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Simple Summary: Precision medicine is a revolutionary new way to deliver cancer treatment by
targeting specific genetic changes of the cancer of the individual child with the goal of improving
cure rates and reducing toxicity. In this review, we illustrate the evolution of cancer treatment in
this groundbreaking new era. We compare characteristics and early results of precision medicine
programs in pediatric oncology as well as novel clinical trial initiatives translating these findings into
potential clinical benefit for all children and adolescents with cancer.

Abstract: Over the last years, various precision medicine programs have been developed for pe-
diatric patients with high-risk, relapsed, or refractory malignancies, selecting patients for targeted
treatment through comprehensive molecular profiling. In this review, we describe characteristics of
these initiatives, demonstrating the feasibility and potential of molecular-driven precision medicine.
Actionable events are identified in a significant subset of patients, although comparing results is
complicated due to the lack of a standardized definition of actionable alterations and the different
molecular profiling strategies used. The first biomarker-driven trials for childhood cancer have been
initiated, but until now the effect of precision medicine on clinical outcome has only been reported
for a small number of patients, demonstrating clinical benefit in some. Future perspectives include
the incorporation of novel approaches such as liquid biopsies and immune monitoring as well as
innovative collaborative trial design including combination strategies, and the development of agents
specifically targeting aberrations in childhood malignancies.

Keywords: precision medicine; targeted therapy; next-generation sequencing

1. Introduction

Cancer remains the leading cause of death in children and adolescents in high-income
countries: about one in five children with cancer will succumb to their disease [1,2].
Despite major advances through intensification of cytotoxic chemotherapy, optimizing
local treatment and perfection of supportive care, prognosis for high-risk and refractory
cancers remains poor, especially for metastatic sarcoma, high-risk neuroblastoma, several
types of central nervous system (CNS) tumors, acute myeloid leukemia (AML) and rare
pediatric cancers [3,4]. Moreover, improved survival has come at a high cost: survivors
are facing serious late side effects of intense multimodality therapy, including infertility,
cardiomyopathy, neurocognitive sequelae as well as secondary malignancies, significantly
impacting quality of life [5]. Therefore, it is imperative to develop more effective and less
toxic treatments for all 400,000 children and adolescents of 0–19 years diagnosed with
cancer globally each year [1].

In this review, we summarize the evolution of genomics-informed precision medicine,
focused on the results of established pediatric oncology programs worldwide, discussing
challenges and opportunities to accelerate the implementation of pediatric precision oncology.
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Methods

To identify pediatric precision medicine studies, a PubMed search was performed with
the following search term [”childhood cancers” OR “pediatric oncology” AND “precision
medicine” OR “targeted therapy”] up until 1 December 2020. All found studies were up-
loaded in Rayyan (http://rayyan.qcri.org; accessed on 2 December 2020) and subsequently
assessed on both title and abstract. After inclusion, the reference lists of respective studies
and pediatric precision medicine reviews were searched for additional relevant pediatric
precision medicine studies. Abstracts and unpublished data were also considered. Studies
focused on adult precision medicine that did not separately report results for children
and adolescents were excluded. For the independent precision medicine programs, the
following data were collected: program name, country, study period, number of patients
included, number of patients analyzed, cancer types included, maximum age for inclusion,
inclusion criteria (primary high-risk, relapse or refractory), types of molecular analysis
performed, percentage of (actionable) somatic and germline events, change in diagnosis or
re-classification, target priority score, percentage of targeted therapy applied, and clinical
outcome. Before performing the analysis, collected data were sent to their respective
authors/project leaders for verification. Data were analyzed using descriptive statistics.

2. Molecularly Informed Personalized Medicine in Adult Oncology

It is hypothesized that matching treatments to molecular changes in the tumor results
in more effective cancer control and less long-term treatment-related side effects [6]. Rapid
evolution in sequencing technologies and computational analyses have identified cancer
drivers and druggable molecular alterations, changing the paradigm in oncology from
histology-based diagnostics and subsequent cytotoxic treatment to using whole-genome,
whole-exome, whole-transcriptome, and/or whole-methylome data to select the optimal
treatment for individual patients. The pharmaceutical industry prioritized developing
novel agents that target genes commonly mutated in adult malignancies. Important
clinical progress was achieved in adults with BCR-ABL fusion positive chronic myeloid
leukemia [7], HER2-positive breast cancer [8], lung cancer harboring EGFR mutations [9]
or EML4-ALK translocations [10] as well as BRAF-V600E mutated melanoma with BRAF
and MEK inhibitors [11].

