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Abstract: Somatic cell nuclear transfer (SCNT) technology can reprogram terminally differentiated
cell nuclei into a totipotent state. However, the underlying molecular barriers of SCNT embryo
development remain incompletely elucidated. Here, we observed that transcription-related pathways
were incompletely activated in nuclear transfer arrest (NTA) embryos compared to normal SCNT
embryos and in vivo fertilized (WT) embryos, which hinders the development of SCNT embryos.
We further revealed the transcription pathway associated gene regulatory networks (GRNs) and
found the aberrant transcription pathways can lead to the massive dysregulation of genes in NTA
embryos. The predicted target genes of transcription pathways contain a series of crucial factors in
WT embryos, which play an important role in catabolic process, pluripotency regulation, epigenetic
modification and signal transduction. In NTA embryos, however, these genes were varying degrees
of inhibition and show a defect in synergy. Overall, our research found that the incomplete activation
of transcription pathways is another potential molecular barrier for SCNT embryos besides the
incomplete reprogramming of epigenetic modifications, broadening the understanding of molecular
mechanism of SCNT embryonic development.

Keywords: SCNT embryos; transcription pathways; gene regulatory networks; abnormal gene
expression; molecular barriers

1. Introduction

Somatic cell nuclear transfer (SCNT) technology can reprogram terminally differenti-
ated cell nuclei into a totipotent state to realize the cloning of animals [1]. SCNT has great
prospects in therapeutic cloning, animal breeding and endangered species protection [2–5].
At present, there are still many technical obstacles in SCNT that cause SCNT embryos
to have low cloning efficiency, extra-embryonic tissues and some abnormal phenomena
after the birth of cloned animals [6,7]. In mice, 70% of SCNT embryos are arrested at early
cleavage stages, especially from the one-cell to the two-cell stage [8,9], which greatly limits
the application of SCNT technology.

In recent years, the development of low-input sequencing technology has enabled
more accurate analysis of transcriptome and epigenetic dynamics during SCNT reprogram-
ming at single-cell resolution, providing new clues for revealing and overcoming molecular
defects in somatic reprogramming [9–11]. Many studies have shown that there are a large
number of abnormal expression genes in SCNT embryos. For example, Matoba et al. found
3775 differentially expressed genes (DEGs) at the two-cell stage between in vitro fertiliza-
tion (IVF) and SCNT embryos of mice [10]. Liu et al. found 6948 DEGs at the eight-cell
stage between IVF and SCNT embryos of bovine [12]. At the same time, most of these
abnormally expressed genes have different epigenetic characteristics from normal devel-
opmental embryos, and the ectopic expression of the corresponding epigenetic modifiers
can restore the global transcriptome and improve SCNT embryonic development [9,12,13].
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However, the ectopic expression of the corresponding epigenetic modifiers cannot fully
rescue the abnormally expressed genes, which indicates that more factors hindering the
further development of SCNT embryos need to be clarified.

In mice, zygotic genome activation (ZGA) mainly takes place in the two-cell stage
embryos. During this progress, about 90% of the maternally deposited mRNAs have a
degradation [14,15] in which some of the basal transcription factors (TFs) or their corre-
sponding maternal mRNAs contribute to the activation of embryo transcription [16–18].
A recent analysis indicates that inhibition of minor ZGA impairs the RNA polymerase II
(Pol II) pre-configuration and embryonic development in mouse embryos [19]. In accor-
dance with our previous study, we observed that the transcripts related to transcription,
such as TFIID subunits, RNA polymerase and mediators, are the main trigger genes, which
are not fully activated in interspecies SCNT (inter-SCNT) embryos [20,21]. The initiation of
transcription as a key point plays important roles in the regulation of gene activity during
mammalian development [22]. However, whether transcription-related pathways also play
roles in SCNT embryos needs to be further investigated [23].

In our study, we found incomplete activation of transcription pathways in SCNT
embryos and revealed that abnormal transcription processes may impede the expression
of key genes, leading to GRN defects and further affecting the crucial biological processes
of embryonic development in SCNT embryos. Our study showed incomplete activation
of transcription pathways functions as a barrier for SCNT embryos, which provided a
theoretical basis for in-depth understanding of SCNT embryo development and improving
the efficiency of nuclear transfer.

