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Abstract: Peanut (Arachis hypogaea L.) is one of the important oil crops of the world. In this study, we
aimed to evaluate the genetic diversity of 384 peanut germplasms including 100 Korean germplasms
and 284 core collections from the United States Department of Agriculture (USDA) using an Ax-
iom_Arachis array with 58K single-nucleotide polymorphisms (SNPs). We evaluated the evolutionary
relationships among 384 peanut germplasms using a genome-wide association study (GWAS) of
seed aspect ratio data processed by ImageJ software. In total, 14,030 filtered polymorphic SNPs were
identified from the peanut 58K SNP array. We identified five SNPs with significant associations to
seed aspect ratio on chromosomes Aradu.A09, Aradu.A10, Araip.B08, and Araip.B09. AX-177640219
on chromosome Araip.B08 was the most significantly associated marker in GAPIT and Regularization
method. Phosphoenolpyruvate carboxylase (PEPC) was found among the eleven genes within a
linkage disequilibrium (LD) of the significant SNPs on Araip.B08 and could have a strong causal effect
in determining seed aspect ratio. The results of the present study provide information and methods
that are useful for further genetic and genomic studies as well as molecular breeding programs in
peanuts.

Keywords: peanut; core collection; genetic diversity; population structure; genome-wide association
study; linkage disequilibrium

1. Introduction
1.1. Peanut Information

Peanut or groundnut (Arachis hypogaea L.) is an important oil and cash crop of the
world [1]. Peanut seeds are rich in oil (48–50%) and protein (25–28%) and they contain
certain vitamins and minerals which allows them to be used as an energy source for
humans [2,3]. In addition, peanuts contain rich functional elements, such as oleic acid,
linoleic acid, resveratrol, fiber, and vitamins [4–6].

Since the beginning of agriculture, food grains have been subjected to selection and
breeding for size and most of the grains have seeds far larger than their wild relatives [7].
In the United States, peanut seed size is one of the standards used to determine the grade
of shelled peanuts and to evaluate the commercial potential of advanced peanut breeding
lines prior to the release of varieties [8].
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There have been some studies on seed size in peanut. Quantitative trait loci (QTL)
study were conducted to identify loci controlling seed size using a 142 backcross population
(87 BC3F1 and 55 BC2F2) with two parents under two water regimes in peanut, while
several QTLs associated with increased seed width were detected under water-limited
treatment [9]. Simple sequence repeat (SSR) marker PM375 associated with seed length was
identified in a total of 88 F2:6 recombinant inbred lines (RILs), representing that increase
in seed length may influence in an increase in the weight of a hundred seeds, or in the
length of the pod [10]. Florida-07 by GP-NC WS 16. A major seed size QTL on chromosome
A05 was identified in the US peanut mini core collection using RILs from a cross between
Florida-07 and GP-NC WS 16 [8]. However, there are few studies on seed shape in peanuts
so far.

1.2. Peanut Germplasms and Core Collection

Various germplasms with large genetic diversity are excellent resources for peanut
breeders to broaden the genetic basis of breeding materials and integrate important alleles
related to valuable traits [11]. Diverse germplasms in peanuts have been used to enrich
genetic resources, introduce resistance to diseases and pests and, finally, to improve the
yield potential through continuous breeding programs.

Recently, effective methods to evaluate and introduce a genetic diversity of germplasm
resources have been performed in various studies. Core collections were first defined as
a limited set of accessions “representing, with a minimum of repetitiveness, the genetic
diversity of a crop species and its wild relatives” [12,13]. The use of core collections
has many advantages and they also represent a good starting material for association
mapping. Recently, core collections have been established in various crops, including
rice [14], wheat [15], maize [16], and Brassica napus [17]. The peanut core collections were
developed from the US germplasm collection [18], and information on the accessions of
the core collection are available at the Germplasm Resource Information Network (GRIN)
(https://www.ars-grin.gov).

To promote and improve the utilization of germplasm resources in peanut breeding
programs, the peanut mini core collection was established by utilizing the stratification
strategy of the United States (US) peanut germplasm resource center [19]. The majority of
the accessions in the mini core collection were unrelated individuals, which may be a good
starting material for initiating the peanut association study. The purpose of establishing a
core or mini core collection for any crop is to promote the efficient and economical use of
plant materials by end-users and to identify germplasms with desirable characteristics.

The Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences in
China established a core collection with 576 A. hypogaea genotypes and a mini core collection
with 298 accessions representing the majority of the genetic diversity of cultivated peanut
in China. They conducted an association study using the mini core collection, and a total
of 89 simple sequence repeat (SSR) alleles were identified as associated with 15 agronomic
traits. The results showed that there was a great possibility to combine association analysis
and marker-assisted breeding using the peanut mini core collection [20,21]. The US mini
core collection was evaluated and mapped using quantitative trait loci (QTL) for several
traits, such as resistance to Tomato spotted wilt virus (TSWV) [21]. In the ICRISAT mini
core collection, several candidate regions associated with non-redundant leaf proteins
were identified as being related to tolerance to water deficit stress; however, little has been
reported regarding these traits in the US germplasms [22].

1.3. Characteristic of Peanut Genome

Cultivated peanut is allotetraploid (2n = 4× = 40, AABB) with a genome size of 2800
Mb/1C and the genome composition of cultivated peanut was shown to have derived from
a recent hybridization of A. duranensis (A subgenome) and A. ipaensis (B subgenome) [23–
26]. As the polyploidization event occurred recently, the genetic diversity of cultivated
peanut is extremely low [27]. Peanut subgenomes are very closely related [28,29] and
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have an estimated repetition rate of 64% [1], which makes the assembly of peanut genome
sequences extremely difficult [1,26,30]. The genome sequences of the diploid ancestors
(A. duranensis and A. ipaensis) of cultivated peanut were reported in 2016, which became
the basis for understanding the genome of cultivated peanut [26]. The sequencing results
of A. duranensis (A genomic progenitor) and A. ipaensis (B genome progenitor) provided
new insights into the biology, evolution, and genome changes of cultivated peanut and
accelerated the molecular breeding of peanut varieties [31].

Recently, the cultivated peanut allotetraploid A. hypogaea genome was sequenced
in 2019 and compared with the related diploid A. duranensis and A. ipaensis genomes.
A total of 39,888 A subgenome genes and 41,526 B subgenome genes were annotated in the
allotetraploid subgenome [32].

1.4. Development of Molecular Markers Using Next Generation Sequencing (NGS) Technology

In 2005, pyrosequencing technology was implemented using large-scale parallel se-
quencing or deep sequencing, revolutionizing next generation sequencing (NGS) tech-
nology and biological genomic research [33]. In the past decade, NGS technology made
significant progress, and the cost of sequencing dropped sharply [27]. In addition, there
have been innovative improvements in the productivity and accuracy of sequencing data.
In particular, genome-wide studies using de novo assembly, resequencing, and a variety of
bioinformatic methods have enabled the production of large numbers of single-nucleotide
polymorphisms (SNPs) and simple sequence repeats (SSR) in complex genomes [26,34–
36]. In recent work, high-throughput genotyping was conducted using NGS technology
through double-digest restriction-site-associated DNA sequencing (ddRADseq), a total of
14,663 SNPs were developed, and a genetic linkage map based on SNPs was constructed
using 1765 SNP markers in 166 F9 RIL population from a cross between Zhonghua 5 and
ICGV86699 [37]. Numerous SNP and cleaved amplified polymorphic sequence (CAPS)
markers were developed from the re-sequencing of two Korean peanut germplasms of
K-Ol and Pungan, which indicates that the molecular marker information can provide
valuable guidance and information for peanut breeding programs [27].

Due to the relatively large genome size and the low genetic diversity in cultivated
peanut, developing SNP array chips for high-throughput genotyping is necessary [38].
By DNA resequencing and the RNA sequencing of 41 peanut genetic materials and wild
diploid ancestors, a total of 163,782 SNPS were obtained. A total of 58,233 unique SNP
sequences with large amounts of information were selected to construct the high-density
SNP array Axiom_Arachis with 58K SNPs [39]. The high-density SNP Axiom_Arachis
array with 58K SNPs could be used to accelerate the process of high-resolution mapping
and molecular breeding in peanuts.