Several adult precision medicine trials have been initiated, characterizing genomic alter-
ations to select a targeted therapy, such as Bisgrove [12], IMPACT [13–15], MOSCATO [16],
NCI-MATCH [17,18] and NCI-MPACT [19,20], PREDICT [21–23], MyPathway [24], Pro-
fiLER [25] WINTHER [26], and the Drug Rediscovery protocol [27], as reviewed by Fountzi-
las [28], Tsimberidou [29] and Gambardella [30]. Despite early signals of activity, clinical
benefit of personalized treatments has only been identified in some specific subgroups. In
the SHIVA trial, no improvement of progression-free survival was observed when off-label
use of molecularly targeted agents was compared with standard treatment [31].

3. The Differing Genomic Landscapes of Childhood and Adult Cancers

Pediatric pan-cancer genome and transcriptome studies reveal a landscape that differs
substantially from adult malignancies [32–35]. Childhood malignancies commonly occur
in developing mesodermic rather than adult epithelial tissues. Whereas many adult tumors
are characterized by a high number of somatic mutations, pediatric cancers typically
have few [36]. Mutation rates vary across cancer types, ranging from 0.02 mutations per
megabase in hepatoblastoma to 0.49 in Burkitt’s lymphoma and correlate significantly with
age. Hypermutator phenotypes are uncommon, except in children who carry mutations
in genes that code for DNA damage repair mechanisms [33,37]. Pediatric cancers are
frequently defined by a single driver gene as opposed to the multiple cancer-driving
mutations identified in adults [32,33]. Driver mutations are more exclusive in specific
tumor types, whilst adult cancers more frequently share mutations [33]. Furthermore,
childhood tumors harbor a unique spectrum of mutations: only 30–45% of cancer driver
genes overlap with adult pan-cancer analyses [33]. The most commonly mutated set of
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genes are those involved in epigenetic modification (25% of tumors) [33]. Over 50% of all
tumors harbor potentially druggable mutations, most commonly in the MAPK, cell-cycle,
or DNA-repair pathways [33].

Distinct mutational signatures are identified by whole-genome sequencing [32,33].
Structural variations and copy number alterations play an important role in over 60% of
pediatric cancers, stressing the need for not only mutation evaluation but complementary
approaches to detect clinically relevant molecular events [32–34,38] (Figure 1). In 7.6%
of cases, tumors were associated with predisposing germline mutations, mostly in DNA
repair genes, potentially creating opportunities for immunotherapy in a subset of these
patients [39]. These large-scale analyses of childhood tumor genomes led not only to
substantial insights into cancer development, but also identified potentially druggable
events, setting the stage for the introduction of precision medicine programs in pediatric
oncology [32,33].
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4. The Development of Precision Medicine Programs in Pediatric Oncology

Over the last decade, several large-scale national pediatric precision oncology pro-
grams have been initiated, enrolling over 3000 children, adolescents, and young adults
(AYA), as published up until December first of 2020 (Figure 2). These studies investigated
the potential of molecular-driven precision medicine and began to assess the clinical benefit
of targeted therapies.
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The following precision medicine programs were developed: the United States initi-
ated BASIC3 [40], MSKCC PMTB [41], PIPseq [42,43], Peds-MiOncoSeq [44], ClinOmics [45],
UCSF [46], iCAT [47] and pediatric MATCH [48]; Canada initiated PROFYLE [49], TRI-
CEPS [50] and KiCS [51]; France initiated MMB [52], MOSCATO-01 [53], ProfiLER [54]
and MAPPYACTS [55]; Australia initiated TARGET [56] and the Zero Childhood Cancer
Program [38]; Germany initiated the INFORM study [39,57]; the Netherlands initiated
the individualized THERapy (iTHER) program [58,59]; the United Kingdom initiated SM-
Paeds [60]; Korea initiated SMC [61] and finally the transnationalPacific Pediatric Neuro-
oncology consortium was initiated [62]. An overview of reviewed precision medicine
program characteristics is shown in Table 1 and Figure 2.

Internationally published and/or presented results demonstrate the feasibility and
opportunities of molecular-driven precision medicine and revealing a rate of actionable
variants that justify the development of predictive biomarker-driven trials for childhood
cancer. In addition to the detection of potentially druggable events, molecular profiling
could also be used to identify germline mutations and change or refine diagnosis [63–70].
We will discuss these aspects separately in the next sections.
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Table 1. Characteristics and results of published pediatric precision medicine approaches.