2. Results
2.1. Incomplete Activation of Transcription Pathways in SCNT Embryos

Transcription is one of the most fundamental cellular events and the first occurrence
of this process is accompanied by the zygotic genome activation (ZGA) [24]. However, the
potential influence of transcription-related pathways on embryo development remains elu-
sive. To address this, we collected data on three pathways related to transcription process
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database according to the
functional classification information of the pathway. These three KEGG pathways are basal
transcription factors (TFs) (mmu03022), RNA polymerase (mmu03020) and spliceosome
(mmu03040), involving 44, 31 and 136 factors, respectively. In order to explore the develop-
mental defects of SCNT embryos from the perspective of transcription-related pathways
activation, we compared the gene expression patterns of basal TFs, RNA polymerase and
spliceosome between in vivo fertilized embryos (WT) and SCNT embryos (Figure 1A). A
major activation wave of the three pathways was observed at the two-cell to four-cell stage
in WT embryos. However, the three transcription pathways were incompletely activated
in SCNT embryos. Moreover, in nuclear transfer two- and four-cell-stage (NTA2 and
NTA4) embryos, the expression levels of genes involved in basal TFs, RNA polymerase
and spliceosome are significantly lower than corresponding development stages of nuclear
transfer to blastocyst embryos (NTB) and WT embryos (Figure 1B).

To further explore the potential effects of aberrant transcription process on NTA
embryos, we compared the activation levels of transcription pathways between NTA and
NTB/WT embryos. The results indicated the heterogeneity of gene recovery in NT 2-cell to
blastocyst (NTB2) and NT 4-cell to blastocyst (NTB4) embryos, in which only about half of
the genes were rescued (Figure 1C). In NTB2 embryos, 20.1% of transcription associated
genes were highly rescued and 29.4% of transcription associated genes were partially
rescued. In NTB4 embryos, 39.7% transcription associated genes were highly rescued and
6.9% of transcription associated genes were partially rescued. At the same time, the rescued
genes were distributed in all of the three pathways. In NTB2 embryos, 23, 15 and 63 genes
were rescued in the basal TFs, RNA polymerase and spliceosome pathways, respectively.
In NTB4 embryos, 20, 14 and 61 genes were rescued, respectively. The ratio of highly
rescued genes in NTB4 embryos was greater than that in NTB2 embryos (Figure 1D,E).
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These results implied that the incomplete activation of transcription pathways may be an
obstacle to the development of SCNT embryos.
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Figure 1. Incomplete activation of transcription-related pathways in SCNT normal and arrest embryos. (A) Different acti-
vation waves of three key pathways (basal TFs, RNA polymerase and spliceosome) related to transcription events was 
observed between WT and SCNT embryos. The expression patterns were determined by the dynamic changes in the av-
erage normalized FPKM at each developmental stage. The calculation program was conducted by the function “mean” of 
R. (B) The boxplot shows the differential activation of three pathway among NTA, NTB and WT embryos. Differences are 
statistically significant. (*) p-value < 0.05; (***) p-value < 0.001, t-test. NTA2, NT 2-cell arrest embryos; NTB2, NT 2-cell to 
blastocyst; WT2, in vivo fertilized 2-cell embryos; NTA4, NT 4-cell arrest embryos; NTB4, NT 4-cell to blastocyst; WT4, in 
vivo fertilized 4-cell embryos. (C) The proportion of abnormally expressed gene were rescued in NTB embryos. The defi-
nition of highly and partially rescued genes shown in method. (D,E) Heterogeneous rescue effect on gene expression at 2-
cell and 4-cell stage of NTB embryos. 
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Figure 1. Incomplete activation of transcription-related pathways in SCNT normal and arrest embryos. (A) Different
activation waves of three key pathways (basal TFs, RNA polymerase and spliceosome) related to transcription events
was observed between WT and SCNT embryos. The expression patterns were determined by the dynamic changes in the
average normalized FPKM at each developmental stage. The calculation program was conducted by the function “mean”
of R. (B) The boxplot shows the differential activation of three pathway among NTA, NTB and WT embryos. Differences
are statistically significant. (*) p-value < 0.05; (***) p-value < 0.001, t-test. NTA2, NT 2-cell arrest embryos; NTB2, NT 2-cell
to blastocyst; WT2, in vivo fertilized 2-cell embryos; NTA4, NT 4-cell arrest embryos; NTB4, NT 4-cell to blastocyst; WT4,
in vivo fertilized 4-cell embryos. (C) The proportion of abnormally expressed gene were rescued in NTB embryos. The
definition of highly and partially rescued genes shown in method. (D,E) Heterogeneous rescue effect on gene expression at
2-cell and 4-cell stage of NTB embryos.
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2.2. Abnormal Transcription Pathway was Related to Massive Dysregulation of Genes in
NTA Embryos

