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Abstract: Restriction factors are structurally and functionally diverse cellular proteins that constitute
a first line of defense against viral pathogens. Exceptions exist, but typically these proteins are
upregulated by interferons (IFNs), target viral components, and are rapidly evolving due to the
continuous virus–host arms race. Restriction factors may target HIV replication at essentially each
step of the retroviral replication cycle, and the suppression of viral transcription and the degradation
of viral RNA transcripts are emerging as major innate immune defense mechanisms. Recent data
show that some antiviral factors, such as the tripartite motif-containing protein 22 (TRIM22) and the
γ-IFN-inducible protein 16 (IFI16), do not target HIV-1 itself but limit the availability of the cellular
transcription factor specificity protein 1 (Sp1), which is critical for effective viral gene expression. In
addition, several RNA-interacting cellular factors including RNAse L, the NEDD4-binding protein
1 (N4BP1), and the zinc finger antiviral protein (ZAP) have been identified as important immune
effectors against HIV-1 that may be involved in the maintenance of the latent viral reservoirs,
representing the major obstacle against viral elimination and cure. Here, we review recent findings
on specific cellular antiviral factors targeting HIV-1 transcription or viral RNA transcripts and discuss
their potential role in viral latency.
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1. Introduction

Since the beginning of the pandemic, about 80 million people have been infected with HIV-1
and approximately half of them have died of AIDS. It is estimated that, in total, about 1.7 million
individuals became newly infected and about 770,000 people died from AIDS-related illnesses in 2018
(NIH global AIDS report). Although these numbers are still sobering, they illustrate that significant
progress has been made in the fight against AIDS, because the availability of combined antiretroviral
therapy (cART) has allowed for the reduction of AIDS-related deaths by more than half since the peak
in 2004. In 2018, approximately 62% of around 37.6 million people who knew their infection status
had access to cART. Infected individuals on cART can have an almost normal life expectancy with
essentially no risk of transmitting the virus to uninfected individuals, since effective treatment leads
to undetectable viremia. However, cART usually must be taken daily and for life since it does not
cure the HIV infection. To date, only two individuals, known as the Berlin and London patients, have
been reported to be cured of HIV-1 infection, both following CCR5∆32/∆32 haematopoietic stem-cell
transplantation—a method that is risky and unfortunately not broadly applicable [1,2].

The key hurdle to the elimination of HIV from the human body is the ability of this virus to
establish highly stable latent reservoirs in long-living cells. Reverse transcription of the single-stranded
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HIV-1 RNA into linear double-stranded DNA, and the subsequent integration of the viral genome into
that of the host cell, are essential steps of the retroviral replication cycle. In most cases, HIV-1-infected
CD4+ T cells will initiate efficient proviral transcription and the production of progeny HIV virions.
While these productively infected cells account for the bulk of viremia in untreated HIV-infected
individuals, they are rapidly eliminated after the initiation of effective antiretroviral therapy (ART). In
some cases, however, HIV-1 integrates into the human chromosomal DNA, but the provirus remains
transcriptionally silent. In this form, the latently infected cell is not recognized and eliminated by
the immune system or targeted by ART. Thus, persistence of HIV in long-living memory CD4+ T
cells prevents full viral clearance, even after decades of effective treatment, and represents the main
obstacle to a cure of HIV/AIDS [3,4]. One approach to target these reservoirs that is intensively pursued
is the so called “shock/ kick and kill” approach [5,6]. It involves two major steps, i.e., treatment
with a combination of latency-reversing agents to reactivate latent HIV hiding in the immune cells
(the “shock/kick”), and targeting them for elimination by immune mechanisms (the “kill”) while
preventing new infections by cART. Unfortunately, it has proven highly challenging to achieve potent
reactivation of the highly heterogenous proviral reservoirs and to achieve efficient elimination of
the virus-producing cells [7]. Thus, an alternative opposite strategy, called “block and lock” is also
considered. It aims to permanently silence the transcription of all proviruses, even after treatment
interruption [5,8]. Block and lock approaches to achieve a cure of HIV/AIDS are still at an early stage
and unlikely to permanently eliminate or inactivate all replication-competent HIV. Thus, HIV might
re-emerge and continuous drug treatment, similar to current ART, is required [9].

The establishment and maintenance of HIV-1 latency is determined by numerous mechanisms.
These involve the availability of cellular transcription and elongation factors, epigenetic modifications,
the site of proviral integration, as well as effectiveness of RNA splicing, nuclear export, translation and
immune clearance of virally infected cells [3,4,10–14]. In addition, certain properties of the accessory
genes of HIV-1, which modulate the state of activation of the infected cells and may prevent immune
clearance, also play a role [15]. Some of the major mechanisms governing HIV latency have been
extensively studied and have been the topic of excellent recent reviews [7,11,16–19]. Here, we focus
on cellular factors suppressing HIV proviral transcription by targeting the host transcription factor
specificity protein 1 (Sp1). In addition, we summarize recent progress in the characterization of cellular
RNA interacting factors capable of degrading viral RNA transcripts after proviral integration. We
hope that the present review will encourage further studies on the potential role of cellular factors
modulating viral transcription and targeting viral RNA transcripts in HIV latency.