Program
Name/Sponsor

No. of
Samples
Included

No of
Samples

Analyzed
Inclusion Criteria NGS Technique Tumor

Subtypes
Data

Reported
Time to
Results
(Days)

%
Actionable
Alterations

% Patients
Receiving

Targeted Therapy
(of All Samples

Sequenced
Successfully)

% Change or
Refinement
of Diagnosis

% Germline
Aberrations

ClinOmics [45]
USA, NCI Center for

Cancer Research
64 59 Relapse/refractory WES; RNAseq;

SNP array Solid tumors Somatic &
germline NR 51 NR 7 12

Peds-MiOncoSeq [44]
USA, University of

Michigan
107 101

Primary high-risk;
relapse/refractory;

rare cancers
WES; RNAseq

Solid tumors;
hematological
malignancies

Somatic &
germline 54 (average) 46 15 2 10

BASIC3 [40]
USA, Baylor College of

Medicine
150 121

Primary high-risk
(newly diagnosed

and untreated)
WES Solid & CNS

tumors
Somatic &
germline NR 27 NR NR 10

iCAT [47]
USA, Dana Farber

Cancer Institute
100 89 Primary high-risk;

relapse/refractory NGS panel; aCGH Solid tumors Somatic &
germline NR 39 3 3 12

MOSCATO-01 [53] **
France, Gustave Roussy

Cancer Center
75 69 Relapse/refractory WES; NGS panel;

RNAseq; aCGH
Solid & CNS

tumors
Somatic &
germline

19–41
(26 average) 61 19 4 10

ProfiLER [54]
France, Centre Léon

Bérard
50 43 Primary high-risk;

relapse
69 gene panel;

aCGH

Solid & CNS
tumors;

hematological
malignancies

Somatic NR 23 9 NR NA

PIPseq [42,43]
USA, Columbia

University
- 56

Relapse/refractory;
unusual

presentation for
age; rare cancers

WES; NGS panel;
RNAseq

Hematological
malignancies

Somatic &
germline 40 (median) 80 13 11 24

TRICEPS [50] ***
Canada, CHU
Sainte-Justine

84 62 Relapse/refractory WES or NGS panel;
RNAseq

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline

32–120
(61 median) 87 41 22 13

PMTB [41]
USA, Memorial Sloan

Kettering Cancer Center
- 39

Primary high-risk;
relapse/refractory;

remission

WES;
Hybrid-capture
based DNA and
RNA sequencing
assay; RNAseq;

FISH

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline NR 73 54 NR NR

PNOC003 [62]
Transnational, Pacific

Pediatric Neuro-oncology
consortium

17 17 Primary high-risk WES; WGS (60x);
RNAseq; CNS tumors Somatic &

germline
6–22

(13 median) 100 47 NR NR
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Table 1. Cont.

Program
Name/Sponsor

No. of
Samples
Included

No of
Samples

Analyzed
Inclusion Criteria NGS Technique Tumor

Subtypes
Data

Reported
Time to
Results
(Days)

%
Actionable
Alterations

% Patients
Receiving

Targeted Therapy
(of All Samples

Sequenced
Successfully)

% Change or
Refinement
of Diagnosis

% Germline
Aberrations

MMB [52]
France, Institut Curie 60 58 Primary high-risk;

relapse/refractory NGS panel; aCGH Solid & CNS
tumors Somatic 26–58

(42 median) 40 10 NR NA

INFORM [39,57]
Germany, German

Cancer Research Center
1052 928 Primary high-risk;

relapse/refractory

WES; lcWGS;
RNAseq; 850K

methylation

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline 25 (average) 85 28 7 8

TARGET [56] *
Australia, Manchester

Cancer Research Centre
- 47 Primary high-risk NGS panel;

RNAseq

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline NR 61 NR NR NR

Zero Childhood
Cancer [38] *
Australia, CCI

252 252 Primary high-risk;
relapse/refractory

WGS, RNAseq,
850K methylation

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline 53 (average) 71 17 5 16

PROFYLE [49] ***
Canada, The Terry Fox

Research Institute
- 100

Relapse;
hard-to-treat

cancer

NGS panel; WGS;
RNAseq;

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline NR 82 58 NR 14

UCSF [46]
USA, UCSF Medical

Center
31 31

Relapse/refractory;
no standard

therapy available
NGS panel CNS tumors Somatic &

germline 14–21 61 NR 19 35

MAPPYACTS [55] **
France, Gustave Roussy

Cancer Center
500 390 Relapse/refractory WES; RNAseq

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline NR 70 28 NR 6

SMC [61]
Republic of Korea,

Samsung Medical Center
55 53 Relapse/refractory 381 gene panel; 22

intron panel Solid tumors Somatic NR 36 2 NR NA

SMPAEDS [60]
UK, Royal Marsden

Hospital
255 209 Relapse/refractory 78 or 91 gene panel Solid tumors Somatic NR 51 2 NR NA

iTHER [58,59]
The Netherlands,

Princess Máxima Center
302 226

Primary high-risk;
relapse/refractory

cancers

WES; lcWGS;
RNAseq; 850K

methylation

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline 35 (average) 89 12 4 10
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Table 1. Cont.