RNA polymerases, basal TFs and spliceosome are required for the expression of genes
in the eukaryotic cell [25,26]. In recent years, many studies have shown that there are
a large number of abnormally expressed genes in SCNT embryos, which is usually ex-
plained as the result of incomplete reprogramming of epigenetics modification in SCNT
embryos [1,8,27–31]. However, in addition to epigenetic barriers, there are many potential
molecular barriers that hinder the development of SCNT embryos that need to be further
unraveled [9,12,13]. In our research, we found that the abnormal transcription process
was significantly related to the development arrest of SCNT embryos. Then, we won-
dered whether the aberrant transcription pathways can lead to the dysregulation of gene
expression and developmental arrest of SCNT embryos.

To this end, we detected the downstream gene regulatory networks (GRNs) between
WT embryos and NTA embryos based on pySCENIC (Supplementary Table S1). pySCENIC
is an algorithm that can reconstruct GRNs with transcription factors (TFs) as the core based
on co-expressed and TF binding motifs analysis (see Section 4, Methods). Compared
with NTA2 embryos, more predicted target genes have been observed in the GRNs of
WT2 embryos and only 1067 genes shared in the two types of embryos (Figure 2A). The
consistent results were also observed in WT4 embryos (Figure 2A). Notably, predicted
target genes showed heterogeneous expression between WT and NTA embryos. In the
3514 WT2 embryos specific target genes, 1130 expressed more than twice as much as NTA2
embryos (Figure 2B). In 4672 WT4 embryos specific target genes, 1594 expressed more
than twice as much as NTA4 embryos (Figure 2C). The GO term enrichments showed that
1130 down-regulated genes of NTA2 embryos were mainly involved in catabolic process,
signal transduction, translation, histone modification, etc. (Figure 2D). In addition, 1594
down-regulated genes of NTA4 embryos were mainly enriched in regulation of interferon
production, catabolic process, signal transduction, translation, etc. (Figure 2E). These
findings confirmed that the aberrant transcription pathways may lead to the massive
dysregulation of genes and biological process in NTA embryos.

2.3. Defective Activation of Transcription Pathways Downstream GRNs in NTA Embryos

To further evaluate the potential role of transcription pathway downstream GRNs
on embryo development, we next sought to identify core TFs from the GRNs. The top 1
or 2 core factors with the largest targets number in three transcription pathways of WT
embryos were screened, respectively, including Gtf2a2, Taf9 (basal TFs), Polr3a, Polr3g
(RNA polymerase) and Ncbp1 (spliceosome) (Figure 3A). As expected, the expression
levels of the five core TFs in WT embryos were higher than that in NTA embryos (except
for Gtf2a2 in NTA4 embryos) (Figure 3B).