1.5. Applications of High-Density SNP Arrays in Crops

As the most abundant type of DNA sequence variation in the genome, SNPs could
be successfully used to associate the genotypic variations with target phenotypes. High-
density SNP arrays have been developed for high-resolution mapping of crops and are
widely used in many applications that require a large number of molecular markers, such
as high-density genetic profiling, genome-wide association study (GWAS), and genomic
selection [38,40,41]. One hundred and seven U.S. peanut mini core collections were geno-
typed using a 58K Affymetrix SNP array and a total of 13,527 highly polymorphic SNP
markers were selected for marker-trait associations in arachidic and behenic fatty acid
compositions [42]. A total of 2882 polymorphic SNPs retained from the second edition of
the Axiom_Arachis array (Axiom_Arachis2) were used to identify loci controlling pod con-
struction trait using 195 F7 recombinant inbred lines (RILs) [43]. The 48K Axiom Arachis2
SNP array was applied to identify single nucleotide polymorphisms (SNP) among the two
sets of RILs and the two original Nod+ parental lines to explore the genetic factors and
genetic regions controlling nodulation in peanut [44].
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Genomic-assisted breeding (GAB) using large amounts of genomic data related to
important agronomic traits could be used to develop new varieties faster than when using
traditional breeding methods. Detailed genetic maps consisting of thousands of array-
based SNPs have been used for the identification of genes controlling target traits [41,45].
GWAS, also known as whole-genome association study, is an observational study of a
genome-wide set of genetic variants in different individuals to investigate whether any
variant is associated with the target traits [46]. Any phenotypic differences could then be
connected back to the underlying causative loci via various mapping approaches, including
quantitative trait loci (QTL) mapping. Many research groups have used GWAS to identify
associations between genotypes and phenotypes as well as to discover novel biological
mechanisms [47]. Currently, most GWAS have been performed using high-throughput
SNP data obtained by SNP arrays with a greater density of variants and a wide range of
allele frequencies [48–51]. The GWAS format is easy to share and generate, and GWAS can
be conducted using various applications and software [46].

1.6. Purpose

In this study, we aimed to (1) evaluate the population structure and genetic diver-
sity of 384 peanut germplasms including 100 Korean germplasms and 284 United States
Department of Agriculture (USDA) core collections using Axiom_Arachis array with 58K
SNPs, and (2) to conduct GWAS for seed shape and identify candidate genes associated
with this trait. Our results could provide useful tools for improving various agronomic
traits in molecular breeding programs for peanuts.

2. Materials and Methods
2.1. Plant Materials, DNA Extraction, and Genotyping

A total of 384 peanut accessions were used for the present study (Supplementary
Table S1). Among those, 284 peanut accessions were obtained from the core collections
of the US Department of Agriculture (USDA) according to the proportion of the num-
ber of germplasms, which were widely distributed in East Asia, South Asia, West Asia,
East Africa, South Africa, West Africa, North America, South America, Europe, and the
Australian continent. In addition, 100 peanut germplasms were obtained from the Na-
tional Agrobiodiversity Center Korean, RURAL DEVELOPMENT ADMINISTRATION
(RDA)-GenBank Information Center, South Korea, including landraces, breeding lines, and
cultivars. A young leaf from each individual accession was collected to extract the genomic
DNA. A total of 384 peanut genomic DNA were extracted for each accession using the
cetyltrimethylammonium bromide (CTAB) protocol with slight modifications [52]. The
quality and quantity of the extracted DNA were determined using a NanoDrop ND-1000
(Thermos Fisher Scientific Inc., Wilmington, DE, USA) and 1% agarose gel electrophoresis.

A high-density SNP array Axiom_Arachis with 58K SNPs was used to obtain the geno-
typing data [39]. Reference genome builds were acquired from arahy.Tifrunner.gnm1.KYV3
(https://www.ncbi.nlm.nih.gov/assembly) to serve as controls in the array design.

2.2. Screening of Seed Aspect Ratio

The seed aspect ratio data (Supplementary Table S2) were obtained by scanning seed
images. The scanning images were processed by ImageJ 1.52a software (https://imagej.
nih.gov/ij/notes.html) to generate phenotype data for the genome-wide association study.
The seed aspect ratio was calculated as the seed major axis divided by the seed minor axis.
Ten seeds per accession were scanned at the same time, and the seed aspect ratios of the
ten seeds were averaged (Supplementary Figure S1). The phenotype data were analyzed
using the R program to conduct a t-test and normal distribution in the accessions.