Program
Name/Sponsor

No. of
Samples
Included

No of
Samples

Analyzed
Inclusion Criteria NGS Technique Tumor

Subtypes
Data

Reported
Time to
Results
(Days)

%
Actionable
Alterations

% Patients
Receiving

Targeted Therapy
(of All Samples

Sequenced
Successfully)

% Change or
Refinement
of Diagnosis

% Germline
Aberrations

Pediatric MATCH [48]
USA, National Cancer

Institute–Children’s
Oncology Group

422 357 Relapse/refractory NGS gene panel;
IHC

Solid & CNS
tumors;

hematological
malignancies

Somatic 15 (average) 29 24 NR NA

KiCS [51] ***
Canada, The Hospital for
Sick Children (SickKids)

- 200
Poor prognosis;

rare tumors; cancer
predisposition

864 gene panel;
RNAseq; WGS

Solid & CNS
tumors;

hematological
malignancies

Somatic &
germline NR 53 NR NR 12

Data include, if known, the name and location of the program, the total number of samples included, the number of samples analyzed successfully, criteria for patient accrual, techniques used as well as type and
turnaround time of the data reported, percentage of actionable events identified and percentage of patients ultimately receiving targeted therapy of all samples sequenced successfully; changed or refined
diagnosis and percentage of germline alterations detected. *, **, *** precision medicine programs that are related. Abbreviations: NGS—Next-Generation Sequencing. WGS—Whole-Genome Sequencing.
lcWGS—low-coverage Whole-Genome Sequencing. WES—Whole-Exome Sequencing. RNAseq—RNA sequencing. SNP array—Single Nucleotide Polymorphism array. aCGH array—Comparative Genomic
Hybridization. FISH—Fluorescence in situ hybridization. IHC—Immunohistochemistry. NR—Not Reported. NA—Not Applicable.
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5. Patient Accrual

Enrollment criteria for patients to enter precision medicine programs are heteroge-
neous. The majority of precision medicine programs include children, adolescent, and
young adults with various tumor subtypes at different time points, although the published
cohorts consisted mainly of patients with refractory or relapsed CNS malignancies as well
as extracranial solid tumors. Several initiatives aim to inform physicians of clinically ac-
tionable targets to promote enrollment in pediatric early clinical phase trials to investigate
whether it is effective to treat cancer in children and adolescents by targeting certain genetic
changes in their tumors with specific targeted drugs. Other programs aim to increase
our understanding of genetic drivers of pediatric cancer and to identify new clinically
relevant subtypes.

Although most programs included relapsed and/or refractory patients, a debate is
ongoing on the timing of inclusion of patients. Several distinct points can be highlighted.
First, at diagnosis, patients with standard-risk disease might not benefit from identifying
additional treatment options, but refinement of diagnosis as well as disease classification
can be crucial for subtypes in CNS tumors as well as sarcoma or tumors of unknown
origin [71,72]. Second, high-risk tumors may show single pathway addiction at diagnosis
and might respond better to targeted inhibition when incorporated early into treatment
regimens [73,74]. Nearly 50% of primary childhood tumors harbor a potentially targetable
genetic event [33], and treatment strategies are already being adapted for certain subtypes.
In Philadelphia chromosome-positive acute lymphoblastic leukemia, the introduction of
increasingly potent tyrosine kinas inhibitors (TKIs) has revolutionized therapy [75]. In
neuro-oncology, single-agent dabrafenib in pediatric patients with BRAF V600–mutant
relapsed and those with refractory low-grade glioma showed a 44% objective response
rate [76]. In non-CNS solid tumor patients aged 1 month to 21 years whose tumors harbor
an NTRK fusion gene, larotrectinib, a selective TRK inhibitor, had a 93% objective response
rate [73,74]. In children with newly diagnosed high-risk neuroblastoma, clinical trials are
ongoing in North America and Europe targeting ALK aberrations by adding ALK-inhibitors
to first-line therapy, with molecular profiling transitioning from basic science to validation
in the clinic (NCT03126916; NCT04221035). Finally, there is a subset of patients who do not
achieve meaningful responses after induction and therefore harbor a poor prognosis with
conventional treatment protocols. Thus, identifying actionable events early in the disease
course might provide unique treatment options in a subset of very-high-risk patients.

Druggable events vary between primary and relapse tumors. Only 37% of primary
tumors retained these events upon progression whilst most tumors gained events, as
reported in disease-specific reports [32,33,77–84] These substantial spatiotemporal differ-
ences in the molecular profiles of multiple samples acquired from the same patient as well
as metastases compared to primary tumors indicate the need for subsequent analyses to
optimize biomarker-driven selection in clinical trial recruitment [39].

