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Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the
direct injury from space-occupying blood to the sequelae of the brain exposed to
free blood components from which it is normally protected. Not surprisingly, the usual
metabolic and energy pathways are overwhelmed in this situation. In this review article,
we detail the complexity of red blood cell degradation, the contribution of eryptosis
leading to hemoglobin breakdown into its constituents, the participants in that process,
and the points at which injury can be propagated such as elaboration of toxic radicals
through the metabolism of the breakdown products. Two prominent products of this
breakdown sequence, hemin, and iron, induce a variety of pathologies including free
radical damage and DNA breakage, which appear to include events independent from
typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple
pathways of injury, cell death, and survival are likely engaged including ferroptosis (which
may be the same as oxytosis but viewed from a different perspective) and senescence,
suggesting that targeting any single cause will likely not be a sufficient strategy to
maximally improve outcome. Combination therapies in addition to safe methods to
reduce blood burden should be pursued.

Keywords: intracerebral hemorrhage, ferroptosis, senescence, oxytosis, reactive oxygen species,
iron, hemoglobin
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INTRODUCTION

Intracerebral hemorrhage (ICH), contributing to 50% of
all stroke morbidity and mortality, is an often devastating
neurovascular disease without an effective therapy, affects
more than 15 million people worldwide annually. Larger
ICH and cerebral microbleeds are linked to ∼1.8–2.4-fold
higher risk of both acute and chronic neurological dysfunction,
long-term disability, cardiovascular dysfunction, and increased
predisposition to neurodegenerative disorders (Yates et al.,
2014; Ghosh et al., 2015; Akoudad et al., 2016; Vijayan
and Reddy, 2016; Kitago and Ratan, 2017; Vijayan et al.,
2018a). A major challenge in the clinical management of
ICH is the lack of mechanistic insight causing neuronal
and vasculature toxicity. While inflammation, oxidative injury
(reactive oxygen species, ROS) and excess redox-active iron
appear to play critical roles in ICH-induced neurotoxicity,
efforts at exploring individually antioxidant-or chelation-based
therapeutic strategies have not proven effective in late-stage
clinical trials (Perry et al., 2002; Margaill et al., 2005;
Firuzi et al., 2011; Yeatts et al., 2013; Shirley et al., 2014;
Duan et al., 2016; Fouda et al., 2017; Selim et al., 2019),
thus warranting a deeper understanding of the mechanisms
and pathways.

Definitive therapy for ICH remains elusive, with prognosis
tied to the severity of the initial hemorrhage, the extent of
rebleeding, and longer-term deleterious effects of blood and
its breakdown products (Xi et al., 2014; Vijayan and Reddy,
2016; Sidyakin et al., 2018). In addition to the initial injury,
processes associated with brain injury during ICH include
red blood cell (RBC) lysis, which results in the release of
free hemoglobin (Hb; Augustynek et al., 2014; Dang et al.,
2017). Excess free Hb is toxic to neurons, the endothelium,
and vasculature (Balla et al., 1991; Jeney et al., 2002; Zille
et al., 2017). Though the precise time course of RBC lysis
after clinical or experimental ICH is variable, as much as
10 mM hemin is liberated from Hb in the peri-ICH region
(Qureshi et al., 2005; Chen-Roetling and Regan, 2017).

Currently, no therapy has definitively improved outcomes
from ICH. Recently, 1-year outcomes following treatment with
the chelator, deferoxamine, appeared to favor this therapy,
but primary outcomes measures did not show improvement
(Yeatts et al., 2013; Selim et al., 2019), and so the ultimate
benefit remains ambiguous. Analysis of outcomes following
removal of blood using catheter-based therapy plus fibrinolytics
(MISTIE-III) showed some promise if blood removal reached a
certain threshold (Hanley et al., 2019). In our view, this later
therapy, with the goal of early removal of blood non-surgically
following ICH, has considerable promise given how toxic
the hemorrhage is, although multiple questions remain as to
the optimum approach and the extent of benefit remains
to be seen.

In this review article, we will discuss potential mechanisms of
injury following the release of Hb and its breakdown products,
mechanisms that suggest no single mode of therapy will be
sufficient to minimize the deleterious effects that shape poor
outcomes from this condition.