2.3. Population Structure Analysis

A principle coordinate analysis (PCoA) was conducted using the software GenAlEx
V6.503 [53,54]. The population structure of 384 peanut accessions was evaluated by Struc-
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ture v2.3.4 software (https://web.stanford.edu/group/pritchardlab/structure_software/
release_versions/v2.3.4/html/structure.html) under the admixture model. We compared
the structures following the same parameters with K-values ranging from 1 to 10, and
20,000 Markov chain Monte Carlo iterations after a burn-in period of 10,000 iterations were
carried out for three independent runs per K value. To make a decision for the optimum
number for K, the delta K (∆K) method used the software online “harvester structure”.

2.4. Genome-Wide Association Analysis

We analyzed the SNPs in Axiom_Arachis with a 58K array of the cultivated peanut
using R software analysis tools. In the present study, the GAPIT package of R software—
was used to conduct GWAS, and the enriched compressed mixed linear model (ECMLM)
was selected for the analysis of association between SNPs and the phenotype data of
interest [55]. The cutoff for significant association was a false discovery rate (FDR) adjusted
p-value of less than 0.05. Candidate genes covering significantly associated SNPs were se-
lected from the PEANUTBASE website tool (https://www.peanutbase.org) within a 150 kb
region upstream or downstream of peak SNPs according to the linkage disequilibrium (LD)
decay results.

2.5. Linkage Disequilibrium (LD) Analysis

We performed linkage disequilibrium analysis for all possible pairs of SNPs with a
minor allele frequency (MAF) greater than 0.01 in a dataset. To determine the degree of
resolution achieved in the association analysis, both the genome and chromosome-wide
LDs were estimated [56].

LD blocks were viewed using Haploview4.2, which uses permutation tests to de-
termine the p-values for each pairwise correlation. The LD decay was calculated with
PopLDdecay [57,58]. The physical distance of the LD decay plot was determined based
on the D’ values and distances between each pair of SNPs on each chromosome using a
nonlinear model [59].

The standard descriptive LD parameter D’ was estimated as previously described
by [60,61]. The average D’ value was calculated for each chromosome using Haploview
software [60].

2.6. Regularization Method

In human genome-wide association studies, regularization methods based on penal-
ized likelihood are popular regarding their application to identify disease-related genes
or genetic regions as they are computationally efficient when used in analysis of high-
dimensional genomic data [62–68]. The penalized likelihood function using an elastic-net
penalty is defined as

Q(β) = −l(β) + λα∑p
j=1

∣∣ β j
∣∣ + λ(1− α)∑p

j=1 β2
j (1)

where l(β) is a log-likelihood function, β is the p-dimensional coefficient vector, λ ≥ 0 is a
tuning parameter for sparsity, and α ∈ [0,1] is a tuning parameter for smoothness. When
α = 1, the coefficient vector β becomes the solution of the least absolute and shrinkage
selection operator (LASSO) [69]. The estimated coefficient β consists mostly of zero values
and only a few nonzero values. Based on 100 bootstrap samples, the selection probability of
individual SNPs was computed where only SNPs with nonzero coefficients were selected
for each bootstrap sample. Finally, we were able to identify the top ranked SNPs by their
selection probability.

In order to select significant SNPs, we used two types of threshold of selection proba-
bility which can control the number of falsely selected SNPs. The first one is the theoretical
threshold proposed by [70]. The second one is the empirical threshold [71] which basically
computes the quantile value of an empirical distribution of selection probability based on
permutation. In their extensive simulation studies, it was demonstrated that the number of
falsely selected SNPs can be controlled when the empirical threshold is applied to high-

https://web.stanford.edu/group/pritchardlab/structure_software/release_versions/v2.3.4/html/structure.html
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dimensional genomic data. The theoretical threshold (πθ) and the empirical threshold
(π∗θ) can be written as:

πθ =
q2

Λ
2θp

+
1
2

and π∗θ =
1
B

B

∑
b=1

SP[θ]
(b)(Ib) , (2)

where θ is the upper bound of the expected number of false discoveries, qΛ is the average
number of selected SNPs, B is the number of permutations and Ib is the b-th random
permuted sample. We denote SP[θ]

(b) by the top θ-th ranked selection probability when they

were sorted in descending order for the b-th permuted sample such as SP[1]
(b) > · · · > SP[p]

(b).
We chose the expected number of false discoveries θ = 1, and thereby the number of falsely
selected SNPs by each threshold can be guaranteed to be less than θ = 1.