2. Targeting Sp1 for Transcriptional Silencing

The transcription of HIV-1 depends on a complex interplay between numerous viral and cellular
factors (Figure 1). Key players of productive HIV-1 infection, such as the viral transactivator of
transcription (Tat) and the regulator of virion expression (Rev), as well as cellular cofactors, e.g., the
positive transcription elongation factor complex (P-TEFb) and RNA polymerase II (RNAPII), have
been well studied [17,18,20,21]. In addition to changes in these factors, latent HIV-1 infection can
be promoted by transcriptional repressors that may recruit histone deacetylases (HDAC) to the LTR
promoter [22,23], or by the absence of host elongation and transcription factors [24,25].

It has been established that host transcriptional regulators such as nuclear factor kappa B (NF-κB),
nuclear factor of activated T cells (NFAT), activating protein-1 (AP-1), and specificity protein 1 (Sp1)
are important for HIV-1 transcription and latency. NF-κB strongly enhances HIV-1 transcription
and can be activated by extracellular stimuli, such as T-cell receptor (TCR) ligands and various
cytokines. Thus, NF-κB is a major target in HIV-1 cure research, and its stimulation to activate latent
HIV-1 has been intensively studied [17,26–28]. In support of the important role of this transcription
factor, recent studies revealed that HIV-1 has evolved sophisticated mechanisms to fine-tune NF-κB
activity throughout the replication cycle to support viral transcription while minimizing antiviral gene
expression [29–31]. NFAT recognition sequences on the viral promoter overlap with NF-κB target
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elements, and the binding of either one is mutually exclusive [32]. Thus, it has been proposed that
NF-κB and NFAT might act in a sequential manner, with NF-κB being critical for the initial response
and NFAT acting at later time points [33]. It has been reported that the induction of NFAT activity by
IL-7 stimulates naïve T cells and consequently affects HIV-1 infection and latency [34]. While NF-κB
activators are capable of reactivating latent HIV-1, they also bear significant risks of adverse effects,
since NF-κB regulates numerous physiological processes [35].

Figure 1. Specificity protein 1 (Sp1) targeting suppresses HIV-1 transcription. As outlined in the text,
the viral transactivator of transcription protein (Tat) interacts with the TAR region at the 5’ end of the
viral RNA and recruits several cofactors for effective viral transcription. The latter is also dependent on
the availability of the cellular transcription factors nuclear factor kappa B (NF-κB) and Sp1. Cellular
factors tripartite motif-containing protein 22 (TRIM22) and γ-IFN-inducible protein 16 (IFI16) target
Sp1 to suppress HIV-1 transcription and reactivation from latency.

HIV-1 LTRs usually contain three tandem Sp1 binding sites, and early studies established that Sp1
plays an important role in regulating viral transcription [36–38]. Compared to NF-κB, however, the
role of Sp1 in HIV-1 latency has received little attention. One reason for this is that Sp1 is commonly
thought to be ubiquitously expressed and not limiting to proviral transcription. However, recent
evidence shows that several interferon (IFN)-inducible antiviral factors may target Sp1 to suppress
HIV transcription and play roles in viral latency (Figure 1). Initially, it has been reported that the
tripartite motif-containing protein 22 (TRIM22), which shows broad antiviral activity [39] and is
strongly up-regulated by type I IFN, suppresses HIV-1 transcription by the inhibition of Sp1 binding to
the viral promoter [40]. This antiviral activity of TRIM22 was independent of its E3 ubiquitin ligase
activity, Tat, and NF-κB and not associated with alterations in the total cellular levels of Sp1 [41–44].
More recently, the group provided further evidence that TRIM22 suppresses the reactivation of latent
HIV-1, at least in CD4+ T-cell lines, and this effect was dependent on Sp1 binding sites in the viral LTR
promoter [45]. However, the mechanism remains obscure, since TRIM22 does not directly interact
with Sp1 nor with the viral promoter. The indirect effects of TRIM22 on Sp1 binding to the HIV-1 LTR,
could involve the activation of cellular factors promoting a transcriptionally silenced heterochromatin
configuration, the induction of post-translational modifications of Sp1, or the increased binding of Sp3,
another Sp family member that might repress transcription [40,46].
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More recently, it has been shown that γ-IFN-inducible protein 16 (IFI16) restricts HIV-1 by
sequestering the transcription factor Sp1 and inhibiting viral gene expression [47]. Thus, IFI16 might
play a complex role in HIV-1 infection and latency, since it has previously been characterized as a
cytosolic immune sensor of HIV-1 DNA species that boosts IFN induction in macrophages [48,49]. In
addition, it has been reported that IFI16 senses reverse transcription (RT) intermediates in tissue CD4+

T cells that are abortively infected with HIV-1, resulting in highly inflammatory caspase-1 dependent
pyroptotic cell death [50]. However, the main function of IFI16 as a cytosolic sensor of viral DNA
species was at odds with the predominantly nuclear localization of this factor. Indeed, recent studies
showed that IFI16 suppresses the transcription of various DNA viruses in the nucleus independently
of innate immune sensing [51–56]. A variety of non-exclusive mechanisms underlying the antiviral
activity of IFI16 have been suggested, including global histone modifications, alterations in viral
chromatin structures, as well as the binding to and occupation of viral promoters. The most elegant
model proposes that IFI16 cooperatively binds dsDNA via its HIN domains in a length-dependent
manner and interactions between the pyrin domain mediate the assembly into protein filaments [57].
It has been suggested that IFI16 might initially interact with G-quadruplex (G4) structures in DNA [58],
which frequently also arise within Sp1 binding sites [59], and that the subsequent filament formation
mediates the high affinity binding of DNA [57]. Since foreign DNA entering the nucleus is better
accessible than self-DNA, this mechanism would explain how IFI16 distinguishes self from non-self,
as well as why it interferes with the activity of Sp1-dependent promoters. In agreement with such
a mechanism, it has been reported that IFI16 interacts and colocalizes with the genomes of various
herpesviruses within the nucleus [51–53,60,61]. However, the HIN domains, and hence the DNA
binding, were fully dispensable for the ability of IFI16 to suppress HIV-1 transcription. Instead, the
pyrin domain of IFI16 competed with the DNA for Sp1 binding, resulting in reduced availability of this
transcription factor for proviral transcription. Notably, Sp1 inhibitors have been approved for clinical
use in cancer therapy [62], and Mithramycin A efficiently suppressed HIV-1 reactivation in primary
CD4+ T cells [47]. Thus, Sp1 might represent a suitable target for “block and lock” approaches [8,16].

