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Abstract
Species	 Distribution	Models	 (SDMs)	 are	widely	 used	 to	 understand	 environmental	
controls	on	species’	ranges	and	to	forecast	species	range	shifts	in	response	to	climatic	
changes.	 The	 quality	 of	 input	 data	 is	 crucial	 determinant	 of	 the	model’s	 accuracy.	
While	museum	records	can	be	useful	sources	of	presence	data	for	many	species,	they	
do	not	 always	 include	 accurate	 geographic	 coordinates.	Therefore,	 actual	 locations	
must	be	verified	through	the	process	of	georeferencing.	We	present	a	practical,	stand-
ardized	manual	georeferencing	method	(the	Spatial	Analysis	Georeferencing	Accuracy	
(SAGA)	protocol)	to	classify	the	spatial	resolution	of	museum	records	specifically	for	
building	improved	SDMs.	We	used	the	high-	elevation	plant	Saxifraga austromontana 
Wiegand	(Saxifragaceae)	as	a	case	study	to	test	the	effect	of	using	this	protocol	when	
developing	an	SDM.	In	MAXENT,	we	generated	and	compared	SDMs	using	a	compre-
hensive	occurrence	dataset	that	had	undergone	three	different	levels	of	georeferenc-
ing:	 (1)	 trained	 using	 all	 publicly	 available	 herbarium	 records	 of	 the	 species,	minus	
outliers	(2)	trained	using	herbarium	records	claimed	to	be	previously	georeferenced,	
and	 (3)	 trained	 using	 herbarium	 records	 that	 we	 have	 manually	 georeferenced	 to	
a	≤	1-	km	resolution	using	the	SAGA	protocol.	Model	predictions	of	suitable	habitat	for	
S. austromontana	differed	greatly	depending	on	georeferencing	level.	The	SDMs	fitted	
with	 presence	 locations	 georeferenced	 using	 SAGA	 outperformed	 all	 others.	
Differences	 among	 models	 were	 exacerbated	 for	 future	 distribution	 predictions.	
Under	rapid	climate	change,	accurately	forecasting	the	response	of	species	becomes	
increasingly	important.	Failure	to	georeference	location	data	and	cull	inaccurate	sam-
ples	leads	to	erroneous	model	output,	limiting	the	utility	of	spatial	analyses.	We	pre-
sent	 a	 simple,	 standardized	 georeferencing	 method	 to	 be	 adopted	 by	 curators,	
ecologists,	and	modelers	to	improve	the	geographic	accuracy	of	museum	records	and	
SDM	predictions.
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1  | INTRODUCTION

Climate	change	is	predicted	to	result	 in	massive	species	range	shifts	
and	 population-	level	 extinctions	 (Clark,	 Bell,	 Kwit,	 &	 Zhu,	 2014;	
Hijmans	 &	 Graham,	 2006;	 Thomas	 et	al.,	 2004;	 Thuiller,	 Lavorel,	
Araújo,	 Sykes,	 &	 Prentice,	 2005).	 Observing,	 describing,	 and	 fore-
casting	patterns	of	biodiversity	under	changing	climate	conditions	are	
critical	goals	in	the	fields	of	biogeography,	conservation,	and	ecology	
(Bucklin	 et	al.,	 2015).	 Species	 Distribution	 Models	 (SDMs),	 also	 re-
ferred	 to	as	Bioclimatic	Envelope	Models,	are	 the	most	widely	used	
approach	for	predicting	past,	present,	and	future	suitable	habitats	for	
common	and	rare	species	(Elith,	Kearney,	&	Phillips,	2010;	Hijmans	&	
Graham,	2006;	Phillips	&	Dudík,	2008;	Wiens,	Stralberg,	Jongsomjit,	
Howell,	&	 Snyder,	 2009).	These	models	 are	 used	 to	 predict	 climate	
change	 impacts	 (Keith	 et	al.,	 2008;	 Serra-	Diaz	 et	al.,	 2014;	 Wiens	
et	al.,	2009),	construct	phylogeographic	patterns	(Forester,	DeChaine,	
&	Bunn,	2013),	 and	guide	efforts	 to	 locate	new	populations	of	 rare	
species	 (Williams	et	al.,	 2009).	Reliable	SDMs	can	 inform	 land	man-
agers	where	to	concentrate	conservation	resources	to	best	preserve	
areas	of	ecological	importance.	Because	SDMs	rely	on	species	occur-
rence	coordinates,	climate	data,	and	other	environmental	variables	to	
define	a	species’	bioclimatic	niche	and	project	future	ranges	(Bucklin	
et	al.,	2015;	Flower,	Murdock,	Taylor,	&	Zwiers,	2013),	 the	accuracy	
of	those	variables	strongly	affects	the	reliability	of	the	model’s	predic-
tions.	In	this	paper,	we	analyze	the	effects	of	using	species	presence	
records	of	varying	accuracy,	demonstrating	the	importance	of	rigorous	
georeferencing	to	obtain	optimal	SDM	results.

Although	there	are	a	variety	of	modeling	methods	and	algorithms	
for	generating	SDMs,	correlative	models	constructed	using	only	spe-
cies	 occurrence	 records	 and	 climate	 data	 are	 commonly	 used	 tools	
(Bucklin	et	al.,	2015;	Flower	et	al.,	2013;	Guillera-	Arroita	et	al.,	2015;	
Oke	&	Thompson,	2015).	These	models	do	not	include	true	absence	
data,	 nor	 do	 they	 explicitly	 account	 for	 additional	 variables	 such	 as	
interspecies	 interactions	 or	 species’	 dispersal	 abilities	 (Flower	 et	al.,	
2013;	Pearson	&	Dawson,	2003).	Correlative	models	predict	the	re-
alized	niche	of	 the	species,	not	 the	 fundamental	niche,	due	 to	 their	
reliance	on	observed	presence	records	(Wiens	et	al.,	2009).	There	are	
several	notable	sources	of	uncertainty	in	the	process	of	SDM	develop-
ment	 (Wiens	et	al.,	2009).	One	source	of	uncertainty	arises	because	
of	the	fact	that	any	ecological	or	climatic	model	is	constrained	by	the	
selection	 of	 environmental	 variables.	 While	 there	 is	 no	 consensus	
as	to	which	environmental	or	climate	variables	are	to	be	 included	in	
standard	SDMs,	many	agree	that	the	selection	of	variables	can	poten-
tially	 introduce	bias	 (Bucklin	et	al.,	2015).	A	model’s	accuracy	 is	also	
constrained	 by	 the	 resolution	 and	 quality	 of	 the	 climate	 data	 (Real,	
Luz	Márquez,	Olivero,	&	Estrada,	2010).	Climate	data	are	usually	rep-
resented	as	continuous	grids	interpolated	from	quality-	controlled	cli-
mate	station	datasets	(Daly	et	al.,	2008).	The	quality	of	these	climate	
data	and	the	methods	of	interpolating	from	point	records	to	a	continu-
ous	surface	and	correcting	for	factors	such	as	elevation	and	aspect	can	
be	sources	of	error	in	SDMs	(Real	et	al.,	2010).	There	can	also	be	issues	
regarding	the	taxonomic	identification	of	the	specimen	(Lozier,	Aniello,	
&	Hickerson,	2009).	Species	can	be	misidentified,	or	the	systematics	

and	taxonomy	may	have	evolved	over	the	years	to	 include	different	
species	classifications.	Sampling	bias	and	imperfect	detection	are	also	
noted	 limitations	 of	 the	 current	 available	 data	 for	 species	 distribu-
tions	(Boakes	et	al.,	2010;	Fourcade,	Engler,	Rödder,	&	Secondi,	2014;	
Guillera-	Arroita	et	al.,	2015;	Newbold,	2010).	Among	all	these	poten-
tial	sources	of	model	uncertainty,	one	particularly	important	variable	
for	creating	reliable	SDMs	is	the	accuracy	of	the	species	occurrence	
localities	(Newbold,	2010).