6. Next-Generation Sequencing, Data Integration and Visualization

Several prospective precision medicine program initiatives have shown feasibility of
integrating genomic and epigenomic data in real time to direct treatment decisions for
pediatric patients. Applied methods to sequence somatic as well as germline DNA vary, as
summarized in Table 1: from targeted cancer gene panel sequencing; whole exome sequenc-
ing (WES—with or without computational analyses focusing on a predefined gene list of
known cancer genes); to sequencing of the full genome (whole-genome sequencing, WGS).
RNA sequencing (RNAseq) and RNA microarrays can be used to detect actionable fusion
genes and analyze expression patterns for target identification as well as subgroup refine-
ment. Methylome profiling is incorporated in some programs to classify tumors as well
assess the methylation status of relevant genes. Each molecular profiling platform analyzed
their data centrally via dedicated bioinformatics pipelines to predict pathogenic variants.
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Data sharing thus far is limited and can be challenging due to privacy regulations, but
several platforms aim to analyze and publicly visualize genomic data since effective data
sharing is key to accelerating research. For example, St. Jude Cloud is an expanding cloud-
based data-sharing ecosystem with genomic data from >10,000 pediatric patients (https:
//www.stjude.cloud; accessed on 11 May 2021) [85]. Another web-based genomics analysis
and visualization application extensively used by the pediatric community including the
“Innovative Therapies for Children with Cancer Paediatric Preclinical Proof-of-concept
Platform” (ITCC-P4) is the R2 Genomics Analysis and Visualization Platform, which
integrates genomic and clinical data as well as in vitro and in vivo model systems and
drug sensitivity profiles (http://r2.amc.nl; accessed on 11 May 2021) [86].

To date, no comparisons between precision medicine platforms and strategies have
been published and health technology assessment is lacking. Whilst the most optimal
approach is still unclear and the optimal molecular profiling approach might vary by
disease type and stage, several technologies transition to become the standard of care
in developed countries. Institutions will choose NGS approaches based on the quality
and quantity of available material, clinical relevance, and research interests as well as
sustainable funding opportunities.

7. Translating Molecular Findings into Clinic: Identification and Prioritization
of Targets

After sequencing and bioinformatic processing of raw data, molecular data are inte-
grated with (pre)clinical evidence to select clinically relevant alterations. In all programs,
an expert review is performed by a molecular tumor board, comprising experts of var-
ious disciplines such as molecular biologists, pediatric oncologists, clinical geneticists,
pathologists and/or early-phase clinical trial physicians and pharmacists.

The percentage of actionable alterations that were reported in the different studies
range from 27% to 100% (Table 1). However, there is no standardization on what is
considered actionable, and therefore numbers should be interpreted with caution. For
instance, pediatric MATCH defined an alteration as being actionable only when there is
a treatment arm available in a phase II clinical study. Consequently, actionability relies
on the availability of a targeted agent and was therefore variable over time. Moreover,
the “druggability” of any event will be impacted as we gain more insight from preclinical
studies and novel drug development. Some precision medicine studies, including TRICEPS,
defined non-druggable alterations as being actionable if they informed diagnosis, prognosis,
or treatment stratification.

Additionally, prioritization of the detected events differs between precision medicine
programs. A common classification system that is used for the recommendation of targeted
therapies is the NCI-MATCH tier. Actionable alterations are ranked from high to low
level of supporting evidence: Tier 1, clinical evidence in the same cancer; Tier 2, clinical
evidence in a different cancer; Tier 3, preclinical evidence in the same cancer; Tier 4,
preclinical evidence in a different cancer type [45]. The INFORM consortium on the other
hand developed a 7-scale target prioritization algorithm, taking into account the type of
alteration, the mechanism of action of potential drugs within the pathway, the level of
evidence for the specific alteration, and its role in the specific cancer type [39].

In conclusion, interpretation and prioritization of actionable event calling is chal-
lenging and dynamic in a rapidly evolving landscape of new biomarkers and treatments.
Further optimization and standardization of the process of target prioritization will be
crucial to allow for the comparison of molecular profiling technologies as well as guide
clinical decision making.

8. Germline Variants

Most precision medicine studies highlight the importance of germline alterations in
cancer-related genes, and cancer predisposition syndromes are recognized as an important
cause of pediatric cancer development [87].

https://www.stjude.cloud
https://www.stjude.cloud
http://r2.amc.nl
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Detecting variants differs between programs due to distinct inclusion criteria and
various gene panels. The mean percentage of germline mutations detected by molecular
profiling is 14% with a minimum of 6% and a maximum of 35% (Table 1). Variants are
usually classified into five categories according to American College of Medical Genetics
and Genomics (ACMG) guidelines: pathogenic (class 5), likely pathogenic (class 4), variant
of unknown significance (class 3), likely benign (class 2), and benign (class 1) [88]. The high
percentage of germline findings shows the relevance of genomic analysis on combined
tumor and germline DNA.