The finding that at least two IFN-inducible factors target Sp1 to restrict HIV-1 suggests that this
transcription factor may become limiting, especially during acute infection when IFN levels are high
and the latent viral reservoirs are established. In agreement with this possibility, Sp1 frequently seems
to be a limiting factor for efficient HIV-1 transcription in T cells [47]. It has long been known that the
LTR promoter of the most prevalent HIV-1 subtype C shows some differences from other less common
subtypes of HIV-1, such as an additional NF-κB binding site [63]. Recent evidence suggests that subtype
C HIV-1 strains are less dependent on Sp1 for effective transcription and less sensitive to inhibition
by IFI16, which seems to suppress viral reactivation from latency [47]. Altogether, further studies on
the role of Sp1 and its IFN-inducible inhibitors, i.e., TRIM22 and IFI16, as well as subtype-specific
differences in the establishment and maintenance of latent HIV-1 infections, seem highly warranted.

3. Cellular Factors Targeting HIV-1 RNA Transcripts

Restriction factors may target viral pathogens at every step of their replication cycle and a large
variety of cellular factors target viral transcripts for degradation [64–66] (Figure 2). Degradation of
viral RNAs, and, consequently, decreased viral protein expression, might prevent the elimination of
infected cells by the immune system and thus promote the establishment of latent viral reservoirs.
In addition, the effective degradation of viral transcripts might prevent HIV-1 from entering the
productive cycle and allow HIV-1 to maintain a latent state. One important effector of innate antiviral
immunity that activates the NLRP3 inflammasome during viral infections is RNase L [67,68]. The
monomeric form of this enzyme is inactive but dimerizes and becomes active upon the binding of
2’-5’oligoadenylate (2’-5’A) that is generated by 2’-5’ oligoadenylate synthetase (OAS) transcription
and modification. It has been reported that viral RNA cleavage by RNAse L is important for an effective
and sustained antiviral IFN response induced by viral dsRNA [69]. Notably, only OAS3, not OAS1 and
2, is critical for the activation of RNase L during infection by diverse RNA and DNA viruses [70]. Upon
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activation, RNase L is broadly active and destroys viral as well as cellular RNAs [71]. Interestingly,
HIV-1 may induce the expression of the RNase L inhibitor to attenuate inhibition by the 2-5A/RNase L
pathway [72]. The degradation of all RNAs within a cell usually occurs together with a shut-down of
translation activity induced by protein kinase R (PKR) and represents the cell’s last effort to defeat a
virus before triggering apoptosis [73,74]. Consequently, RNA degradation might lead to the activation
of melanoma differentiation-associated protein 5 (MDA5), an RNA helicase involved in the production
of IFN-β [75]. Notably, RNase L is not only involved in antiviral innate immunity. It has been reported
that RNase L protects the central nervous system against demyelination during viral infection [76]
and plays a key role in senescence [77]. In addition, RNase L might function as a tumor suppressor,
and defects in the OAS/RNase L pathway have been detected in prostate cancer and chronic fatigue
syndrome [78,79]. It is conceivable that factors affecting HIV-1 transcription and cell survival might
play a role in viral latency. However, the potential role of the OAS/RNase L system in the establishment
and maintenance of the latent viral reservoirs remains to be examined.

Figure 2. Factors targeting HIV-1 RNA transcripts. Schematic presentation of cellular factors targeting
viral RNAs to suppress translation of HIV-1 proteins and/or packaging of genomic viral RNAs.

Another factor targeting viral RNAs is the zinc finger antiviral protein (ZAP). This protein exerts
a broad antiviral activity and does not only restrict retroviruses, such as HIV-1 and MLV, but also
numerous other RNA and DNA viruses (reviewed in Ghimire et al., 2018 [80]). In addition, ZAP targets
retroelements as well as some cellular RNAs. Interestingly, it has been reported that ZAP requires RNase
L and OAS3 for the effective restriction of Echovirus 7 [81]. ZAP, also called PARP13, belongs to the poly
(ADP-ribose) polymerase (PARP) family, which has seventeen members in humans [82]. PARP proteins
use NAD+ to transfer ADP-ribose to various target proteins to post-translationally regulate their
stability and function. PARP proteins are ubiquitously expressed in many cell types and are involved
in numerous processes including cell division and survival, the regulation of chromatin structure, and
DNA damage repair [82–85]. It has long been known that ZAP exerts antiviral activity [86], but the
mechanism by which it can recognize foreign elements remained unclear. Many RNA viruses mimic
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the CpG suppression of their vertebrate hosts [87,88] and increasing the abundance of this dinucleotide
in the genomes of HIV, influenza A virus, or picornaviruses is detrimental to their replication [89–91].
Bieniasz and colleagues showed that ZAP is poorly active against wild-type HIV-1 but efficiently
restricts the virus variants with artificially enriched CpG content [92]. They further confirmed that
ZAP selectively binds to CpG-rich RNA sequences and proposed that it exploits host CpG suppression
to recognize and deplete foreign RNAs. The crystal structure of the N-terminal RNA-binding domain
of human ZAP and a CpG dinucleotide-containing RNA showed that a cavity on the ZAP surface can
accommodate a CpG dinucleotide but no other dinucleotides, which explains the specificity [93].