Museum	and	herbarium	records	can	provide	valuable	 information	
on	the	distribution	of	extinct	and	extant	species	(Anderson,	2012;	Davis,	
Willis,	Connolly,	Kelly,	&	Ellison,	2015;	Newbold,	2010).	Millions	of	oc-
currence	records	can	be	accessed	directly	from	the	museum	or	in	repu-
table	online	databases,	many	publicly	available	(Newbold,	2010).	Most	
include	a	written	site	description	and	often	geographic	coordinates	(see	
Fig.	S1	in	Supporting	Information).	The	quality	of	location	data	generally	
declines	with	specimen	age.	Herbarium	records’	site	descriptions	and	
associated	geographic	 coordinates	 are	 frequently	used	 to	build	high-	
resolution	SDMs	 (Alvarado-	Serrano	&	Knowles,	2014;	Forester	et	al.,	
2013;	Lozier	et	al.,	2009).	Site	coordinates	should	have	as	good	or	bet-
ter	resolution	than	the	climate	data,	often	≤1	km2,	in	order	to	produce	
useful	SDMs	(Wiens	et	al.,	2009).	Failure	to	assess	spatial	error	in	these	
occurrence	record	coordinates	can	have	significant	impacts	on	appar-
ent	species	distributions	(Rowe,	2005),	although	the	severity	of	this	ef-
fect	varies	among	species	and	is	partially	dependent	on	the	modeling	
method	used	(Graham	et	al.,	2008).	Several	studies	address	the	effect	
of	sampling	bias	on	SDM	output	(Boakes	et	al.,	2010;	Fourcade	et	al.,	
2014;	Phillips	et	al.,	2009),	but	less	attention	has	been	paid	to	the	stan-
dardization	of	georeferencing	to	improve	model	performance.	Previous	
research	on	the	role	of	locational	accuracy	has	focused	on	the	effects	of	
adding	simulated	random	locational	error	(Graham	et	al.,	2008),	rather	
than	assessing	the	error	in	actual	museum	records.

Most	 herbarium	 and	museum	 records	were	 not	 documented	 by	
collectors	with	 the	 intention	 of	 use	 in	 geographic	modeling,	 result-
ing	 in	many	 potential	 sources	 of	 spatial	 error	 (Bowe	&	Haq,	 2010).	
Recently,	 there	 have	 been	 increasing	 inventories	 of	 so-	called	 geo-
referenced	natural	history	collections	available	 to	 scientists	 (Randin,	
Engler,	 Pearman,	 Vittoz,	 &	 Guisan,	 2009).	 Georeferencing	 is	 the	
process	 of	 interpreting	 the	written	 description	 of	 site	 localities	 and	
verifying	the	associated	geographic	coordinates	or	assigning	new	co-
ordinates	(Rowe,	2005).	Although	no	standard	georeferencing	process	
currently	exists,	many	projects	have	developed	 individual	guidelines	
(Chapman	&	Wieczorek,	2006).	Examples	of	georeferencing	practices	
and	programs	include	the	Mammal	Networked	Information	System—
MANIS	guidelines	 (Wieczorek,	Guo,	&	Hijmans,	 2004;	Wieczorek	&	
Wieczorek,	 2015),	MapSteDI	 (Murphey	 et	al.,	 2004),	 BioGeomancer	
(Chapman	&	Wieczorek,	2006),	and	GEOLocate	 (Rios	&	Bart,	2010).	
The	two	main	branches	of	georeferencing	methods	are	manual	geo-
referencing	 and	 “Georeference	 Calculators.”	 Manual	 georeferencing	
requires	the	meticulous	human	interpretation	of	site	descriptions	and	
assigning	coordinates	using	detailed	topographic	maps.	This	can	take	
several	minutes	per	sample	and	is	increasingly	taxing	with	large	data-
sets.	Georeference	Calculators	are	computer	algorithms	designed	to	
automate	the	tedious	process	of	interpreting	written	site	descriptions	
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to	 estimate	 geographic	 coordinates	 and	 a	 degree	 of	 confidence	
(Wieczorek	&	Wieczorek,	2015).	Many	publications	present	SDM	re-
sults,	at	varying	spatial	resolution,	without	explicitly	stating	how	or	if	
the	data	were	georeferenced	(Table	1).

In	this	paper,	we	set	out	to	answer	the	following	question:	What	
are	 the	 consequences	 of	 using	 occurrence	 data	 of	varying	 levels	 of	
spatial	 accuracy	 to	 inform	 present	 and	 future	 SDMs	 for	 a	 high-	
elevation	 plant?	 To	 address	 this	 question,	 first	 we	 outline	 a	 stan-
dardized	 method	 of	 georeferencing	 occurrence	 records	 specifically	
for	 building	more	 useful	 SDMs,	 the	 Spatial	Analysis	Georeferencing	
Accuracy	(SAGA)	protocol.	Next,	to	demonstrate	the	importance	of	a	
standardized	process,	we	built	current	and	future	SDMs	in	MAXENT	
for	 the	 high-	elevation	 wildflower	 Saxifraga austromontana	Wiegand	
(Saxifragaceae),	using	three	sets	of	herbarium	records,	each	georefer-
enced	to	a	different	level	of	spatial	accuracy.	Although	we	focus	on	a	
single	plant	species,	the	methods	could	be	extended	to	any	taxon	with	
historical	museum	or	herbarium	occurrence	records.

2  | METHODS

2.1 | Study system: Saxifraga austromontana

Saxifraga austromontana,	the	Prickly	Saxifrage,	 is	an	ideal	case-	study	
species	for	investigating	how	various	georeferencing	methods	affect	

SDM	results	because	of	 its	geographically	 large,	but	topographically	
limited,	 range	and	extensive	herbarium	records	 (Figure	1).	First,	 this	
plant	 is	 endemic	 to,	 but	widely	 distributed	 across,	mountainous	 re-
gions	 of	 western	 North	 America	 from	 30	 to	 55	 degrees’	 latitude	
(Figure	2),	 where	 it	 inhabits	 a	 topographically	 complex	 region	 near	
tree	line.	Second,	 it	has	an	extensive	history	of	collections	spanning	
over	200	years	resulting	in	over	3,000	herbarium	records	available	in	
online	databases.	The	extensive	collections	of	this	species,	and	others	
in	the	genus	with	overlapping	and	extended	ranges,	limit	the	effect	of	
sampling	bias.

2.2 | Historical herbaria record data

We	 compiled	 a	 complete	 “Original”	 (O)	 dataset	 of	 herbarium	 re-
cords	for	S. austromontana.	 In	May	2015,	we	downloaded	all	search	
records	 for	 “Saxifraga austromontana”	 and	 its	 taxonomic	 synonym	
“Saxifraga bronchialis”	from	the	Consortium	of	the	Pacific	Northwest	
Herbarium,	Consortium	of	 Intermountain	Herbarium,	Consortium	of	
Rocky	Mountain	Herbarium,	 SEINet,	 and	Canadensys.	We	 included	
additional	 records	 from	 the	 Pacific	 Northwest	 Herbarium	 (WWB),	
University	 of	Washington	 Herbarium	 (WTU),	 University	 of	 Oregon	
Herbarium	 (ORE),	Mount	 Rainer	 National	 Park	Herbarium	 (MORA),	
Royal	 BC	 Museum	 (V),	 University	 of	 British	 Columbia	 Herbarium	
(UBC),	and	the	B.A.	Bennett	Herbarium	(BABY).