3. Results
3.1. SNP Genotyping

Of the 58K informative SNPs, a total of 47,837 polymorphic SNPs were selected (Sup-
plementary Table S3). Of the 47,837 SNPs, 19,554 and 21,876 SNPs were derived from the
subgenomes A and B, respectively, and 6407 SNPs were derived from scaffolds (Supplemen-
tary Table S3 and Figure 1a). A total of 14,030 SNPs were selected for association analysis
after eliminating SNPs with high levels of missing data (>20%), heterozygosity (>20%), or
low a minor allele frequency (MAF) (<0.01). Of the 14030 SNPs, 6623 and 7407 SNPs were
derived from A and B subgenomes, respectively. The majority of SNPs were evenly dis-
tributed across the chromosomes; however, there were some large gaps between SNPs on
the chromosomes Aradu.A09, Aradu.A10, Araip.B05, Araip.B06, Araip.B07, Araip.B09, and
Araip.B10 (Figure 1b). The peanut genome had an overall SNP density of 5.91 SNPs/Mb,
with the Aradu.A09 (3.45 SNPs/Mb) and Aradu.A08 (9.35 SNPs/Mb) chromosomal densi-
ties being the lowest and highest, respectively (Supplementary Table S4).
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Figure 1. Single nucleotide polymorphisms (SNP) distribution in the 20 chromosomes of the cultivated peanut. The
horizontal axis shows chromosome length (Mb), the shades of red represent SNP density. The vertical axis shows the 20
chromosomes. (a) Polymorphic SNPs except for scaffold markers; (b) Polymorphic SNPs (except for scaffold markers) after
filter by GAPIT coding.

3.2. Phenotype Data Analysis

The mean value for the seed aspect ratio was 1.6325 (Figure 2a). The normal distribu-
tion test showed that the scatter points of the quantile–quantile (QQ plot) graph (Figure 2b)
were clustered around the fixed line; therefore, we assumed that the data were normally
distributed (p = 0.05).
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Figure 2. (a) Peanut seed aspect ratio data histogram; (b) The normal distribution test by the quantile-quantile (QQ plot)
graph.

3.3. Genetic Diversity

The pattern of PCoA (Figure 3) showed that the first two axes accounted for 30.19%
and 6.91%, respectively, of the total variation and the 384 peanut accessions were divided
into three broad groups across the first two axes. The first axes separated the South Korean
(clustered filled diamonds) and South American (green filled squares) peanut accessions
into two very different parts, and, at the same time, assigned East Asian, South Asian, and
West Asian peanut accessions (brown filled triangles, pink filled diamonds, and green filled
circles, respectively) to another part. Additionally, the peanut accessions that originated
from East Africa, South Africa, West Africa, North America, and Europe formed two
concentrated groups by the first and second axes. Interestingly, the accessions from South
Korea were genetically very different from those from South America, which is the origin
of the cultivated peanut.
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3.4. Genetic Structure