ZAP is expressed in several isoforms [94] and is catalytically inactive, probably due to the lack of
a crucial “His-Tyr-Glu” motif in its PARP domain. It has been reported that residues in the PARP-like
domain found in the longer isoforms of ZAP (ZAP-L) evolved under positive selection during primate
evolution and might be required for full activity against alphaviruses and retroviruses [83]. ZAP-L has
been reported to represent the most antivirally active isoform but is not significantly upregulated by
IFN, while the shorter ZAP-S also exerts antiviral activity and is IFN-inducible but may actually act as
a negative feedback regulator of the interferon response [95]. Depletion of ZAP reduced the inhibitory
effect of type I IFN on CpG-enriched HIV-1, suggesting that this factor contributes to the antiviral IFN
response [96]. Importantly, ZAP needs cofactors to exert antiviral activity. Initial findings showed that
the tripartite motif-containing protein 25 (TRIM25) mediates K48 and K63-linked poly-ubiquitination
of ZAP and proposed that TRIM25 is required for the optimal binding of ZAP to target mRNA [97,98].
However, the ubiquitination of ZAP is not required for its antiviral activity, and recently it has been
shown that ZAP also requires KHNYN to restrict CpG-enriched HIV-1 [99]. Unlike ZAP and TRIM25,
KHNYN contains an endonuclease domain and thus most likely not only has the capacity to interact
with RNA but also to destroy it. KHNYN interacts with ZAP as well as TRIM25 and requires both
to selectively inhibit HIV-1 with clustered CpG dinucleotides. The exact roles of the three proteins
in HIV-1 restriction need further investigation. Notably, the inhibitory effect of ZAP on HIV-1 and
other primate lentiviruses is not only determined by CpG frequency. Using different approaches, i.e.,
artificial CpG-enrichment in specific regions of the HIV-1 genome [96] and analyses of a large panel of
primary infectious molecular clones of HIV-1 [100], two recent studies showed that the CpG frequency
in first part of the viral env gene, rather than the overall content, determines ZAP sensitivity. The
latter study also showed that the genomes of different primate lentiviruses differ substantially in CpG
frequencies, and that the magnitude of suppression does not correlate with ZAP sensitivity, suggesting
possible viral evasion or counteraction mechanisms.

The role of ZAP and its cofactors in HIV-1 latency remains to be determined. On the one hand,
ZAP-driven CpG suppression might promote productive infection, since it reduces sites for CpG
methylation [101] that might induce transcriptional silencing of the HIV-1 LTR promoter [102]. On the
other hand, elimination of viral RNA and decreased antigen expression might reduce the elimination
of virally infected T cells, allowing them to return to a resting phenotype and become latent viral
reservoirs. It has been reported that ZAP might play a role in regulating herpesvirus latency [103], and
the knock-down of endogenous ZAP moderately enhanced the expression of Human T-cell leukaemia
virus type 1 (HTLV-1) mRNA and proteins [104]. Despite significant CpG suppression, primary HIV-1
strains are not fully resistant against ZAP inhibition, and correlative analyses indicate that CpGs in the
env region governing ZAP sensitivity might affect viral replication and disease progression in vivo [100].
Further studies on the role of cellular factors targeting HIV-1 RNA transcripts in the establishment and
maintenance of latent infection seem highly warranted.

Just recently, NEDD4-binding protein 1 (N4BP1) has been identified as a potent HIV-1 restriction
factor [105]. Notably, N4BP1 shares CGIN1 and NYN domains with KHNYN, described above [106].
N4BP1 is strongly inducible by type I IFN in primary T cells and suppresses HIV-1 replication by
binding and degrading viral mRNA. Importantly, N4BP1 is cleaved and consequently inactivated by
MALT1, a protease that is induced in activated CD4+ T cells [105]. MALT1-mediated cleavage of N4BP1
promoted reactivation of latent HIV-1 proviruses during T-cell activation. Thus, N4BP-1 controls HIV-1
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latency and reactivation at a post-transcriptional level, and its inactivation by MALT1 might represent
a useful target in the “kick” part of cure strategies. Notably, MALT1 targets a variety of additional
RNases (e.g., Regnase-1, Roquin-1 and Roquin-2) controlling lymphocyte activation by regulating RNA
stability. For Regnase-1, which is also referred to as monocyte chemotactic protein-induced protein 1
(MCPIP1), the restriction of HIV-1 in unstimulated CD4+ T cells has already been demonstrated [107].
Thus, further studies on the antiretroviral activity of these cellular RNAses are highly warranted. In
addition, it will be of significant interest to determine whether the MALT1-dependent cleavage of
N4BP1, Regnase-1, and other RNases plays a major role in viral reactivation from latency and hence
the rebound of HIV-1 after treatment interruption.