Next, we utilized the TF regulon activity obtained by pySCENIC to detect the predicted
target genes of this five core TFs. Two criteria were used to identify the TFs: first, we
only kept co-expressed TFs with positive correlations, i.e., potential activation associations;
second, we only kept TFs whose binding motif was over-represented in the search space
around the transcription start site (TSS) of genes. A specific GRN was observed in WT2
embryos, which contains the five core TFs and 951 downstream genes. No corresponding
regulatory relationships have been observed in NTA2 embryos (Figure 3C). Among them,
Hdac4, as a histone deacetylase, is co-regulated by Taf9, Polr3a and Ncbp1, suggesting the
crucial epigenetic regulation defects in SCNT embryo development. Histone H3K9me3
demethylase Kdm4b was targeted by Taf9, which is consistent with previous studies that
Kdm4b may function as a natural assistance for SCNT embryos to overcome the H3K9me3
barrier [9]. Moreover, DNA demethylase Tet1 [9,32], histone acetylase Kat2a and Kat6a
and some pluripotency factors, such as Sox2, Taxa2r, Cbfa2t2, Id1, Zfp109, Gata6 and Igf2,
were also the downstream predicted target genes of the five core TFs. We further checked
the molecular function involved in this GRN. The 951 predicted target genes were mainly
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enriched in organelle organization, catabolic process, covalent chromatin modification,
histone modification, stem cell population maintenance and so on (Figure 3D).
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(biological process, BP) enrichments of WT2 up-regulated 1130 genes in Figure 2B. (E) The representative GO term (BP)
enrichments of WT4 up-regulated 1594 genes in Figure 2C.

Furthermore, a more complex specific GRN was found in the WT4 embryos which
contain 1440 predicted target genes, including some key pluripotency factors [33–36]
(e.g., Sall1, Id1, Dppa5a, Kat6a) (Figure 4A). The genes involved in this GRN were mainly
enriched in catabolic process, protein disassembly, lipid localization and regulation of
cell growth (Figure 4B). These results indicated that the transcription pathways formed
intricate regulatory relationships with a large number of key genes, thereby facilitating the
progression of embryonic development. However, incompletely activated transcription
pathways can cause defects of GRNs in NTA embryos and further lead to abnormalities in
certain biological processes, such as organelle organization, basic metabolism, epigenetic
modification and pluripotency acquisition.

2.4. NTA Embryos Showed Weak Coordination of Key Predicted Target Genes

The transcriptional state of a cell emerges from an underlying GRN [37]. In the above
study, we found that NTA embryos have defective activation of transcription pathways
downstream GRNs. However, how these downstream regulatory genes promote embryo
development through synergistic effect needs further exploration. We first detected the
expression patterns of the key predicted target genes between the WT2 and NTA2 em-
bryos. The 16 key target genes—including epigenetic modifier Tet1, Kat2a and Kat6a and
pluripotency factors Sox2, Taxa2r, Cbfa2t2, Id1, Zfp109, Zfp352, Gata6 and Igf2—have
higher expression levels in the WT2 embryos compared to NTA2 embryos (Figure 5A).
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Figure 3. Identification of core GRN barriers related to transcription in NTA embryos. (A) The selection of candidate TFs
(marked in figure) involved in three pathways, the five TFs (Gtf2a2, Ncbp2, Taf9, Polr3a, Polr3g) having top targets both
in WT2 and WT4 embryos were screened in three pathways, respectively. (B) The differential expression patterns of five
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Next, we evaluated the coordinate expression of key downstream genes of tran-
scription pathways. Co-expression analysis revealed strong correlation with a Pearson’s
correlation coefficient (PCC) of more than 0.55 between epigenetic modifications and
pluripotency factors, with the exception of Gata6, Hdac4, Igf2 and Kdm4b (Figure 5B). We
extracted the targeting relationship of these key genes from the regulons of pySCENIC
and constructed the GRNs (Figure 5C). The results indicated that GRN in WT2 embryos
had a more complex regulatory relationship than that in NTA2 embryos, and there were
more co-regulatory relationships among various genes. However, NTA2 embryos show a
defect in the coordination of these factors. This suggests that the synergism of epigenetic
modification and pluripotency factors is essential to facilitate the normal development of
SCNT embryos.
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latory relationships among various genes. However, NTA2 embryos show a defect in the 
coordination of these factors. This suggests that the synergism of epigenetic modification 
and pluripotency factors is essential to facilitate the normal development of SCNT embryos. 
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At present, despite great advances in SCNT technology [3,29,38], it is far from achiev-

ing a perfect reprogramming approach [6,7,39]. Therefore, elucidating the barriers of re-
programming and finding effective ways to improve the efficiency of SCNT have become 
urgent issues [32]. Transcription is the most fundamental molecular event, which was cru-
cial for the regulation of gene activity during ZGA of embryo development. For the initi-
ation of transcription, RNA polymerase II (Pol II) can bind to basal transcription factors 
to form a pre-initiation complex (PIC) [40–42]. After transcription, eukaryotic mRNA 