At K = 2, we found maximum ∆k values that were plotted against the K to confirm
the number of populations, while another lower peak was shown at K = 7 (Supplementary
Figure S2). When most individuals were divided into the two subpopulations (K = 2,
Figure 4), the peanut accessions, including 64.9% from Asia (of which approximately
74% individuals were from South Korea and 26% from other origins in Asia), 24.4% from
Africa, 10.2% from South America, and 0.5% from Europe, belonged to one subgroup (red),
while another subgroup (green) revealed features of accessions, including 16.8% from Asia
(comprising about 6.7% from South Korea and 93.3% from other Asia origins), 35.2% from
Africa, 42.5% from South America, 2.8% from North America, 1.7% from Europe, and 1%
from Australia.
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As we continued to divide the subgroups carefully, there were new divisions into the
subgroups. The most divergent subgroups were formed at K = 7. Of the peanut accessions,
26.4% originating from Asia (of which approximately 10.3% were from South Korea and
89.7% from other Asia origins), 45.5% from Africa, 20.9% from South America, 3.6% from
North America, 1.8% from Europe, and 1.8% from Australia belonged to the red subgroup.
The green subgroup revealed features of 50% accessions from South Korea and 50% from
Africa. The dark blue subgroup showed features of 1.5% accessions from Asia, 20% from
Africa, 75.5% from South America, 1.5% from North America, and 1.5% from Europe. The
yellow subgroup showed features of 91.4% accessions from Asia (including about 87.5%
from South Korea and 12.5% from other Asia origins), 2.9% from Africa, and 5.7% from
South America. The pink subgroup consisted of 56.3% accessions from Asia (of which
approximately 63.8% were from South Korea, and 36.2% from other Asia origins), 31%
from Africa, 12% from South America, and 0.7% from Europe. The light blue subgroup
showed features of accessions from only South America. The orange subgroup showed
features of individuals with 76.9% of accessions from Asia (of which approximately 85%
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accessions were from South Korea and 15% from other Asia origins), 15.4% from Africa,
and 7.7% from South America.

3.5. Genome-Wide Association Study (GWAS)

The genotype data of 14,030 filtered polymorphic SNPs and the phenotypic data of
the seed aspect ratios were analyzed for GWAS by GAPIT. A total of five candidate SNPs
showing significant associations (p < 0.0001) with the seed aspect ratio were identified
on chromosomes Aradu.A09, Aradu.A10, Araip.B08, and Araip.B09 (Table 1 and Figure
5a). The distribution of the observed −log10(p) for each SNP was compared with the
expected distribution in the QQ plot representing that the population structure and kinship
relationship were well controlled in the GWAS (Figure 5b). The significance of the marker–
trait associations were determined using the FDR with adjusted p-value (p = 0.05). AX-
177640219 on chromosome Araip.B08 was significantly associated with the seed trait at the
significant threshold (Table 1).
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Table 1. Significant markers associated with seed aspect ratio of peanut identified using GAPIT
analysis.

SNP Chromosome Position (bp) p-Value (p) FDR_Adjusted_p-Values

AX-177640219 Araip.B08 12829161 2.31 × 10−6 0.032
AX-147235444 Aradu.A10 8911644 5.91 × 10−5 NS a

AX-176807953 Aradu.A09 113907685 6.95 × 10−5 NS
AX-176822392 Araip.B08 121783058 9.55 × 10−5 NS
AX-147262340 Araip.B09 143554366 9.80 × 10−5 NS

a FDR_adjusted_p-value is not significant at the level of 0.05.

3.6. LD and Candidate Genes Analysis

Pairwise comparisons were performed between all SNPs for the estimation of LD
decay. At a cutoff value of r2 = 0.1, the averaged LD decay distance of the 384 peanuts
was approximately 150 kb (Supplementary Figure S3). The pattern of LD across the entire
genome presented a number of haplotype blocks containing SNPs that can be used to
determine the range of the candidate gene. The genomic locations harboring significant
SNPs from the GWAS were investigated to identify putative candidate genes based on the
peanut reference genome (A. hypogaea Tifrunner 1.0). Strong and extensive pairwise LD
was observed among highly significant SNPs around AX-177640219 (p-value = 0.000015)
on chromosome Araip.B08 from the 12,629,161 to 13,029,161 bp region (D’ > 0.80) in which
D’ varied from 0.036 to 1 (Figure 5d and Supplementary Table S5).

Fifteen annotated genes at the association regions flanked by SNP AX-177640219 on
chromosome Araip.B08 were identified within the estimated ±150 kb window based on
the reference genome (Figure 5c and Supplementary Table S6).