4. Summary and Perspectives

Viral latency has become a major research focus since it represents the main hurdle against a cure
of HIV/AIDS. It has been established that HIV-1 latency can be determined by numerous mechanisms,
including those involving the site of proviral integration, viral accessory and regulatory gene functions,
the availability of cellular transcription and elongation factors, epigenetic modifications, viral RNA
splicing, nuclear export, stability and translation, as well as immune clearance and survival times
of virally infected cells. Nonetheless, we are still far from a full understanding of the mechanisms
underlying the establishment and maintenance of the latent reservoirs of HIV-1. Inhibitors of Sp1
are already clinically approved and might be useful for block and lock approaches. In addition,
inhibition or enhanced protease-mediated inactivation of cellular factors targeting viral RNAs may
help to eliminate virally infected cells upon the reactivation of latent HIV-1 proviruses.

Author Contributions: R.N., M.B., D.K. and F.K. all edited and provided ideas for this article; R.N. and M.B.
generated the figures and F.K. wrote the initial draft of the article. All authors have read and agreed to the
published version of the manuscript.

Acknowledgments: We thank Daniel Sauter for critical reading of the article and helpful discussions. This work
was supported by the Deutsche Forschungsgemeinschaft (CRC 1279, SPP 1923 and KM 5/1-1).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gupta, R.K.; Abdul-Jawad, S.; McCoy, L.E.; Mok, H.P.; Peppa, D.; Salgado, M.; Martinez-Picado, J.;
Nijhuis, M.; Wensing, A.M.; Lee, H.; et al. HIV-1 remission following CCR5∆32/∆32 haematopoietic stem-cell
transplantation. Nature 2019, 568, 244. [CrossRef] [PubMed]

2. Hutter, G.; Nowak, D.; Mossner, M.; Ganepola, S.; Müßig, A.; Allers, K.; Schneider, T.; Hofmann, J.;
Kücherer, C.; Blau, O.; et al. Long-Term Control of HIV by CCR5∆32/∆32 Stem-Cell Transplantation. N. Engl.
J. Med. 2009, 360, 692–698. [CrossRef] [PubMed]

3. Ruelas, D.S.; Greene, W.C. An integrated overview of HIV-1 latency. Cell 2013, 155, 519–529. [CrossRef]
[PubMed]

4. Siliciano, R.F.; Greene, W.C. HIV Latency. Cold Spring Harb. Perspect. Med. 2011, 1, a007096. Available online:
http://www.ncbi.nlm.nih.gov/pubmed/22229121. (accessed on 5 December 2018). [CrossRef] [PubMed]

5. Darcis, G.; Van Driessche, B.; Van Lint, C. HIV Latency: Should We Shock or Lock? Trends Immunol. 2017, 38,
217–228. [CrossRef] [PubMed]

6. Deeks, S.G. Shock and kill. Nature 2012, 487, 439–440. [CrossRef]
7. Abner, E.; Jordan, A. HIV “shock and kill” therapy: In need of revision. Antivir. Res. 2019, 166, 19–34.

[CrossRef]
8. Vansant, G.; Bruggemans, A.; Janssens, J.; Debyser, Z. Block-and-lock strategies to cure HIV infection. Viruses

2020, 12, 84. [CrossRef]
9. Marsden, M.D.; Zack, J.A. HIV cure strategies: A complex approach for a complicated viral reservoir? Futur.

Virol. 2019, 14, 5–8. [CrossRef]

http://dx.doi.org/10.1038/s41586-019-1027-4
http://www.ncbi.nlm.nih.gov/pubmed/30836379
http://dx.doi.org/10.1056/NEJMoa0802905
http://www.ncbi.nlm.nih.gov/pubmed/19213682
http://dx.doi.org/10.1016/j.cell.2013.09.044
http://www.ncbi.nlm.nih.gov/pubmed/24243012
http://www.ncbi.nlm.nih.gov/pubmed/22229121.
http://dx.doi.org/10.1101/cshperspect.a007096
http://www.ncbi.nlm.nih.gov/pubmed/22229121
http://dx.doi.org/10.1016/j.it.2016.12.003
http://www.ncbi.nlm.nih.gov/pubmed/28073694
http://dx.doi.org/10.1038/487439a
http://dx.doi.org/10.1016/j.antiviral.2019.03.008
http://dx.doi.org/10.3390/v12010084
http://dx.doi.org/10.2217/fvl-2018-0205


Viruses 2020, 12, 495 8 of 12

10. Chomont, N.; El-Far, M.; Ancuta, P.; Trautmann, L.; A Procopio, F.; Yassine-Diab, B.; Boucher, G.;
Boulassel, M.-R.; Ghattas, G.; Brenchley, J.M.; et al. HIV reservoir size and persistence are driven by
T cell survival and homeostatic proliferation. Nat. Med. 2009, 15, 893–900. [CrossRef]

11. Massanella, M.; Fromentin, R.; Chomont, N. Residual inflammation and viral reservoirs: Alliance against an
HIV cure. Curr. Opin. HIV AIDS 2016, 11, 234–241. [CrossRef] [PubMed]

12. Baldauf, H.-M.; Pan, X.; Erikson, E.; Schmidt, S.; Daddacha, W.; Burggraf, M.; Schenková, K.; Ambiel, I.;
Wabnitz, G.; Gramberg, T.; et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 2012,
18, 1682–1688. [CrossRef] [PubMed]

13. Bukrinsky, M.; Stanwick, T.; Dempsey, M.; Stevenson, M. Quiescent T lymphocytes as an inducible virus
reservoir in HIV-1 infection. Science 1991, 254, 423–427. [CrossRef] [PubMed]

14. Pierson, T.C.; Zhou, Y.; Kieffer, T.L.; Ruff, C.T.; Buck, C.B.; Siliciano, R.F. Molecular Characterization of
Preintegration Latency in Human Immunodeficiency Virus Type 1 Infection. J. Virol. 2002, 76, 8518–8531.
[CrossRef] [PubMed]

15. Kmiec, D.; Srinivasachar, S.; Kirchhoff, F. Potential roles of Nef and Vpu in HIV-1 latency. Futur. Virol. 2019,
14, 227–236. [CrossRef]

16. Castro, S.; Colomer-Lluch, M.; Serra-Moreno, R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res.
Hum. Retroviruses 2018. [CrossRef]

17. Darcis, G.; Van Driessche, B.; Bouchat, S.; Kirchhoff, F.; Van Lint, C. Molecular Control of HIV and SIV
Latency. Curr. Top Microbiol. Immunol. 2017, 417, 1–22.

