metastatic dynamic dysregulated network in
LUAD. We identified several functional modules, which involved in
many distinct cancer-related biological functions and pathways. Pre-
vious studies have shown that various signaling pathways are associ-
ated with the occurrence and metastasis of NSCLC, including MAPK
signaling pathway55,56 and T cell receptor signaling pathway,57–59

which was also confirmed by our study. Finally, we identified 6
early advanced risk genes, 8 advanced metastatic risk genes, and 2
common risk genes in different stages, which can be used as
prognostic biomarkers in LUAD. For example, SFTPB showed signif-
icantly decreased expressions from early to advanced stage of LUAD.
Decreased expression of SFTPB was associated with poorer prognosis
in LUAD (p = 3.0e-04) (Figure 7). SFTPB has been reported to be used
as potential blood biomarkers for distinguishing LUAD from lung
squamous cell carcinoma.60 These results highlight a crucial role of
stage-specific risk genes in the development of LUAD.

In summary, we integrated scRNA-seq datasets from lung tissues,
early stage, advanced stage, and brain metastasis LUAD tissues to
characterize dynamic dysregulated networks, identify stage-specific
risk genes and explores their prognostic value during LUAD tumor
progression and metastasis. Our results reveal tumor heterogeneity
in cellular composition, gene expression and biological functions at
different stages of LUAD progression. We also report 16 stage-spe-
cific risk genes that could serve as prognostic biomarkers for LUAD
(Figure 8). This study provides an in-depth analysis of the dynamic
molecular characteristics and functions in the progression of early-
advanced-brain metastasis in LUAD, providing an important theoret-
ical basis for the molecular mechanism research and targeted therapy
of LUAD.

MATERIALS AND METHODS
scRNA-seq data preprocessing

Single-cell transcriptome data of LUAD were obtained based on GEO
database (GEO: GSE131907).16 The sequencing data contained
208,506 cells from 58 LUAD samples from 44 patients. These cells
were derived from normal lung tissue, lymph nodes, primary tumor
tissue, brain metastasis, and pleural effusion. In this study, cells
from normal lung tissue (normal lung), early primary LUAD tissue
(early LUAD), advanced primary LUAD tissue (advanced LUAD),
and brain metastasis tissue (metastatic LUAD) were selected,
including 42,995 cells from normal lung tissue, 45,149 cells from early
primary LUAD tissue, 12,073 cells from advanced primary LUAD tis-
sue, and 29,060 cells from brain metastasis. scRNA-seq data obtained
from GEOwere preprocessed according to different tissue sources us-
ing R package Seurat (https://satijalab.org/seurat/),61 which is widely
used in preprocessing, dimension reduction, and cell clustering for
scRNA-seq data. R package Seurat was used to calculate the percent-
age of mitochondrial reads. Cells that had unique feature counts
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higher than 5,000 or less than 200 or a single cell with more than
10% mitochondrial genes were filtered out. After moving the low-
quality cells, the filtered single cell data was normalized by the
NormalizeData function.
Unsupervised reduction and clustering

We used the RunPCA function of the Seurat R package to determine
the principal components (PCs) of cells at different stages of LUAD,
and used the ElbowPlot function to visualize PCs. Furthermore, cells
with similar expressions were clustered by the FindClusters function,
and the shared nearest neighbor algorithm was used to identify cell
clusters. Finally, the identity of each cluster was identified through
t-distributed random neighborhood embedding visualization of cell
clusters, combined with the expression values of knownmarker genes
of various cell clusters.
Copy number variation was inferred based on scRNA-seq data