Germline pathogenic variants can be linked to somatic features of the tumors, identi-
fying potential treatment strategies. High tumor mutational burden is detected in patients
with constitutive mismatch repair deficiency based on biallelic germline loss of MSH6 or
PMS2. Enrichment in mutational signature 3 (‘BRCAness’) can be found in tumors from
patients with germline homologous recombination defects [37,51].

Therefore, molecular profiling not only has the potential to confirm a mutation in a
cancer predisposition gene, but also to guide treatment in cases where germline alterations
were not predicted by family history or not clinically evident [89]. Moreover, patient and
family members could be referred for genetic counselling and cancer surveillance, possibly
contributing to early tumor detection associated with improved long-term survival [90].

There are no structured reports of pharmacogenomic alterations and research on
clinical impact of variants on pharmacokinetics, and pharmacodynamics in pediatric
oncology is still in its infancy [91].

9. Change or Refinement of Diagnosis

Next to the identification of somatic alterations that can be targeted by a specific
treatment, molecular profiling also has the potential to lead to a clinically relevant change
or refinement in diagnosis, for example, through the identification of a specific fusion or
DNA methylation-based classification.

Tumor re-classification or changing or refinement of diagnosis was possible for a
substantial number of patients (Table 1). These results support molecular profiling at an
early stage as it informs treatment strategy. Classification of brain tumors or sarcoma based
on methylome is being advanced into clinical care [71,72].

10. Targeted Therapy and Clinical Decision Making

Molecular tumor boards (MTBs) provide an individual report, summarizing all action-
able genomic aberrations and matched treatment and/or clinical trial recommendations.
The aim is to help clinicians to translate molecular profiles into clinical benefit, maxi-
mizing the impact of precision medicine. Optimal design of these MTBs has not been
determined [92].

The time to results varied considerably between the precision medicine programs
(Table 1), depending upon the entry criteria and the NGS techniques and computational
pipelines used. Turnaround time can be relevant, especially in a relapse setting, since
performance status is an important inclusion criterium for phase I/II clinical trials [52].

The decision to apply targeted therapy based on the MTB recommendation is made
by the treating pediatric oncologist together with the patient and parents. Critical decision-
making factors in this process remain to be elucidated. However, patient performance
status might be a limiting factor since children are often enrolled with end-stage disease
and subsequently deteriorate or die early. In addition, turnaround time between biopsy
and molecular tumor board results requires initiating an alternative conventional (pallia-
tive) treatment protocol, balancing toxicity, and quality of life. Additionally, there might
be difficulties accessing targeted therapy drugs, particularly in children. Since only few
molecular targeted drugs have pediatric indications, a targeted therapy could either be
received through enrolment in a phase I/II clinical trial, by off-label or compassionate
approaches [93]. On average, 27% of the patients (rates ranging from 3% to 58%, Table 1)
received targeted therapy based on the recommendation of the MTB. The ratio between the
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percentage of actionable alterations and number of patients that received targeted therapy
differed considerably between precision medicine programs. This could be explained by
profound differences in trial design and follow-up time, the varying molecular profiling
strategies used, the lack of standardization of actionable event identification and prioritiza-
tion, as well as regulatory and logistical challenges in obtaining the matched targeted drug.
Therefore, we recommend interpreting these results with caution.

11. Clinical Benefit

For 5 out of the 18 included precision medicine programs in this study, follow-up
after the identification of actionable alterations is not (yet) published, and others reveal
contradictory results in a non-randomized setting. Encouraging results have recently been
published from large-scale studies in Europe and Australia. Collaborative data from IN-
FORM and iTHER showed increased progression-free survival for the subgroup of patients
that followed treatment recommendation for a very-high-priority target [57]. The Zero
Childhood Cancer Program demonstrated that the clinical outcome of the patients treated
with a targeted agent was favorable compared to patients included in unselected phase
I clinical trials. Remarkably, clinical outcome did not correlate with the tier score of the
recommended targeted agent [38]. Previously published results of the Peds-MiOncoSeq
study mentioned that 9/15 patients showed partial response and one complete remis-
sion [44]. This is opposed to a lack of clinical response in the iCAT study [47]. Similarly, the
Pacific Pediatric Neuro-oncology consortium showed comparable median overall survival
between targeted and cytotoxic therapy [62]. These conflicting results, again, should be
interpreted with caution, as studies, methods and patients are heterogeneous, stressing the
need for harmonization and collaboration.