18. Khoury, G.; Darcis, G.; Lee, M.Y.; Bouchat, S.; Van Driessche, B.; Purcell, D.F.J.; Van Lint, C. The Molecular
Biology of HIV Latency. In Advances in Experimental Medicine and Biology; Springer New York LLC: New
York, NY, USA, 2018; pp. 187–212.

19. Agosto, L.M.; Herring, M.B.; Mothes, W.; Henderson, A. HIV-1-Infected CD4+ T Cells Facilitate Latent
Infection of Resting CD4+ T Cells through Cell-Cell Contact. Cell Rep. 2018, 24, 2088–2100. [CrossRef]

20. Ne, E.; Palstra, R.-J.; Mahmoudi, T. Transcription: Insights From the HIV-1 Promoter. In International Review
of Cell and Molecular Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 191–243.

21. Ma, X.; Yang, T.; Luo, Y.; Wu, L.; Jiang, Y.; Song, Z.; Pan, T.; Liu, B.; Liu, G.; Liu, J.; et al. TRIM28 promotes
HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 2019, 8. [CrossRef]

22. Coull, J.J.; Romerio, F.; Sun, J.-M.; Volker, J.L.; Galvin, K.M.; Davie, J.R.; Shi, Y.; Hansen, U.; Margolis, D.M.
The Human Factors YY1 and LSF Repress the Human Immunodeficiency Virus Type 1 Long Terminal Repeat
via Recruitment of Histone Deacetylase 1. J. Virol. 2000, 74, 6790–6799. [CrossRef]

23. Barton, K.; Margolis, D.M. Selective Targeting of the Repressive Transcription Factors YY1 and cMyc to
Disrupt Quiescent Human Immunodeficiency Viruses. AIDS Res. Hum. Retroviruses 2013, 29, 289–298.
[CrossRef]

24. Yukl, S.A.; Kaiser, P.; Kim, P.; Telwatte, S.; Joshi, S.K.; Vu, M.; Lampiris, H.; Wong, J.K. HIV latency in isolated
patient CD4+T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci.
Transl. Med. 2018, 10, eaap9927. [CrossRef]

25. Asamitsu, K.; Fujinaga, K.; Okamoto, T. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV
Therapies. Mol. 2018, 23, 933. [CrossRef]

26. Jiang, G.; Dandekar, S. Targeting NF-κB Signaling with Protein Kinase C Agonists as an Emerging Strategy
for Combating HIV Latency. AIDS Res. Hum. Retroviruses 2015, 31, 4–12. [CrossRef]

27. Williams, S.; Chen, L.-F.; Kwon, H.; Ruiz-Jarabo, C.M.; Verdin, E.; Greene, W.C. NF-κB p50 promotes HIV
latency through HDAC recruitment and repression of transcriptional initiation. EMBO J. 2005, 25, 139–149.
[CrossRef]

28. Zhou, H.; Xu, M.; Huang, Q.; Gates, A.T.; Zhang, X.; Castle, J.C.; Stec, E.; Ferrer, M.; Strulovici, B.;
Hazuda, D.; et al. Genome-Scale RNAi Screen for Host Factors Required for HIV Replication. Cell Host
Microbe 2008, 4, 495–504. [CrossRef]

29. Hotter, D.; Krabbe, T.; Reith, E.; Gawanbacht, A.; Rahm, N.; Ayouba, A.; Van Driessche, B.; Van Lint, C.;
Peeters, M.; Kirchhoff, F.; et al. Primate lentiviruses use at least three alternative strategies to suppress
NF-κB-mediated immune activation. PLoS Pathog. 2017, 13, e1006598. [CrossRef]

30. Langer, S.; Hammer, C.; Hopfensperger, K.; Klein, L.; Hotter, D.; De Jesus, P.D.; Herbert, K.M.; Pache, L.;
Smith, N.; Van Der Merwe, J.; et al. HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited
antiviral immune responses. eLife 2019, 8. [CrossRef]

http://dx.doi.org/10.1038/nm.1972
http://dx.doi.org/10.1097/COH.0000000000000230
http://www.ncbi.nlm.nih.gov/pubmed/26575148
http://dx.doi.org/10.1038/nm.2964
http://www.ncbi.nlm.nih.gov/pubmed/22972397
http://dx.doi.org/10.1126/science.1925601
http://www.ncbi.nlm.nih.gov/pubmed/1925601
http://dx.doi.org/10.1128/JVI.76.17.8518-8513.2002
http://www.ncbi.nlm.nih.gov/pubmed/12163571
http://dx.doi.org/10.2217/fvl-2018-0214
http://dx.doi.org/10.1089/aid.2018.0118
http://dx.doi.org/10.1016/j.celrep.2018.07.079
http://dx.doi.org/10.7554/eLife.42426
http://dx.doi.org/10.1128/JVI.74.15.6790-6799.2000
http://dx.doi.org/10.1089/aid.2012.0227
http://dx.doi.org/10.1126/scitranslmed.aap9927
http://dx.doi.org/10.3390/molecules23040933
http://dx.doi.org/10.1089/aid.2014.0199
http://dx.doi.org/10.1038/sj.emboj.7600900
http://dx.doi.org/10.1016/j.chom.2008.10.004
http://dx.doi.org/10.1371/journal.ppat.1006598
http://dx.doi.org/10.7554/eLife.41930