Cancer cells were identified by calculating single-cell copy number
variations (CNVs) using the inferCNV algorithm,62 which is used
to explore the expression intensity of genes across positions of tumor
genomes in comparison to a set of reference normal cells to determine
somatic changes.63 First, non-malignant cells, including stromal
cells and immune cells, were selected as reference cells to estimate
the CNV of malignant cells. For epithelial cells treated by inferCNV,
we selected 2 parameters to summarize CNV signals16: (1) mean
squares: the mean squares of estimated CNV signals across all
genomic locations; (2) copy number correlation coefficient: the Pear-
son correlation coefficient between CNV signal and the average CNV
signal of the top 5% of cells. Epithelial cells with abnormal CNV sig-
nals (mean square of >0.02 and copy number correlation coefficient
of >0.4) were defined as malignant tumor cells.
Single-cell trajectory construction and analysis

Monocle is an R package for analyzing scRNA-seq, which can arrange
cells in simulated chronological order to show their developmental
trajectories such as cell differentiation and other biological pro-
cesses.64 In our study, Monocle was used to construct cell trajectories
by integrating epithelial cells from normal lung tissues and MECs
from inferCNV inferred early primary LUAD, advanced primary
LUAD, and brain metastasis tissues. The first step is to select genes
that provide important information for defining trajectory progres-
sion, also known as feature selection. Then, the above gene sets
were used to construct the data trajectory. We took the UMI counts
of the gene-cell matrix as input to Monocle, and then its newCellDa-
taSet function was called to create an object with the parameter ex-
pressionFamily = negbinomial.size. Then the differentialGeneTest
function is used to calculate the differentially expressed genes
(DEGs) of each cell type as the gene set to define the progression of
the trajectory, and dimension reduction and cell ordering are carried
out. Finally, the dynamic trajectory of epithelial cells in LUAD pro-
gression is deduced. Trajectory analysis will reveal the heterogeneity
in gene expression and biological functions among MECs at different
stages of LUAD, which is termed as different cell expression patterns.

https://satijalab.org/seurat/
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Differential expression analysis and functional analysis

The FindMarkers function of the Seurat package was used to identify
DEGs with the statistical threshold of FC of more than 2 and FDR of
less than 0.05. R package clusterprofiler65 and DAVID (https://david.
ncifcrf.gov/) to gene ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes pathway enrichment analysis,
respectively.

Identification of stage-specific risk genes

Genes that were significantly differentially expressed normal relative
to early MECS with state 1 in the trajectory were defined as normal
early risk genes. Genes that were significantly differentially expressed
in state 1 relative to state 2 in the trajectory of early advanced LUAD
were defined as early advanced risk genes. Genes that were signifi-
cantly differentially expressed in state 3 relative to state 2 in the
trajectory of advanced metastatic LUAD were defined as advanced
metastatic risk genes. The common DEGs between early advanced
stage and advanced metastatic stage were defined as early advanced
metastatic risk genes.

Construct a dynamic dysregulated network of early advanced

brain metastasis of LUAD

The early advanced dysregulated network is constructed by integrating
interaction relationships mediated by early advanced risk genes. The
advancedmetastatic dysregulated network is constructed by integrating
interaction relationships mediated by advanced metastatic risk genes.
The early advanced metastatic dynamic dysregulated network is con-
structed by integrating early advanced and advanced metastatic dysre-
gulated networks. The interaction relationships are obtained from the
STRING database,66 and Cytoscape67 software was used to visualize
the network.

Identification of key modules in the dynamic dysregulated

network

Based on the dynamic network of early-advanced-brain metastasis,
we used molecular complex detection (MCODE) (a plugin in Cyto-
scape) to identify the most significant modules in the network, and
the parameters of MCODE are as follows: degree cutoff = 2, node
score cutoff = 0.2, K-core = 2, and max depth = 100.

Survival analysis

We used the "Survival Analysis" component of GEPIA268 (http://
gepia2.cancer-pku.cn/#index), which can be used to assess the rela-
tionship between gene expression and cancer prognosis based on
gene expression levels and to evaluate hypotheses using log-rank tests,
to detect OS (overall Survival) of risk genes in TCGA. The thresholds
for distinguishing low expression group and high expression group
were defined as cutoff-high (50%) and cutoff-low (50%), respectively,
and genes with p-values of less than 0.05 were selected as prognostic
markers.
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