TABLE  1 Examples	of	methods	used	to	georeferenced	species	occurrence	records	as	described	in	species	distribution	modeling	(SDM)	
papers.	Georeferencing	practices	are	not	standardized,	and	often	the	resolution	of	the	resulting	SDM	is	finer	than	the	historical	records	used	to	
train	the	model.	Without	accurately	georeferenced	presence	points,	it	is	impossible	to	create	a	credible	SDM

Authors Occurrence records source SDM resolution Georeference description

Jackson	et	al.	(2015) Field-	measured	GPS	localities	and	
opportunistic	citizen	science	
sightings

100	m For	the	field	survey	dataset,	all	locations	were	
recorded	with	GPS.	For	citizen	science	program,	
summer	observations	filtered	by	location	accuracy,	
retaining	those	with	precise	GPS	or	map	
coordinates	(accurate	to	within	100	m)

DeChaine,	Wendling,	and	
Forester	(2014)

Herbarium	records 800	m “Georeferenced”	herbaria	samples

Chardon,	Cornwell,	Flint,	Flint,	
and	Ackerly	(2014)

Consortium	of	California	Herbarium 800	m Authors	employed	three	criteria	on	herbarium	
records:	(1)	Omitted	occurrences	with	GPS	error	
larger	than	1000	m;	(2)	If	GPS	error	was	not	
included	in	the	occurrence	file,	only	used	
specimens	collected	since	the	year	2000;	(3)	
Omitted	points	that	were	clearly	planted	or	
outside	of	the	species’	distribution

Lentz,	Bye,	and	Sánchez-	
Cordero	(2008)

Herbarium	records	from	the	United	
States,	United	Kingdom,	and	Mexico

30	arc-	seconds	
(ca.	1	km2)

If	the	coordinates	were	not	specified	on	herbarium	
records,	the	authors	georeferenced	using	
1:100,000	topographic	maps.	Locality	data	were	
only	used	if	the	location	of	the	collection	could	be	
accurately	pinpointed

López-	Alvarez	et	al.	(2015) Herbarium	records	and	field	
measured

30	arc-	seconds	
(ca.	1	km2)

Field	collections	and	georeferenced	collections

Smith	and	Donoghue	(2010) Labels	on	herbaria	specimens,	
relevant	herbaria	databases,	and	
other	databases

30	arc-	seconds	
(ca.	1	km2)

No	mention	of	georeferencing

Forester	et	al.	(2013) Online	herbarium	records 50	km “georeferencing	was	evaluated	for	accuracy”



768  |     BLOOM et aL.

The	O	dataset	was	edited	to	omit	duplicate	records	and	extreme	
outliers.	Duplicate	records	across	herbaria	were	found	using	accession	
numbers,	 GUID	 numbers,	 collector	 numbers,	 and	 site	 descriptions.	
Outliers	were	defined	as	occurrence	records	located	very	far	outside	
of	the	known	species	range,	such	as	records	in	the	oceans,	in	the	Great	
Plains,	outside	of	North	America,	north	of	55	degrees’	latitude	(no	con-
firmed	records	exist	north	of	this	latitude),	and	records	in	the	state	of	
Oregon	outside	of	the	Wallowa	mountain	range	(the	range	of	S. vesper-
tina).	Omission	of	outliers	is	common	practice	for	building	SDMs,	yet	
not	everyone	goes	beyond	this	step	(Table	1).	The	O	dataset	includes	
1,363	unique	herbarium	records	(Figure	2).

The	“Previously	Georeferenced”	(PG)	dataset	 includes	all	records	
from	the	O	dataset	that	explicitly	state	they	have	been	georeferenced	
by	 other	 herbaria	 using	 a	 variety	 of	 methods.	We	 omitted	 outliers	
and	duplicates,	 as	 above,	 and	 removed	 records	with	 coordinate	un-
certainty	 listed	as	>1	km.	The	 final	PG	dataset	 includes	525	unique	
herbarium	records	(Figure	2).

The	 “Newly	 Georeferenced”	 (NG)	 dataset	 includes	 all	 historical	
herbarium	records	from	the	O	dataset	that	we	were	able	to	manually	
georeference	 to	 a	 1-	km	or	 finer	 resolution.	To	 conduct	 this	manual	
georeferencing,	we	 developed	 a	 novel	method,	 the	 Spatial	Analysis	
Georeferencing	Accuracy	(SAGA)	protocol	to	standardize	the	process	

of	georeferencing.	We	believe	that	the	SAGA	protocol	is	an	improve-
ment	over	other	georeferencing	practices	 in	 terms	of	both	accuracy	
and	straightforward	implementation.	This	method	is	based	on	meticu-
lously	and	manually	georeferencing	each	herbarium	record	of	interest	
and	verifying	written	site	descriptions	using	reliable	external	resources	
such	 as	 Google	 Earth,	 USGS	 Topographic	 Maps,	 and	 the	 Atlas	 of	
Canada	to	ensure	accurate	geographic	coordinates.	Each	record	must	
be	reviewed,	either	 through	the	online	database	 it	was	downloaded	
from	 or	 by	 physically	 examining	 the	 herbarium	 specimen.	 All	 loca-
tions	 should	be	 transformed	 into	decimal	degrees,	with	 coordinates	
recorded	relative	to	the	WGS	1984	geodetic	datum.	Minimum	spatial	
accuracy	of	each	location	following	manual	georeferencing	should	be	
recorded	on	an	ordinal	scale	of	1–5	(Table	2)	to	allow	for	easy	sorting	
and	spatial	analysis	based	on	the	spatial	resolution	of	the	occurrence	
data.	We	applied	the	SAGA	protocol	to	the	O	dataset	to	create	our	NG	
dataset.	The	NG	dataset	only	includes	herbarium	records	with	a	confi-
dence	of	1–3	(Table	2)	for	a	total	of	1,104	unique	historical	herbarium	
records	(Figure	2).

F IGURE  1 Saxifraga	austromontana,	the	Prickly	Saxifrage,	is	a	
charismatic	wildflower	endemic	to	upper	elevations	of	the	Rocky	
Mountain	Floristic	Region.	The	Latin	name	Saxifraga	is	known	
as	rockfoils,	sax	meaning	rock,	and	frage,	to	fracture.	Here,	it	is	
shown	growing	from	fissures	in	crags	of	the	Rockies.	Saxifraga	
austromontana	grows	perennially	with	low	basal	rosettes	of	spiny	
leaves	and	produces	beautiful	yet	fragile	flowers	with	cream	colored	
petals	dotted	with	red,	orange,	and	yellow	spots.	This	is	an	ideal	
case-	study	species	for	investigating	how	various	georeferencing	
methods	affect	SDM	results	because	of	its	geographically	large,	but	
topographically	limited,	range	and	extensive	herbarium	records.	
(Photo	credit,	Dr.	Eric	DeChaine)