Viruses 2020, 12, 495 9 of 12

31. Sauter, D.; Hotter, D.; Van Driessche, B.; Stürzel, C.M.; Kluge, S.F.; Wildum, S.; Yu, H.; Baumann, B.; Wirth, T.;
Plantier, J.-C.; et al. Differential regulation of NF-κB-mediated proviral and antiviral host gene expression by
primate lentiviral Nef and Vpu proteins. Cell Rep. 2015, 10, 586–599. [CrossRef]

32. Giffin, M.J.; Stroud, J.; Bates, D.L.; Von Koenig, K.D.; Hardin, J.; Chen, L. Structure of NFAT1 bound as a
dimer to the HIV-1 LTR κB element. Nat. Struct. Mol. Boil. 2003, 10, 800–806. [CrossRef]

33. Mbonye, U.; Karn, J. Transcriptional control of HIV latency: Cellular signaling pathways, epigenetics,
happenstance and the hope for a cure. Virology 2014, 454, 328–339. [CrossRef]

34. Roux, A.; Leroy, H.; De Muylder, B.; Bracq, L.; Oussous, S.; Dusanter-Fourt, I.; Chougui, G.; Tacine, R.;
Randriamampita, C.; Desjardins, D.; et al. FOXO1 transcription factor plays a key role in T cell-HIV-1
interaction. PLoS Pathog. 2019, 15, e1007669. [CrossRef]

35. Spivak, A.M.; Planelles, V. Novel Latency Reversal Agents for HIV-1 Cure. Annu. Rev. Med. 2018, 69, 421–436.
[CrossRef]

36. Jones, K.; Kadonaga, J.; Luciw, P.; Tjian, R. Activation of the AIDS retrovirus promoter by the cellular
transcription factor, Sp1. Science 1986, 232, 755–759. [CrossRef]

37. Harrich, D.; Garcia, J.; Wu, F.; Mitsuyasu, R.; Gonazalez, J.; Gaynor, R. Role of SP1-binding domains in
in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J. Virol.
1989, 63, 2585–2591. [CrossRef]

38. Suñé, C.; A García-Blanco, M. Sp1 transcription factor is required for in vitro basal and Tat-activated
transcription from the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 1995, 69,
6572–6576. [CrossRef]

39. Di Pietro, A.; Kajaste-Rudnitski, A.; Oteiza, A.; Nicora, L.; Towers, G.J.; Mechti, N.; Vicenzi, E. TRIM22
Inhibits Influenza A Virus Infection by Targeting the Viral Nucleoprotein for Degradation. J. Virol. 2013, 87,
4523–4533. [CrossRef]

40. Turrini, F.; Marelli, S.; Kajaste-Rudnitski, A.; Lusic, M.; Van Lint, C.; Das, A.T.; Harwig, A.; Berkhout, B.;
Vicenzi, E. HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter.
Retrovirology 2015, 12, 104. [CrossRef]

41. Kajaste-Rudnitski, A.; Marelli, S.S.; Pultrone, C.; Pertel, T.; Uchil, P.D.; Mechti, N.; Mothes, W.; Poli, G.;
Luban, J.; Vicenzi, E. TRIM22 Inhibits HIV-1 Transcription Independently of Its E3 Ubiquitin Ligase Activity,
Tat, and NF-κB-Responsive Long Terminal Repeat Elements. J. Virol. 2011, 85, 5183–5196. [CrossRef]

42. Gao, B.; Duan, Z.; Xu, W.; Xiong, S. Tripartite motif?containing 22 inhibits the activity of hepatitis B virus core
promoter, which is dependent on nuclear?located RING domain†. Hepatology 2009, 50, 424–433. [CrossRef]

43. Yang, C.; Zhao, X.; Sun, D.; Yang, L.; Chong, C.; Pan, Y.; Chi, X.; Gao, Y.; Wang, M.; Shi, X.; et al. Interferon
alpha (IFNα)-induced TRIM22 interrupts HCV replication by ubiquitinating NS5A. Cell. Mol. Immunol. 2015,
13, 94–102. [CrossRef] [PubMed]

44. Eldin, P.; Papon, L.; Oteiza, A.; Brocchi, E.; Lawson, T.G.; Mechti, N. TRIM22 E3 ubiquitin ligase activity is
required to mediate antiviral activity against encephalomyocarditis virus. J. Gen. Virol. 2009, 90, 536–545.
[CrossRef] [PubMed]

45. Turrini, F.; Saliu, F.; Forlani, G.; Das, A.T.; Van Lint, C.; Accolla, R.S.; Berkhout, B.; Poli, G.; Vicenzi, E.
Interferon-inducible TRIM22 contributes to maintenance of HIV-1 proviral latency in T cell lines. Virus Res.
2019, 269, 197631. [CrossRef]

46. Rohr, O.; Aunis, D.; Schaeffer, E. COUP-TF and Sp1 Interact and Cooperate in the Transcriptional Activation
of the Human Immunodeficiency Virus Type 1 Long Terminal Repeat in Human Microglial Cells. J. Boil.
Chem. 1997, 272, 31149–31155. [CrossRef]