Figure 5. Key predicted target genes of the five TFs were dysregulated in 2-cell stage of NTA embryos. (A) The expression
levels of the targeted pluripotency and epigenetic modification genes of the five TFs in Figure 3C. (B) Co-expression
measured by Pearson Correlation Coefficient (PCC) clustering of genes in Figure 5A. (C) The gene regulated networks
for the targeted pluripotency and epigenetic modification factors of the five TFs in Figure 3C in NTA2 and WT2 embryos,
respectively. The dot size represents the gene expression level, and the connection line indicates targeted effect. (D) RNA
polymerase II (Pol II) binds to basal transcription factors to form a pre-initiation complex (PIC) that turns on the initial
transcription of DNA. After transcription, eukaryotic mRNA precursors (pre-mRNA) were spliced into mature mRNA by
spliceosome. In WT mouse embryos, transcription pathways were activated after major zygotic genome activation (ZGA),
thereby facilitating the expression of massive downstream key genes. However, transcription pathways of NTA embryos
were incompletely activated at 2-cell and 4-cell stages, which led to the down-regulation of these genes compared to WT
embryos. The size of green cloud indicated the transcription activation.
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3. Discussion

At present, despite great advances in SCNT technology [3,29,38], it is far from achiev-
ing a perfect reprogramming approach [6,7,39]. Therefore, elucidating the barriers of
reprogramming and finding effective ways to improve the efficiency of SCNT have become
urgent issues [32]. Transcription is the most fundamental molecular event, which was
crucial for the regulation of gene activity during ZGA of embryo development. For the
initiation of transcription, RNA polymerase II (Pol II) can bind to basal transcription factors
to form a pre-initiation complex (PIC) [40–42]. After transcription, eukaryotic mRNA pre-
cursors (pre-mRNA) were spliced into mature mRNA by spliceosome [43]. In our previous
study, we found that the abnormal expression of transcription-related genes might be
caused by the nuclear-cytoplasmic incompatibility between transferred nuclei and recipient
cells in SCNT embryos [20]. The study further indicated that interspecies SCNT embryos
only wasted the stored maternal mRNA of master regulators, but failed to activate their
self-sustained pathway of RNA polymerases [20,21].

In this study, we found that transcription pathways were activated after major ZGA,
thereby facilitating the expression of massive downstream key genes in WT mouse embryos.
However, transcription pathways in NTA embryos were incompletely activated at 2-cell
and 4-cell stages, which led to the down-regulation of these genes compared to WT embryos
(Figure 5D). In addition, the incomplete activation of transcription pathways can lead to
defects of core GRNs and biological processes related to embryo development, thereby
hindering the development of SCNT embryos.

In conclusion, we identified incomplete activation of transcription pathways and mas-
sive dysregulation of genes related to transcription pathway in NTA embryos. Then, the
GRNs indicated that crucial factors responsible for transcription play a coordinated role in
epigenome erasure and pluripotency regulation during normal embryo development [44–47].
However, in NTA embryos, predicted target genes of transcription pathways were varying in
degrees of inhibition and showed a defect in synergy. Overall, our study identified the molec-
ular barriers and defective GRNs related to transcription pathways in SCNT embryos, which
provides new insights into understanding the developmental blocks of SCNT embryos.

4. Materials and Methods
4.1. Dataset Collection

The single-cell RNA sequencing (RNA-seq) data of mouse pre-implantation embryo
development were downloaded from Gene Expression Omnibus (GEO) database under
accession number GEO: GSE113164 [48]. There are two embryonic types, namely somatic
cell nuclear transfer (SCNT) embryos and in vivo fertilized (WT) embryos. Both SCNT
and WT samples include zygote, 2-cell, 4-cell, 8-cell, morula and blastocyst, and each stage
has three replicates. Moreover, another single-cell RNA-seq data (GSE70605) [9] were also
reanalyzed in this study, which includes two types of SCNT embryos and in vivo fertilized
(WT) embryos. These embryos can be divided into nuclear transfer 2-cell arrest embryos
(NTA2), NT 4-cell arrest embryos (NTA4), NT 2-cell to blastocyst (NTB2) embryos, NT
4-cell to blastocyst (NTB4) embryos, in vivo fertilized 2-cell embryos (WT2) and in vivo
fertilized 4-cell embryos (WT4).