F IGURE  2 The	distribution	of	Saxifraga	austromontana	for	three	
categories	of	georeferenced	historical	herbarium	records:	Original	
data	(O),	Previously	Georeferenced	(PG),	and	Newly	Georeferenced	
(NG).	The	circled	point	on	inset	map	displays	a	species	occurrence	
record	on	the	coast	of	the	Olympic	Peninsula.	The	coordinate	was	
incorrectly	assigned	using	the	georeference	calculator:	GeoLocate	
(WTU-	VP-	90424)	and	is	included	in	both	the	O	and	PG	dataset.	Data	
are	in	a	Lambert	conformal	conic	equal	area	projection
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2.3 | Species distribution models

We	 intentionally	 did	 not	 use	 all	 SDM	 approaches	 or	 an	 ensemble	
approach,	 but	 rather	 a	widely	 used	 robust	method	 to	 demonstrate	
the	need	for	and	utility	of	the	standardized	georeferencing	protocol	
we	 present.	We	 built	 SDMs	 using	 the	MAXENT	 Software	 (Phillips,	
Anderson,	&	Schapire,	2006),	one	of	the	most,	if	not	the	most,	widely	
used	 SDM	 platforms	 (Fourcade	 et	al.,	 2014;	 Guillera-	Arroita	 et	al.,	
2015;	Merow,	Smith,	&	Silander,	2013).	MAXENT	is	built	on	machine	
learning	 and	 Bayesian	 statistics	 of	 maximum	 likelihood	 (Elith	 et	al.,	
2011;	Halvorsen,	Mazzoni,	Bryn,	&	Bakkestuen,	2015),	and	 is	espe-
cially	popular	because	it	outperforms	other	methods	based	on	predic-
tive	accuracy	and	is	user-	friendly	(Merow	et	al.,	2013).

The	model	inputs	include	a	list	of	presence	points,	a	set	of	envi-
ronmental	predictors	(i.e.,	climate	variables),	and	a	defined	background	
landscape.	 In	contrast	 to	a	 true	presence–absence	model,	MAXENT	
estimates	 habitat	 suitability	 by	 contrasting	 environmental	 factors	 at	
presence	 points	 with	 thousands	 of	 randomly	 selected	 background	
points	throughout	the	study	region	(Guillera-	Arroita	et	al.,	2015).	We	
followed	MAXENT	best	practices	(Merow	et	al.,	2013)	to	build	SDMs	
for	 S. austromontana	 using	 three	 categories	 of	 georeferenced	 data.	
Our	models	 are	 intentionally	 simple	 to	 demonstrate	 the	 underlying	
importance	of	georeferencing.

2.4 | Climate variables

We	 used	 monthly	 PRISM	 data	 (Daly	 et	al.,	 2008)	 for	 the	 refer-
ence	 period	 (1961–1990)	 to	 define	 the	 bioclimatic	 envelope	 of	

S. austromontana.	We	felt	that	the	(1961–1990)	normal	period,	while	
a	compromise,	was	representative	of	twentieth	century	conditions	
because	(1)	both	the	mean	and	median	samples	fell	within	the	nor-
mal	period,	(2)	the	30-	year	climate	normal	allowed	us	to	make	com-
parisons	with	future	projections,	and	(3)	a	122-	year	average	across	
all	sample	dates	was	less	meaningful	given	the	amount	that	climate	
had	changed.	The	PRISM	methods	utilize	Digital	Elevation	Models	
to	refine	interpolation	between	climate	stations	by	including	factors	
such	as	 location,	elevation,	and	aspect	 (Daly	et	al.,	2008).	The	cli-
mate	data	for	this	study	were	downscaled	from	4	km2	grid	cells	to	a	
resolution	of	1	km2	and	made	available	from	ClimateWNA	http://ti-
nyurl.com/ClimateWNA	(Hamann,	Wang,	Spittlehouse,	&	Murdock,	
2013;	Wang	et	al.,	2012).	We	selected	seven	final	variables	for	use	
in	SDMs	(Tables	3	and	S3)	using	a	multistep	process.	First	variables	
were	 preselected	 from	 the	 complete	 list	 available	 for	 ecological	
relevance	 to	 our	 taxa	 and	 similar	 high-	elevation	 species	 (Körner,	
1995,	2003).	Next,	we	further	reduced	variables	to	eliminate	highly	
correlated	parameters	(Pearson’s	r	>	|0.75|),	Table	3.	To	decide	be-
tween	 correlated	variables,	we	 relied	on	ecological	 relevance	 and	
informed	judgment	to	select	for	a	diverse	suite	of	climate	variables	
representing	temperature,	precipitation,	heat	moisture	indexes,	and	
more	(Table	3).	We	also	downscaled	projected	values	of	these	vari-
ables	for	a	30-	year	period	centered	on	2080.	Future	climate	projec-
tions	 were	 obtained	 from	 ClimateWNA	 using	 an	 ensemble	 of	 23	
Atmosphere-	Ocean	General	Circulation	Models	 (AOGCMs)	 of	 the	
Coupled	Model	Intercomparison	Project	phase	3	(CMIP3)	under	the	
A2	emission	 scenario,	 selected	based	on	validation	 rank	 (Hamann	
et	al.,	2013).

TABLE  2 Standardized	confidence	rankings	for	determining	the	spatial	accuracy	of	species	occurrence	records	using	the	Spatial	Analysis	
Georeferencing	Accuracy	(SAGA)	protocol.	SAGA	requires	manual	georeferencing	of	each	occurrence	record	by	interpreting	the	site	location	
and	verifying	or	assigning	a	location	in	the	form	of	WGS	1984	geographic	coordinates.	The	SAGA	protocol	uses	an	ordinal	accuracy	ranking	of	
1–5	to	classify	the	spatial	resolution	of	the	occurrence	data.	Confidence	ranks	of	1–3	may	be	useful	for	constructing	Species	Distribution	
Models	using	1-	km	or	coarser	climate	data.	Ranks	of	4	and	5	are	not	appropriate	for	spatial	analysis	and	should	be	omitted

Confidence GPS Resolution (radius) Description Example accession nos

1 Required 1–30	m Records	with	an	accurate	GPS	reading,	listed	coordinate	
uncertainty,	and	a	detailed	written	description	that	
matches	coordinates

WTU-	VP-	5827,	
RM-	VP-	740775

2 Sometimes 30–100	m Records	can	be	georeferenced	to	a	fine	resolution	based	on	
a	detailed	written	description	that	can	be	verified,	and	in	
many	cases	a	GPS	reading.	For	example:	summits	of	peaks,	
fire	lookouts,	intersections	of	creeks	or	trails

WTU-	VP-	185106,	
WTU-	VP-	90419

3 Sometimes 100–500	m Record	coordinates	can	be	georeferenced	to	a	moderate	
resolution	based	on	a	written	description	that	can	be	
verified.	For	example:	small	lakes,	mountain	passes,	small	
named	meadows

MONTU-	VP-	3979,	
WS-	VP-	101352

4 Often	not N/A Record	cannot	be	triangulated	to	a	1-	km	grid.	The	site	
description	may	still	be	useful	for	collections,	yet	cannot	
be	used	in	SDMs.	For	example:	large	lakes,	entire	
mountains	or	peaks,	ridgelines,	trail	names,	well-	known	
geologic,	or	historic	landmarks

MONTU-	VP-	27436,	
RM-	VP-	815188

5 Often	not N/A Poor	site	description	and	coordinates	cannot	be	verified.	
These	data	cannot	be	used	accurately	for	SDMs	and	may	
not	even	be	useful	for	collections.	For	example:	town	
names,	county	names,	state	names,	and	mountain	ranges

MONT-	VP-	50930,	
MONT-	VP-	50961

http://tinyurl.com/ClimateWNA
http://tinyurl.com/ClimateWNA
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2.5 | Background selection

We	limited	the	geographic	background	to	locations	within	the	likely	
dispersal	 range	 of	S. austromontana.	We	 trimmed	 the	 region	 extent	
for	the	reference	period	to	the	northern	border	of	British	Columbia,	
the	 southern	 border	 of	 the	 United	 States,	 and	 150	km	 east	 of	 the	
Rocky	Mountains.	Saxifraga austromontana	has	been	extensively	col-
lected	 across	 its	 range	 and	 is	 not	 found	more	 than	150	km	east	 of	
the	Rocky	Mountains	crest,	except	for	small	isolated	mountain	ranges	
that	we	included	in	our	extent.	This	area	allowed	us	to	include	a	po-
tential	northern	range	expansion,	expected	for	cold-	adapted	species	
(Forester	et	al.,	2013).