47. Hotter, D.; Bosso, M.; Jønsson, K.L.; Krapp, C.; Stürzel, C.M.; Das, A.; Littwitz-Salomon, E.; Berkhout, B.;
Russ, A.; Wittmann, S.; et al. IFI16 Targets the Transcription Factor Sp1 to Suppress HIV-1 Transcription and
Latency Reactivation. Cell Host Microbe 2019, 25, 858–872. [CrossRef]

48. Jakobsen, M.R.; Bak, R.; Andersen, A.; Berg, R.K.; Jensen, S.B.; Jin, T.; Laustsen, A.; Hansen, K.; Østergaard, L.;
Fitzgerald, K.A.; et al. PNAS Plus: From the Cover: IFI16 senses DNA forms of the lentiviral replication
cycle and controls HIV-1 replication. Proc. Natl. Acad. Sci USA 2013, 110, E4571–E4580. [CrossRef]

49. Jønsson, K.L.; Laustsen, A.; Krapp, C.; Skipper, K.; Thavachelvam, K.; Hotter, D.; Egedal, J.H.; Kjolby, M.;
Mohammadi, P.; Prabakaran, T.; et al. IFI16 is required for DNA sensing in human macrophages by promoting
production and function of cGAMP. Nat. Commun. 2017, 8, 14391. [CrossRef]

http://dx.doi.org/10.1016/j.celrep.2014.12.047
http://dx.doi.org/10.1038/nsb981
http://dx.doi.org/10.1016/j.virol.2014.02.008
http://dx.doi.org/10.1371/journal.ppat.1007669
http://dx.doi.org/10.1146/annurev-med-052716-031710
http://dx.doi.org/10.1126/science.3008338
http://dx.doi.org/10.1128/JVI.63.6.2585-2591.1989
http://dx.doi.org/10.1128/JVI.69.10.6572-6576.1995
http://dx.doi.org/10.1128/JVI.02548-12
http://dx.doi.org/10.1186/s12977-015-0230-0
http://dx.doi.org/10.1128/JVI.02302-10
http://dx.doi.org/10.1002/hep.23011
http://dx.doi.org/10.1038/cmi.2014.131
http://www.ncbi.nlm.nih.gov/pubmed/25683609
http://dx.doi.org/10.1099/vir.0.006288-0
http://www.ncbi.nlm.nih.gov/pubmed/19218198
http://dx.doi.org/10.1016/j.virusres.2019.05.009
http://dx.doi.org/10.1074/jbc.272.49.31149
http://dx.doi.org/10.1016/j.chom.2019.05.002
http://dx.doi.org/10.1073/pnas.1311669110
http://dx.doi.org/10.1038/ncomms14391


Viruses 2020, 12, 495 10 of 12

50. Monroe, K.M.; Yang, Z.; Johnson, J.R.; Geng, X.; Doitsh, G.; Krogan, N.J.; Greene, W.C. IFI16 DNA Sensor
Is Required for Death of Lymphoid CD4 T Cells Abortively Infected with HIV. Science 2013, 343, 428–432.
[CrossRef]

51. Kerur, N.; Veettil, M.V.; Sharma-Walia, N.; Bottero, V.; Sadagopan, S.; Otageri, P.; Chandran, B. IFI16 Acts
as a Nuclear Pathogen Sensor to Induce the Inflammasome in Response to Kaposi Sarcoma-Associated
Herpesvirus Infection. Cell Host Microbe 2011, 9, 363–375. [CrossRef]

52. Orzalli, M.H.; DeLuca, N.A.; Knipe, D.M. Nuclear IFI16 induction of IRF-3 signaling during herpesviral
infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl. Acad. Sci USA 2012, 109, E3008–E3017.
[CrossRef]

53. Gariano, G.R.; Dell’Oste, V.; Bronzini, M.; Gatti, D.; Luganini, A.; De Andrea, M.; Gribaudo, G.; Gariglio, M.;
Landolfo, S. The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus
Replication. PLoS Pathog. 2012, 8, e1002498. Available online: http://www.ncbi.nlm.nih.gov/pubmed/

22291595 (accessed on 16 July 2018). [CrossRef]
54. Diner, B.A.; Lum, K.K.; Toettcher, J.E.; Cristea, I.M. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase

Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses
during Herpesvirus Infection. mBio 2016, 7. [CrossRef]

55. Johnson, K.E.; Bottero, V.; Flaherty, S.; Dutta, S.; Singh, V.V.; Chandran, B. IFI16 Restricts HSV-1 Replication
by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly
Modulating Histone Modifications. PLoS Pathog. 2014, 10, e1004503. [CrossRef]

56. Li, T.; Diner, B.A.; Chen, J.; Cristea, I.M. Acetylation modulates cellular distribution and DNA sensing ability
of interferon-inducible protein IFI16. Proc. Natl. Acad. Sci USA 2012, 109, 10558–10563. [CrossRef]

57. Sohn, J.; Morrone, S.; Wang, T.; Hooy, R. The Cooperative Assembly of IFI16 Filaments on dsDNA Provides
Insights into Host Defense Strategy. Biophys. J. 2015, 108, 40a. [CrossRef]

58. Haronikova, L.; Coufal, J.; Kejnovská, I.; Jagelská, E.B.; Fojta, M.; Dvořáková, P.; Muller, P.; Vojtesek, B.;
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