3.7. Regularization Method

Alternatively, we also conducted regularization methods, such as LASSO, to identify
candidate regions associated with the seed aspect ratio (Figure 6) [71]. The regularization
method was performed using an entire dataset at a time and could select several putative
markers most likely related to the trait based on the value of selection probability, whereas
the ECMLM analysis only tested one marker at a time. As a result, one SNP locus (AX-
177640219 on Araip.B08) was identified as being most likely related to the seed aspect ratio
based on the selection probability at the permuted threshold 0.894, and was also found to
be highly significantly associated in the GAPIT analysis (Figure 6). When loosening the
strict threshold to 0.506, a total of six SNPs were additionally identified, AX-177640938 on
chromosome Araip.B08, AX-147218661 on Aradu.A03, AX-147251864 on Araip.B06, AX-
176802342 on Araip.B04, AX-176791478 on Aradu.A02, and AX-176800768 on Aradu.A01,
which presented significant associations with ECMLM results indicating that the regions
flanked with these markers might be candidate regions for possible determination of seed
shape in peanuts. Therefore, the use of both methods to conduct association studies is
beneficial in (1) boosting confidence in the case where common markers are identified and
(2) to maximize the possibility of finding new significant markers associated with a trait
of interest.
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3.8. Evaluation of Heterozygous Rate

The same filtering conditions with maximum missing data of 20% and MAF of 0.01%,
different heterozygosity rates (starting from 5% and 10% and every 10% until 100% maxi-
mum heterozygous SNPs (Figure 7 and Supplementary Table S7) were used to filter the
genotype data in our study, and different significance cutoff thresholds were used to assess
the effect of the SNPs on the seed aspect ratio.
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When the genotype data filtered by a 5% to 20% maximum heterozygous rate were
used for GWAS analysis, a higher specificity of the results was obtained; however, only
one significance marker was evaluated at the 0.05 critical threshold for the false discovery
rate (FDR) adjusted p-value. On the contrary, when a high heterozygosity rate of 30% to
100% was used for data filtering, additional significant markers were detected; however,
those markers require validation.

4. Discussion

The trait of seed ratio (length-width ratio) screened in this study has been reported to
have very high broad-sense of heritability in recently published peanut research. Zhang
et al. [72] reported that it has a high broad-sense of heritability (0.81) in peanuts. For other
legume crops, Hu et al. [73] reported a very high broad-sense of heritability ranged from
92.46 to96.25 in three traits related to seed shape in soybeans. If a phenotypic trait has a high
level of heritability, the influence of the environmental factors might be relatively small, and
in this case, it could be possible that genes (or QTL) with relatively large effects on the trait
could be identified even if the trait were not measured in the same conditions. Of course,
even in this case, the influence of the environmental conditions cannot be overlooked.
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The genotyping data from the 58K SNP array chip could play an important role in
understanding the evolutionary history of peanuts and the domestication of cultivated
peanut [74]. The application of the array chip also demonstrated that it is a powerful and
reliable tool for peanut germplasm background selection and evolutionary studies [75].
In the present study, it is the first to conduct GWAS analysis using a large number of
Korean peanut germplasms as well as the USDA peanut core collection with a high-density
SNP chip data that can be used toward increasing the genetic diversity of the US peanut
germplasm collection.

The cultivated peanut species (A. hypogaea) is known to originate from southern
Bolivia to northwestern Argentina based on the occurrence of the two progenitor species,
A. duranensis and A. ipaensis, and archaeological evidence gathered in those regions [76–78].
Researchers also suggested that the eastern slopes of Cordillera may be a possible area
for the origin of A. hypogaea due to the favorable environment for peanut growth [78,79].
However, the present study showed an interesting result in that South American peanuts,
generally regarded as the origin of peanuts, were revealed as having significant genetic
differences from peanuts of other regions, including South Korea.

The evaluation results for the evolutionary relationships among the entirety of the 384
peanut germplasms indicated that most of the peanut individuals from South Korea and
South America separated into two distinct groups and were also independent from the
peanuts from the other origins. This might indicate that there was a great genetic difference
between the peanut germplasms from South Korea and South America. Likely, due to
the lack of interactions between South Korean peanut germplasms and others, it might be
possible that an independent breeding history by human selection and/or environmental
influences for a long period have caused these genetic differences.