2.6 | Climate space analysis

To	assess	whether	the	occurrence	records	in	each	of	our	three	geo-
referencing	 categories	 captured	 the	 same	 climatic	 envelopes,	 we	
quantitatively	 compared	 the	 climatic	 niche	 space	 for	 each	 dataset	
(O,	PG,	and	NG)	using	Analyses	of	Variance	(ANOVAs)	and	Principal	
Component	Analysis	(PCA).	We	ran	one-	way	ANOVAs	to	compare	the	
variation	between	to	the	variation	within	each	dataset	for	the	values	
of	seven	climate	variables	extracted	at	each	presence	point.	We	used	
a	Bonferroni	correction	 to	account	 for	multiple	 testing,	dividing	the	
alpha	of	0.05	by	3	for	a	final	alpha	of	0.017.	We	used	an	unrotated	
PCA	 to	 evaluate	 the	 climate	 space	 represented	 by	 the	 three	 levels	
of	 georeferenced	 data.	We	 incorporated	 all	 climate	 variable	 values	
at	all	presence	 locations	 (O,	PG,	and	NG	combined)	 in	our	PCA	and	
extracted	the	first	 two	principal	components.	All	statistics	were	run	
using	 R	 ver.	 3.1.2	 (R	 Core	 Team,	 2015)	 and	 plotted	 using	 ggplot2	
(Wickham,	2009).

2.7 | MAXENT model settings

All	 SDMs	 were	 run	 using	 the	 version	 3.3.3k	 of	 MAXENT	 (http://
www.cs.princeton.edu/~schapire/maxent/).	 For	 ease	 of	 comparison	
among	model	outputs,	all	runs	were	computed	with	the	default	fea-
tures	(Linear,	Quadratic,	Product,	Threshold,	and	Hinge),	and	a	logis-
tic	output	which	results	in	a	map	of	habitat	suitability	values	ranging	
from	0	to	1	(Fourcade	et	al.,	2014)	per	1-	km	grid	cell,	defined	by	the	

resolution	of	the	 input	climate	data.	We	set	MAXENT	to	train	each	
SDM	 to	 a	 random	 subsample	 of	 75%	 of	 species	 presence	 points,	
with	 the	remaining	25%	of	 the	data	used	for	model	evaluation.	We	
increased	the	default	maximum	iterations	to	5,000	and	ran	20	repli-
cates	of	each	model.

2.8 | Model evaluation

We	evaluated	the	models	using	the	area	under	the	receiver	operating	
curve	(AUC)	because	it	is	a	generally	accepted	and	widely	used	met-
ric	for	model	evaluations	(Merow	et	al.,	2013).	The	AUC	score	is	the	
probability	 that	 a	 randomly	 chosen	presence	point	 is	 ranked	higher	
than	 a	 random	 background	 point,	 and	 is	 penalized	 for	 predictions	
outside	of	presence	locations	(Merow	et	al.,	2013).	A	high	AUC	value	
(>0.8)	 indicates	 that	models	 can	properly	distinguish	between	pres-
ences	and	random	background	samples.	Although	the	AUC	has	been	
highly	 criticized	 as	 a	metric	 of	model	 performance	 (Lobo,	 Jiménez-	
Valverde,	&	Real,	2008),	there	are	few	alternatives	for	presence-	only	
models	(Merow	et	al.,	2013).

To	quantify	 the	geographic	differences	between	models	 created	
using	occurrence	records	of	varying	accuracy,	we	used	the	10%	cumu-
lative	 logistic	 threshold,	which	defines	a	binary	 response	of	suitable	
or	nonsuitable	habitat	from	a	continuous	output	(Merow	et	al.,	2013).	
Choosing	 biologically	 meaningful	 thresholds	 is	 challenging	 (Merow	
et	al.,	2013),	yet	this	method	can	be	used	to	easily	compare	the	out-
puts	of	two	or	more	models	(Franklin	et	al.,	2013).	We	compared	area	
of	suitable	habitat	for	the	reference	and	future	predictions	across	the	
three	georeferencing	categories.	Cartography	and	spatial	comparisons	
were	performed	in	ArcGIS	10.3.

3  | RESULTS

3.1 | Climate space analysis

The	NG	dataset	 captures	 a	 significantly	 different	 range	of	 environ-
mental	conditions	than	the	other	two	datasets.	The	ANOVAs	revealed	
that	values	extracted	at	each	presence	point	in	the	O	and	NG	data-
sets	capture	significantly	different	values	for	six	of	the	seven	climate	
variables	 (Figure	3	and	Table	S2).	The	PG	and	NG	datasets	 capture	

Variable Description NG PG O

AHM: Annual	heat	moisture	index,	calculated	as	
(MAT+10)/(MAP/1000)

4.6 8.9 .9

bFFP: The	Julian	date	on	which	the	frost-	free	period	
begins

26.3 17.9 16.5

cmiJJA: Hogg’s	summer	(Jun	to	Aug)	climate	moisture	
index

21.2 26.5 35.4

MCMT: Mean	temperature	of	the	coldest	month	(°C) 10.3 7.8 14.6

MWMT: Mean	temperature	of	the	warmest	month	(°C) 13 2.3 9.8

PAS: Precipitation	as	snow	(mm) 10.3 23.9 9.5

TD: Difference	between	MCMT	and	MWMT,	as	a	
measure	of	continentality	(°C)

14.3 12.7 13.1

TABLE  3 Climate	variables	selected	for	
SDMs	of	Saxifrage austromontana,	and	
percent	contribution	to	MAXENT	models	
for	each	of	three	levels	of	georeferencing:	
Newly	Georeferenced	(NG),	Previously	
Georeferenced	(PG),	and	Original	(O).	Top	
three	contributing	variables	for	each	model	
are	in	bold.	Climate	data	made	available	by	
ClimateNA	for	the	reference	period	
(1960–1990)	and	2080	future	projections	
based	on	an	ensemble	of	23	CMIP3	
coupled	atmosphere–ocean	general	
circulation	models	(Hamann	et	al.,	2013)

http://www.cs.princeton.edu/~schapire/maxent/
http://www.cs.princeton.edu/~schapire/maxent/
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significantly	different	values	for	five	of	seven	climate	variables.	The	O	
and	the	PG	dataset	do	not	significantly	differ	from	each	other	in	any	of	
the	climate	variables.	Effectively,	O	and	PG	capture	the	same	climate	
envelope	or	the	range	of	values	within	datasets	are	too	large	to	detect	
a	difference	between	groups.