4.2. RNA-seq Data Processing

For RNA-seq data processing, all RNA-seq data were controlled by FastQC software
( http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 2 November
2020) and raw reads were trimmed based on Trimmomatic (version 0.38) [49] to remove
low-quality samples. Next, filtered reads were mapped to the mouse mm9 genome with
HISAT2 (version 2.1.0) [50] aligner with default parameters. Then, read counts of each gene
were calculated using HTseq (version 0.11.0) [50]. Transcriptome assembly was performed
using Stringtie (version 1.3.3) [50,51] and Ballgown (R package), and expression level of
each gene were quantified with normalized FPKM (fragments per kilobase of exon model
per million mapped reads) [10].

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.3. Transcription-Related Pathways Selection

Basal TFs (mmu03022), RNA polymerase (mmu03020) and spliceosome (mmu03040)
related to transcription were obtained from Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (https://www.kegg.jp/kegg/pathway.html, accessed on 5 November
2020) according to the functional classification information of pathway [52]. These three
KEGG pathways contain 44, 31 and 136 factors, respectively.

4.4. Differential Genes Expression Analysis

Differential expression analysis was performed by R package DEseq2 [53]. For each
comparison, genes with a Benjamini and Hochberg-adjusted p-value (false discovery rate,
FDR) < 0.05 and the absolute of Log2 (fold change) > 1 were regarded as differential
expression genes (DEGs) [54].

4.5. Definition of Transcription Related Gene Rescue in NTB Embryos

The expression levels (FPKM) of genes involved in the three transcription pathways
were calculated and normalized in WT, NTA and NTB embryos. All abnormally expressed
genes in NTA embryos compared to WT embryos were divided into two categories, includ-
ing rescue and rescue failure genes in NTB embryos. For rescued genes, the highly rescued
genes were defined as follows:

log2(FPKMNTB + 1) > (
log2(FPKMWT + 1) + log2(FPKMNTA + 1)

2
) (1)

The partially rescued genes were defined as follows:

log2(FPKMNTA + 1) < log2(FPKMNTB + 1) < (
log2(FPKMWT + 1) + log2(FPKMNTA + 1)

2
) (2)

The remaining genes are considered to be unrecovered genes in NTB embryos.

4.6. Single-Cell Gene Regulatory Network Inference

The workflow of pySCENIC [37] (https://pypi.org/project/pyscenic/0.6.6/#tutorial,
accessed on 25 December 2020) was used to identify the GRNs involved in transcription-
related factors during embryonic development. In pySCENIC workflow, the RcisTarget [55]
package determine TFs and their predicted target genes (i.e., targetomes) based on the
correlation of gene expression across cells, and GRNBoost [56] identifies whether the
predicted target genes have the corresponding motifs of TFs to refine targetomes. Finally,
active targetomes were recognized in every single cell. The regulatory network centered
on transcription-related factors was screened out and visualized by Cytoscape [57].

4.7. Functional Pathways Enrichment and Statistical Analysis

Gene Ontology (GO) enrichment analysis was performed based on the R package clus-
terProfiler (version 3.14.3) [58]. Statistical analyses were implemented with R (version 3.6.0,
http://www.r-project.org, accessed on 19 December 2020). Student’s t-test was performed
using the “t.test” function with default parameters, and p-values < 0.05 were considered
statistically significant. Representative GO terms with p-value < 0.05 were summarized.

4.8. Data Visualization

In this study, R/Bioconductor (http://www.bioconductor.org, accessed on 19 Decem-
ber 2020) software packages were mainly used for data visualization. For example, the
Venn plot was produced by using R packet VennDiagram, and the bar plot, box plot and
scatter plot were generated with the R packet ggplot2 (http://ggplot2.org/, accessed on 28
December 2020).

https://www.kegg.jp/kegg/pathway.html
https://pypi.org/project/pyscenic/0.6.6/#tutorial
http://www.r-project.org
http://www.bioconductor.org
http://ggplot2.org/
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