12. Clinical Trial Development: Innovative Global Collaboration

Currently, the availability of approved molecular targeted drugs for pediatric patients
is still limited compared to adult indications and many new targeted drugs lack dosage
guidelines and efficacy data in children [93]. Targeted therapy development is complicated
by the fact that pediatric malignancies show a relative paucity of targetable mutations
as well as distinct molecular alterations compared to adult cancers, suggesting that new
therapeutic agents are required for pediatric cancer. In addition, there is a lack of available
clinical trials and a smaller number of eligible patients for each study.

Innovative strategies in early drug development for children, adolescents and young
adults have been proposed by several collaborative groups [64,67,94–97]. For example, the
pediatric platform ACCELERATE, comprising multiple stakeholders in pediatric oncology,
is aiming for biology-driven early drug development and clinical trial design for children
and adolescents with cancer [98]. In addition, recent regulatory measures, such as the
Research to Accelerate Cure and Equity for Children Act (RACE Act), are attempting to
stimulate earlier access to novel agents for children and adolescents with cancer [96].

Recently, large-scale pediatric trial initiatives have been developed in order to design
phase I/II (combination) trials. Basket trials are designed to enroll biomarker-selected patients
with many different cancer types who are assigned to one of the biology-matched subproto-
cols [97]. Examples of ongoing pediatric basket trials are AcSé-ESMART (NCT02813135) [53,99],
INFORM2 (NCT03838042) [100], and Pediatric MATCH (NCT03155620) [101].

13. Ongoing and Future Perspectives in Pediatric Precision Oncology
13.1. Patient-Derived Models and Drug Sensitivity Profiling

In addition to state-of-the-art molecular profiling, several precision medicine programs
are adding functional testing of drug sensitivities in patient-derived models to complement
current genomic approaches.

Patient-derived xenograft (PDX) models generated from the transplantation of patient
tumor cells into immunodeficient mice or zebrafish conserve the original tumor charac-
teristics preserving the heterogeneity [102,103]. Functional drug testing in vivo has been
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incorporated into the ZERO Childhood Cancer program and is explored in several others,
although time to engraftment, costs, as well as ethical considerations remain challenging.
The development and molecular characterization of large numbers of pediatric cancer PDX
models has been undertaken both in Europe (ITCC-P4) and the US PPTP/C [104].

Patient-derived organoids resemble in vivo tumors, model treatment response and
hold promise to predict drug response in a personalized fashion. They are established
with a high success rate and are readily available for drug sensitivity testing [105–111].
INFORM, MAPPYACTS, iTHER and Zero are collaborating in the COMPASS consortium
(ERAPERMED2018-121; Clinical implementation of Multidimensional Phenotypical drug
Sensitivities in pediatric precision oncology—ERA-LEARN) to establish a standardized ex
vivo drug sensitivity testing platform and to evaluate the incorporation of direct functional
testing for efficacies of cancer drugs for individual patients.

13.2. Emerging Technologies: Liquid Biopsies

Several reports have demonstrated the feasibility of detecting tumor DNA in liquid
biopsies using NGS or droplet digital polymerase chain reaction, including for pediatric
cancers [112–114]. Evaluation of tumor heterogeneity and clonal selection due to treatment
pressure is adequately reflected in samples and might be a non-invasive alternative to
repetitive multifocal biopsies, contributing to patient monitoring and personalized treat-
ment. The impact of the surrogate approach based on cfDNA testing to identify targetable
genetic alterations is currently under evaluation in several pediatric precision oncology
programs, including MAPPYACTS [55] and SMPaeds [60].

13.3. Novel Therapies: Immune Interventions

Immunotherapy has been an exciting new development in systemic cancer treatment
in a range of adult cancers such as melanoma and lung cancer. In pediatrics, response rates
and outcomes significantly improved in patients with relapsed and refractory hematologi-
cal malignancies such as B-ALL and lymphoma with antibody-based therapy including
blinatumomab and inotuzumab ozogamicin as well as CAR-T therapy [115]. Anti-GD2
therapy with dinutuximab increased the survival of patients with high-risk neuroblastoma
and is implemented into frontline therapy [116]. Immune checkpoint inhibition holds great
promise in children with an inherited deficiency in DNA mismatch repair [117], and many
clinical trials are ongoing to explore opportunities in childhood cancer [118]. However, one
of the defining traits of pediatric tumors is their low mutational burden and relative lack
of neoantigen expression, which limits their susceptibility to immune targeting. In addi-
tion, many immunotherapies lack reliable predictive biomarkers. Consequently, precision
medicine programs focus on ancillary studies and novel techniques such as high-dimensional
characterization of the immune infiltrate with the goal to increase the number of patients who
can be linked to an effective immunotherapeutic regimen in the future.