The	differences	between	 the	climate	envelopes	captured	by	 the	
three	datasets	are	clearly	visible	when	the	presence	points	are	plotted	
by	 their	 location	 in	 climate	 space,	 as	 represented	by	principal	 com-
ponents	 (PC)	axes	1	and	2.	PC1	and	PC2	extracted	 from	all	climate	
variables	at	all	presence	locations	explain	49.71%	and	27.26%	of	the	
total	 variance,	 respectively	 (Figure	4).	 Ecologically,	 increasing	 PC1	
can	be	 interpreted	as	 representing	greater	growing	season	moisture	
availability	(more	precipitation	as	snow	(PAS),	higher	summer	moisture	
index	 (cmiJJA),	 lower	 annual	 heat	moisture	 index	 (AHM),	 and	 lower	
mean	temperature	of	the	warmest	month	(MWMT)).	Higher	values	on	
PC2	represent	increasing	cold	season	length	and	severity	(later	start	to	

the	frost-	free	period	(bFFP),	greater	difference	between	summer	and	
winter	temperatures	 (TD),	and	colder	winter	temperatures	 (MCMT)).	
The	O	dataset	unequivocally	captures	the	 largest	niche	space,	while	
the	PG	and	NG	are	subsets	of	the	O	data.	PG	occupies	most	of	the	O	
dataset,	whereas	the	NG	dataset	represents	a	much	tighter	ecological	
niche	(Figure	4).

3.2 | Species distribution models

All	MAXENT	models	were	 statistically	 valid	 (AUC	>	0.88);	 however,	
the	models	predicted	very	different	areas	of	suitable	habitat,	especially	
for	future	scenarios	(Figure	5	and	Figure	6,	Table	4).	The	SDMs	for	the	
reference	period	(1960–1990)	constructed	using	NG	data	resulted	in	
the	smallest	area	of	suitable	habitat,	equivalent	to	84.3%	of	the	area	
of	the	SDM	constructed	using	PG	data	and	71.5%	of	the	area	of	the	
SDM	constructed	using	O	data	(Figure	6a).	The	2080	SDM	results	for	

F IGURE  3 Range	of	values	for	seven	
climate	variables	extracted	using	each	
set	of	presence	points	for	the	three	
categories	of	georeferenced	data:	Newly	
Georeferenced	(NG),	Original	(O),	and	
Previously	Georeferenced	(PG).	The	
plot	displays	the	median,	first	and	third	
quartiles,	range,	and	extreme	outliers.	
Different	letters	indicate	a	significant	
difference	between	datasets	at	a	
conservative	alpha	of	0.017,	corrected	with	
a	Bonferroni
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the	three	categories	of	georeferenced	data	differed	even	more	drasti-
cally	(Figures	5	and	6b,	Table	4).	The	SDM	constructed	using	NG	data	
predicted	the	smallest	area	of	suitable	habitat,	equivalent	to	50%	of	
the	area	of	the	SDM	trained	using	PG	data	and	37.1%	of	the	area	of	
the	SDM	trained	using	O	data.	The	future	SDM	using	NG	data	esti-
mated	the	greatest	loss	and	smallest	gain	in	suitable	habitat	by	2080.	
The	models	also	differed	in	the	relative	contribution	of	each	climate	
variable	 (Table	3).	 The	 larger	 geographic	 ranges	predicted	by	 the	O	
and	PG	models	 are	 a	 natural	 outcome	of	 the	 larger	 climatic	 ranges	
captured	by	those	datasets.	Varying	accuracy	of	occurrence	records	
results	in	considerable	differences	in	how	SDMs	project	the	location	
of	this	species	in	both	climatic	space	and	geographic	space.

4  | DISCUSSION

A	standardized	process	 is	needed	to	ensure	consistent	spatial	accu-
racy	of	 species	occurrence	 records	 for	use	 in	SDMs.	We	employed	
the	 most	 commonly	 used	 SDM	 tool,	 MAXENT,	 and	 our	 findings	
are	 broadly	 applicable	 to	 correlative	 SDMs.	 The	 method	 used	 to	

georeference	museum	records	greatly	influences	the	spatial	accuracy	
of	those	points,	and	thus	the	results	of	SDMs.	Georeferencing	manu-
ally	increased	the	number	of	valid	presence	points	available,	with	the	
NG	model	incorporating	more	than	twice	the	number	of	points	com-
pared	to	the	PG	model	(1,104	vs.	525).	A	standardized	georeferencing	
protocol	can	thus	increase	both	the	accuracy	and	number	of	available	
species	occurrence	records,	simultaneously	expanding	the	geographic	
coverage	 of	 those	 records	 and	 refining	 the	 climatic	 envelope	 they	
capture.

Although	 all	 three	 of	 our	 SDMs	 had	 high	 validation	 statistics	
(AUC	>	0.88),	 the	 SDMs	 constructed	 using	 the	 O	 and	 PG	 datasets	
captured	 significantly	 different	 climatic	 envelopes	 for	 S. austromon-
tana	 than	 the	 SDM	 trained	using	NG	data.	The	O	 and	PG	datasets	
include	many	points	that	are	clearly	beyond	the	known	range	of	S. aus-
tromontana.	Although	these	points	are	outside	the	species’	range,	at	
first	glance	they	may	not	be	considered	extreme	outliers,	and	would	
likely	 be	 used	 in	 an	 analysis	 that	 does	 not	 preprocess	with	manual	
georeferencing.	For	example,	on	the	Olympic	Peninsula	of	Washington	
State,	 both	 the	O	 and	PG	datasets	 include	 a	 point	 on	 the	 shore	 of	
Lake	Crescent	near	 the	 town	of	Piedmont	at	an	elevation	of	198	m	

F IGURE  4 Principal	Component	Analysis	(PCA)	built	on	seven	climate	variables.	Plots	of	niche	space	illustrate	environmental	differences	
and	similarities	among	the	three	data	sets:	Newly	Georeferenced	(NG),	Original	(O),	and	Previously	Georeferenced	(PG).	Principal	component	
(PC)	axes	1	and	2	account	for	49.71%	and	27.26%	of	the	total	variance.	Ecologically,	increasing	PC1	can	be	interpreted	as	representing	greater	
growing	season	moisture	availability	(more	precipitation	as	snow	(PAS),	higher	summer	moisture	index	(cmiJJA),	lower	annual	heat	moisture	
index	(AHM),	and	lower	mean	temperature	of	the	warmest	month	(MWMT)).	Higher	values	on	PC2	represent	increasing	cold	season	length	
and	severity	(later	start	to	the	frost-	free	period	(bFFP),	greater	difference	between	summer	and	winter	temperatures	(TD),	and	colder	winter	
temperatures	(MCMT)).	Cluster	ellipses	delineate	95%	confidence	intervals.	For	PCA	loadings	see	Table	S1
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(WS-	VP-	70650),	where	the	site	description	states	the	sample	was	col-
lected	on	Mt.	Storm	King	at	an	elevation	between	1,311	and	1,829	m.	
The	incorrectly	estimated	point	is	over	6	km	off	and	captures	a	com-
pletely	different	elevation	and	climate	space	than	the	actual	collection	
site.	Another	 example	 on	 the	Olympic	 Peninsula	 is	 a	 point	 <500	m	
from	 the	western	coast	at	an	elevation	of	104	m	 (WTU-	VP-	90424),	
included	in	both	the	O	and	PG	datasets	(Figure	2).	This	point	was	esti-
mated,	quite	inaccurately,	by	the	WTU	herbarium	using	the	GeoLocate	
calculator.	The	Pacific	Northwest	Herbarium	(WWB),	which	has	con-
ducted	extensive	surveys	on	the	Olympic	Peninsula	and	works	closely	
with	Olympic	National	Park,	has	not	recorded	any	S. austromontana in 
coastal	or	low-	elevation	sites.