In human genetic association studies with high-dimensional genomic data, regular-
ization methods, such as LASSO and elastic-net, have been widely applied to identify
outcome-related genetic sites and genes as they have certain advantages over univari-
ate analysis. First, regularization methods can easily handle highly correlated genomic
measurements and covariate effects as they are based on a regression model. Secondly,
the majority of regularization methods have been implemented into very efficient com-
putational algorithms such R package ‘glmnet’ and ‘gglasso’. These packages can detect
outcome-related genetic-sites and genes in less than a minute for more than 100K dimen-
sional genomic data. Lastly, there are various types of regularization methods that can be
applied to different types of genomic data. For example, we applied LASSO and elastic-
net to SNP data in the GWAS or QTL analysis; however, sparse group LASSO [80] and
network-based regularization [81] are ideal for group structured genomic data, such as
gene expression data and DNA methylation data. Despite these advantages of regulariza-
tion methods, they have rarely been applied to detect QTLs or genes of interest in crops.
In this study, LASSO was able to identify potentially outcome-related SNPs that were not
identified in general GWAS methods although further validation studies are required for
these SNPs.

Data filtering is the primary process of genome-wide association analysis, which
includes huge amounts of data and requires strict quality control standards. Data filtering
is divided into two sections, one for marker variables and another for individuals. The
former considers the minor allele frequency (MAF) and the degree of missing data and
heterozygosity, etc., whereas the latter mostly considers missing levels, population stratifi-
cation, and independency among individuals [82]. The entire set of heterozygous SNPs are
typically used in human GWAS analysis [83]. In peanuts, a high level of heterozygosity
may not be expected as peanut is a self-pollinating crop revealed to have a low outcrossing
rate ranging from 1.9% to 8% [84]. However, our array chip data showed a large number
of heterozygous SNPs, which can affect the GWAS results. According to Figure 7, the
significant SNPs identified from using 5% to 20% maximum heterozygous rate showed
the same GWAS results, with one significant marker at FDR 0.05, while the results from
using 30% to 100% maximum heterozygous rate showed similar GWAS results with three
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significant markers. Therefore, we filtered the genotype data with maximum heterozygous
SNPs of 20%, and we used less heterozygous SNPs for analysis.

Carbon assimilated by photosynthesis is transported into seeds with multiple pur-
poses, such as the biosynthesis of starch, oil, amino acids, and cellulose. The most important
aspect of oil accumulation in developing seeds lies in the activation of metabolic path-
ways driving incoming carbon into fatty acid biosynthesis at the expense of competitive
pathways. Within the genomic region of ~300 kb associated with seed development, phos-
phoenolpyruvate (PEP) carboxylase (PEPC; Arahy.HT9EWH) was among eleven genes
located within the LD of significant SNPs on the chromosome Araip.B08 (Supplementary
Table S6). PEP is catalyzed into oxaloacetate (OAA), a protein precursor, by PEPC [85].
OAA can be converted to malate and then to pyruvate (a precursor for oil). PEPC had
been reported to regulate the metabolic network of glycolytic carbon into precursors for
both oil and protein in soybean seed development [86]. The activation status of PEPC
has been reported to play a key role in the partitioning of assimilates into the different
storage products in barley (Hordeum vulgare), alfalfa (Medicago sativa), and fava bean (Vicia
faba) [87–89]. In peanuts, researchers reported that the expression levels of PEPC genes
were significantly associated with lipid accumulation [90]. In the present study, only fifteen
annotated genes were identified within the genomic region as being highly associated
with seed development through high-throughput GWAS analysis. Among them, the PEPC
gene could have a strong causal effect within this region associated with diverse metabolic
pathways that includes including protein and oil biosynthesis.

5. Conclusions

Peanut is one of the most important food/oil crops and improving the quality and
yield potential of crops is an important challenge in most breeding programs. Our study
demonstrated the feasibility of GWAS analysis using the core germplasm from diverse
origins and high-density array chips. Five candidate markers with a significant correlation
with the aspect ratio of peanut seeds were identified and lay a foundation for further
research. The Arahy.HT9EWH, phosphoenolpyruvate carboxylase (PEPC) gene corre-
sponding to the most significantly associated marker was a promising candidate gene
that is involved in many metabolic pathways, including those involved in seed develop-
ment processes. Therefore, the results of the present study provide valuable information
and methods for the genetic and genomic study as well as molecular breeding programs
in peanuts.
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chip, Table S5: Pairwise LD on chromosome Araip.B08, Table S6: List of genes in the significant region
(chromosome Araip.B08) with annotations identified by Arachis hypogaea Tifrunner 1.0 reference,
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