13.4. Clinical Trials: Incorporating Combination Strategies

Precision medicine trials with single-agent small molecules have shown limited suc-
cess. Studies indicate heterogeneity of molecular mechanisms that can drive tumorigenesis
within one tumor type, making it unlikely to improve curation rates with a new single treat-
ment modality [68,119,120]. Moreover, it may be challenging to differentiate driver from
passenger molecular alterations, and additional pharmacogenomic, pharmacodynamic or
kinetic aspects should be researched as well [30].

Future trial designs will include biologically driven combinations of molecularly
targeted therapies as well as targeted treatments combined with chemotherapy or im-
munotherapy, as initiated by AcSé-ESMART (NCT02813135) [54,99] as well as INFORM2
(NCT03838042) [100]. As an example, AcSé-ESMART Arm G assessed the activity and
safety of nivolumab in combination with metronomic cyclophosphamide with or without
irradiation, as per the physician’s choice. The primary endpoint was objective response
rate. Thirteen patients were treated. Nivolumab in combination with cyclophosphamide
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was well tolerated but had limited activity, and metronomic cyclophosphamide did not
modulate systemic immune response [99].

In addition to innovative trial design, global collaboration facilitated by sustainable
funding is necessary to identify and enroll eligible patients for each study [97,121]. A
prime example includes the phase 3 clinical trial developed by the Children’s Oncology
Group (COG) and the International Society of Paediatric Oncology Europe Neuroblastoma
(SIOPEN), funded by Solving Kids’ Cancer UK and six partner charities. The study that
is scheduled for 2021 and known as TITAN—Transatlantic Integration Targeting ALK in
Neuroblastoma—is a promising example of collaboration between these North American
and European neuroblastoma consortia.

Despite global collaboration and regulatory changes, several challenges remain. As
molecular enrichment in a trial arm does not always take place, it is difficult to determine
the clinical outcome for the biomarker-selected patients. Moreover, as basket trials do not
have a control group, the potential to assess whether clinical outcome can be improved
by molecular selected targeted therapy compared to conventional treatment is limited.
Another challenge is caused by tumor complexity and resistance, which makes it unlikely
that targeted monotherapy would result in complete remission. More extensive preclinical
research is needed to identify the genomic alteration—drug combinations that could be
effective. Therefore, in the future, international coordination will be crucial to generate a
database to inform rational trial design and to evaluate combination trials, paired with con-
ventional or combined targeted therapy, in enriched cohorts. In addition, little is known about
the long-term toxicities of most novel targeted and immunotherapy agents. To address this
gap, ACCELERATE has initiated the development of an international long-term follow-up
prospective data registry with the aims of supporting the regulatory requirements, labeling in-
formation, and providing insight to help guide physicians and families on the appropriateness
of a targeted or immune therapy for their child and inform survivorship planning [122].

13.5. Big Data

New methods dedicated to improving data collection, storage, processing, and inter-
pretation continue to be developed. The collection of integrated clinical and molecular
results from precision medicine initiatives as well as early phase clinical trials raises a
number of challenges with respect to privacy and ethical concerns that need to be addressed
to optimize progress in childhood cancer precision oncology [123,124].

14. Conclusions

Precision medicine in pediatric oncology has rapidly developed over the last decade.
Assessing clinical benefit as well as cost-effectiveness remains challenging due to hetero-
geneity in patient selection as well as the lack of standardization in data interpretation
and treatment recommendations. The development of innovative precision medicine trials
incorporating functional model systems and novel techniques is critical to optimizing out-
come. Due to global collaborative initiatives, the integration of genomic and (pre)clinical data
can be used to direct the development of novel targeted agents more effectively in the future.
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Abbreviations

NGS Next-Generation Sequencing
WGS Whole-Genome Sequencing
lcWGS Low-coverage Whole-Genome Sequencing
WES Whole-Exome Sequencing
RNAseq RNA sequencing
SNP array Single Nucleotide Polymorphism array
aCGH array Comparative Genomic Hybridization
FISH Fluorescence in situ hybridization
IHC Immunohistochemistry
BCR Breakpoint Cluster Region
ABL tyrosine-protein kinase ABL1
HER2 Human Epidermal growth factor Receptor 2
EGFR Epidermal Growth Factor Receptor
EML4 EMAP Like 4
ALK Anaplastic Lymphoma Kinase
BRAF v-raf murine sarcoma viral oncogene homolog B1
MEK Mitogen-Activated Protein Kinase Kinase
MAPK Mitogen-Activated Protein Kinase
DNA Deoxyribonucleic Acid
RNA Ribonucleic Acid
MTB Molecular Tumor Board
MSH6 MutS Homolog 6
PMS2 PostMeiotic Segregation increased 2
cfDNA circulating free DNA
PDX Patient-Derived Xenograft
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