Numerous	other	inaccurate	records	were	corrected	using	our	man-
ual	georeferencing	protocol.	Common	errors	were	coordinates	taken	
at	the	trailhead,	or	in	one	instance	the	latrine,	often	with	a	GPS,	rather	
than	the	actual	collection	site.	Consequently,	we	feel	confident	stat-
ing	that	the	NG	dataset	captured	a	more	accurate	representation	of	
the	 species’	 occupied	 climate	 space.	Thus,	 the	NG	dataset	provides	
a	more	realistic	estimate	of	the	climatic	conditions	in	which	S. austro-
montana	exists:	a	cooler,	wetter	environment	with	a	shorter-	growing	
season	 (Figure	4).	 Those	 conditions	 are	 more	 consistent	 with	 the	
known	habitat	of	 this	high-	elevation	plant,	compared	 to	 the	climate	
envelopes	of	the	O	and	PG	datasets.	The	models	run	using	the	O	and	
PG	datasets	did	not	capture	significantly	different	climate	space	com-
pared	with	each	other	(Figure	3).	This	indicates	that	the	PG	dataset	is	
not	much	better	than	the	O	dataset	at	defining	the	specific	niche	of	
S. austromontana.

The	differences	in	climate	space	among	our	models	led	to	drasti-
cally	different	SDM	outputs	and	strikingly	different	predictions	of	cur-
rent	and	 future	 ranges.	Using	 the	10%	cumulative	 logistic	 threshold	
to	define	a	binary	response	of	suitable	or	nonsuitable	habitat,	the	O	
and	PG	models	resulted	in	suitable	habitat	covering	geographic	areas	
1.4	and	1.2	times	larger	than	the	NG	dataset	for	the	reference	period.	
Erroneously	placed	presence	 locations,	 such	as	WTU-	VP-	90424	cir-
cled	 in	Figure	2,	create	a	broader	envelope	for	the	target	taxon.	For	
example,	the	O	and	PG	datasets	show	suitability	across	most	of	the	
Olympic	 Peninsula	 and	 southern	Vancouver	 Island	 including	 coastal	

F IGURE  5 Species	Distribution	Model	(SDM)	of	Saxifraga	
austromontana	for	the	reference	period	(1960–1990)	and	2080’s	
under	the	A2	climate	scenario	for	three	categories	of	georeferenced	
data:	Original	(O),	Previously	Georeferenced	(PG),	and	Newly	
Georeferenced	(NG).	Suitability	is	set	at	the	10-	percentile	training	
presence	logistic	threshold.	Projected	for	2080,	the	O	and	PG	models	
predict	a	relatively	small	reduction	of	31.8%	and	40.3%,	respectively.	
The	more	NG	model	predicts	a	65.7%	reduction,	more	consistent	
with	previous	studies	on	alpine	taxa	(Table	4).	The	NG	SDM	does	
a	good	job	of	predicting	present	and	future	suitable	habitat	for	
Saxifraga	austromontana.	The	O	and	PG	SDMs	overpredict	suitable	
habitat	outside	of	the	known	range	of	the	target	taxa,	including	
locations	on	the	coast	of	the	Olympic	Peninsula	and	Vancouver	
Island	(see	inset	map).	Inaccurate	predictions	of	the	O	and	PG	dataset	
are	exacerbated	for	future	SDM	outputs.	Data	are	in	a	Lambert	
conformal	conic	equal	area	projection
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regions	that	have	been	well-	documented	botanically	and	do	not	cur-
rently	contain	S. austromontana.	 Interestingly,	 the	O	dataset	 is	more	
accurate	than	the	PG	in	predicting	the	range	on	the	Olympic	Peninsula	
and	Vancouver	 Island,	 probably	 because	 it	 includes	more	 reference	
points.	The	NG	SDM	captures	a	much	more	accurate	and	tighter	rep-
resentation	of	the	current	range	of	S. austromontana,	which	 is	abun-
dant	primarily	in	the	northeastern	arc	of	basaltic	peaks	in	the	Olympics	
(Figures	5	and	6a).

It	 is	 important	 to	 note	 that	 all	 models	 (O,	 PG,	 and	NG)	 predict	
habitat	 outside	 of	 the	 known	 range	 of	 S. austromontana, including 
the	Sierra	Nevada,	Uinta,	 and	Wind	River	 ranges.	These	 regions	are	
within	the	climate	envelope	of	the	species,	yet	for	alternative	reasons	
(e.g.,	dispersal	and	competition	dynamics),	the	species	is	not	known	to	

occur	 there,	despite	extensive	botanical	surveys.	Overall,	 the	O	and	
PG	datasets	create	SDMs	that	appear	to	overpredict	suitable	habitat	in	
comparison	with	the	NG	data	based	on	our	current	understanding	of	
this	species’	ecology.	These	results	clearly	demonstrate	the	shortcom-
ings	of	unvalidated	presence	datasets	for	use	in	SDM	construction.

Differences	in	predicted	area	of	suitable	habitat	among	the	O,	PG,	
and	NG	datasets	 are	 even	more	pronounced	 for	 future	 predictions.	
Our	results	are	based	on	relatively	simple	model	settings	and	should	
be	treated	as	a	visualization	of	the	effects	of	georeferencing	methods	
and	 coordinate	 accuracy	 on	 extrapolated	 future	 ranges,	 rather	 than	
as	precise	future	predictions.	The	NG	SDM	estimates	a	65.7%	reduc-
tion	 in	 suitable	habitat	by	2080,	while	 the	SDMs	constructed	using	
the	 other	 datasets	 estimate	 a	 32%–40%	 reduction	 by	 2080,	 under	

TABLE  4 The	results	of	MAXENT	models	for	Saxifraga austromontana	trained	on	presence	points	from	three	levels	of	georeferenced	data:	
Original	(O),	Previously	Georeferenced	(PG),	and	Newly	Georeferenced	(NG)	with	the	SAGA	protocol.	All	models	were	run	with	the	same	
features	and	climate	covariates.	The	total	percent	reduction	in	the	future	area	of	suitable	habitat	relative	to	the	reference	period	is	presented	in	
bold.	The	O	and	PG	models	overpredict	present	suitable	habitat	with	respect	to	the	more	accurate	NG	model,	and	the	shortcomings	of	the	O	
and	PG	models	are	exacerbated	for	the	future	projection.	All	models	have	high	validation	statistics	using	the	area	under	the	receiver	operating	
curve	(AUC)	value,	providing	additional	evidence	to	the	argument	that	AUC	scores	are	not	a	reliable	metric	for	model	accuracy

Dataset Original Previously georeferenced Newly georeferenced

AUC 0.888 0.914 0.914

Reference	Period	(km2) 913,695 775,270 653,898

Future	2080s	(km2) 623,044 462,658 231,376

Lost	(km2) 477,235 447,353 461,758

Gained	(km2) 186,584 134,741 39,236

Maintained	(km2) 436,460 327,917 192,140

Total Reduction (%) 31.8 40.3 65.7

F IGURE  6 Species	Distribution	Models	built	using	the	three	categories	of	georeferenced	data	(Original	(O),	Previously	Georeferenced	(PG),	
and	Newly	Georeferenced	(NG))	result	in	notably	different	areas	of	suitable	habitat	for	the	(A)	reference	period	(1960–1990)	and	(B)	2080	under	
the	A2	emission	scenario.	SDM	results	based	on	the	NG	dataset	are	overlaid	on	top	of	SDM	results	using	the	O	and	PG	datasets	to	visualize	the	
differences	in	predicted	niche	space.	The	O	and	PG	datasets	greatly	overpredict	suitable	habitat	for	the	target	taxa	into	regions	it	is	known	to	
be	absent,	including	the	coast	of	the	Olympic	Peninsula	and	Vancouver	Island.	This	is	due	to	the	inclusion	of	inaccurate	presence	points	such	as	
WTU-	VP-	90424,	displayed	in	Fig.	2.	Data	are	in	a	Lambert	conformal	conic	equal	area	projection

(a) (b)
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the	A2	emission	scenario.	The	NG	models	are	more	consistent	with	
other	 studies	 on	 alpine	 taxa	 that	 forecast	 a	 40%–80%	 reduction	 in	
suitable	habitat	by	the	end	of	the	century	(Dirnböck,	Essl,	&	Rabitsch,	
2011;	Dullinger	 et	al.,	 2012;	 Forester	 et	al.,	 2013).	 Further,	 the	NG	
model	predicts	a	 relatively	small	gain	 in	habitat	by	2080,	equivalent	
to	21%–29%	of	the	area	of	gain	predicted	by	the	other	two	models,	
explained	by	 limited	upslope	habitat	for	alpine	taxa.	Such	underpre-
diction	of	future	range	loss	is	worrying	for	any	species,	but	especially	
for	 high-	elevation	 species,	which	 are	 disproportionately	 affected	by	
climate	change	(Gottfried	et	al.,	2012)	and	often	have	little	room	for	
upward	range	expansion	(Jackson,	Gergel,	&	Martin,	2015).

Relying	on	potentially	 inaccurate	presence	 records	when	model-
ing	 species’	 ranges	could	 lead	 to	 serious	overestimation	of	 the	area	
in	which	these	species	can	persist,	misleading	conservation	and	man-
agement	efforts.	SDMs	can	be	developed	to	their	full	potential	only	
when	they	are	trained	using	many	high-	precision	occurrence	records	
for	a	species	(Randin	et	al.,	2009).	Our	results	demonstrate	that	there	
is	no	alternative	for	highly	accurate	presence	data	that	have	been	me-
ticulously	georeferenced	by	a	human,	not	a	machine.	Many	SDMs	are	
built	using	historical	museum	or	herbarium	records.	In	fact,	for	many	
taxa,	these	datasets	are	the	only	available	records	of	their	distribution.	
We	 found	 that	 geographic	 coordinates	 published	 on	 reputable	 her-
baria	sites	often	do	not	match	the	site	description.	These	coordinates	
may	have	been	recorded	 inaccurately	by	 the	collector,	estimated	by	
the	collector	using	a	coarse-	scale	topographic	map,	recorded	in	a	dif-
ferent	geographic	coordinate	system	than	present	systems	(i.e.,	using	
NAD27	vs.	WGS84	as	the	geodetic	datum),	georeferenced	incorrectly	
by	a	curator,	or	estimated	using	a	Georeference	Calculator.

We	have	found	the	results	of	Georeference	Calculators	(Wieczorek	
&	Wieczorek,	 2015;	 GeoLocate	 2016)	 to	 be	 frequently	 misleading,	
often	 adding	 an	 element	 of	 sampling	 bias	 by	 assigning	 coordinates	
for	collections	taken	in	the	mountains	to	the	nearest	town.	For	exam-
ple,	we	tested	the	utility	of	the	GeoLocate	Web	Application	Standard	
Client	 to	 assign	 a	 coordinate	 to	 the	 locality	 string	 “West	Ute	 Lake,	
Weminuche	Wilderness,”	Country:	“United	States	of	America,”	State:	
“Colorado,”	 County:	 “Hillsdale.”	 The	 program	 assigned	 a	 coordinate	
with	 an	 uncertainty	 code	 of	 301	m	 to	 37.466673,	 −106.978932,	
which	 is	more	 30	miles	 southeast	 of	 the	 true	 location	 of	West	Ute	
Lake.	These	calculators	are	popular	because	they	are	easy	to	use	and	
allow	for	batch	processing	of	CSV	files	with	many	listed	localities,	but	
the	spatial	accuracy	of	these	outputs	is	questionable.

5  | CONCLUSION AND FUTURE EFFORTS

Understanding	the	present	and	future	distributions	of	species	is	criti-
cal	for	applications	in	conservation,	ecology,	biogeography,	phyloge-
netic	analysis,	phenology,	landscape	ecology,	and	beyond	(Davis	et	al.,	
2015;	 Fois,	 Fenu,	 Lombraña,	 Cogoni,	 &	 Bacchetta,	 2015;	 Forester	
et	al.,	 2013;	 Lenoir,	 Gégout,	 Marquet,	 De	 Ruffray,	 &	 Brisse,	 2008;	
Newbold,	 2010).	 SDMs,	 especially	 those	 implemented	 in	MAXENT,	
are	 the	 most	 common	 tools	 used	 to	 determine	 habitat	 suitability.	
As	these	tools	become	more	and	more	popular	and	public	access	to	

species	occurrence	data	increases,	it	is	paramount	to	remember	that	
convincing	SDMs	can	be	produced	 from	dubious	data	 (Lozier	et	al.,	
2009).	Museum	and	herbaria	databases	are	invaluable	archives	of	oc-
currence	information,	yet	must	be	used	with	caution,	especially	when	
applied	to	spatial	analyses.	Our	results	indicate	that	SDMs	built	using	
low-	accuracy	 location	 data	 capture	 a	 significantly	 broader	 climate	
envelope,	predict	a	more	widespread	spatial	distribution,	and	predict	
less	 loss	under	 climate	 change	 scenarios	 than	SDMs	 trained	on	 ac-
curate	 collection	 records.	 Conservation	 and	management	 decisions	
could	 vary	 considerably	 depending	 on	 which	 model’s	 output	 they	
were	based	on.

This	study	highlights	the	importance	of	meticulously	georeferenc-
ing	all	records	manually	before	use	in	SDMs	and	reveals	the	need	for	
a	standardized	protocol	such	as	SAGA,	as	varying	levels	of	georefer-
encing	result	in	significantly	different	models	of	habitat	suitability	for	
the	same	species.	The	tradeoff	of	manual	georeferencing	is	the	time	
it	takes	to	analyze	each	record.	As	datasets	increase	in	size,	the	fea-
sibility	of	georeferencing	each	record	becomes	increasingly	daunting.	
Batch	georeferencing	calculators	may	be	desirable	for	large	datasets,	
but	reliable	technology	is	not	yet	available.	As	the	resolution	of	histor-
ical	and	projected	climate	data	increases,	more	advanced	and	accurate	
SDMs	 become	 possible,	 but	 only	 if	 species	 occurrence	 records	 are	
also	available	at	an	increasingly	fine	scale.	Field	collectors	must	record	
accurate	coordinates,	GPS	uncertainty,	and	detailed	site	descriptions,	
assuming	use	 in	 future	spatial	analyses.	Curators	of	databases	must	
only	make	available	accurately	georeferenced	occurrence	records,	or	
explicitly	state	otherwise.	Lastly,	end	users	must	suspect	occurrence	
records	to	be	inaccurate	and	georeference	before	performing	spatial	
analyses	using	a	protocol	such	as	SAGA.	All	parties	should	share	the	
improved	 data,	 ultimately	 improving	 publicly	 available	 datasets	 and	
resulting	science.
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