Intracerebral Hemorrhage
Intracerebral hemorrhage (ICH) is caused by the rupture of
blood vessels within the brain. Typical sites of bleeding include
subcortical territory in the anterior and posterior regions, often a
consequence of vascular changes following chronic hypertension,
or cortical regions more typically due to vascular lesions
associated with a variety of conditions. ICH causes mechanical
damage through mass effect as a primary effect (Lai et al.,
2014), excitotoxicity, and oxidative stress amongmany secondary
effects (Xi et al., 2006). ICH has two classifications: primary, and
secondary. Primary, or spontaneous ICH, makes up the majority
of intracerebral hemorrhage cases (Fewel et al., 2003). The second
classification, secondary ICH, is caused by an instigating event
such as the hemorrhagic transformation of an ischemic stroke or
traumatic brain injury involving a hemorrhagic contusion (Lok
et al., 2011). Of the spontaneous cases, approximately 70% can
be attributed to vessel fissure caused by hypertension (Wilkinson
et al., 2018). Hypertension is associated with atherosclerosis in
larger vessels and arteriosclerosis in smaller arterioles (Wityk
and Caplan, 1992), with pathologically hyaline, thicker and
more brittle, walls that are weaker than healthy arterioles
(Fewel et al., 2003).

Water is a largely incompressible liquid and makes up most
of the blood volume. Following a breach of the vessel wall, blood
begins to pool and apply pressure to the tissue (mass effect of
extravasated blood; Wilkinson et al., 2018). Expansion of the
bleed can cause a characteristic deflection of the interhemispheric
fissure (midline) and potentially bleed into the ventricles. These
gross effects lead to microscopic damage in the form of neuronal
and astrocytic network disruption caused by the stretching and
tearing of axons as the tissue is compressed. Distortion of
the tissue can compress vessels and cause localized ischemia,
however there is still debate about this phenomenon since not
all patients with ICH have a perihematomal penumbra (Aguilar
and Brott, 2011). The perihematomal region is associated with a
vasogenic form of edema, the buildup of fluid within the tissue
(Urday et al., 2015; Grunwald et al., 2017; Lim-Hing and Rincon,
2017). Edema is a complex process but is mediated primarily by
injury and molecular events within components of the blood-
brain barrier (Xi et al., 2002; Simard et al., 2007; Lim-Hing and
Rincon, 2017; Vaibhav et al., 2018).

The pooled blood is not only a source of pressure on the
brain but is also a source of constituents usually confined to
vessels, including the whole range of blood cells and plasma.
One of the unique consequences of hemorrhage is the release
of excess iron, a prooxidant (Wu et al., 2003). Red blood cells
(RBCs) carry Hb, an oxygen trafficking protein that carries four
heme prosthetic groups amounting to four atoms of iron. In
a normal individual there is 30–44 mM iron in blood found
as Hb, and other sources (Chernecky and Berger, 2012). The
large amount of iron present in blood poses an oxidative threat
to the surrounding tissue (Dixon and Stockwell, 2014; Mitra
et al., 2014). RBCs pool in the hematoma and over time degrade,
releasing Hb into the wound. No single mechanism is involved
in this process. Macrophage and microglia-mediated cell death
may also occur in the early stage of the hematoma. RBCs express
CD47 on their surface as a ‘‘do not eat me’’ (Takimoto et al.,
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2019) signal where the absence or alteration of CD47 recruits
their consumption (erythrophagocytosis) by macrophages (Hua
et al., 2000; Lim-Hing and Rincon, 2017). Blocking CD47 has
been shown to reduce hematoma size and increase the rate of
its removal by promoting erythrophagocytosis by macrophages
(Jing et al., 2019). There is also evidence of complement cascade
activation and formation of Membrane Attack Complex (MAC)
pores on RBCs, which cause the release of their intracellular
components into the milieu (Hua et al., 2000; Cao et al., 2016).

In addition to CD47, another scavenger protein CD36, a
differentially regulated microglial surface marker, is involved in
the activation of microglia-mediated innate immune responses
in several inflammatory neuropathological conditions like
Alzheimer’s disease as well as in ICH (Febbraio et al., 2001; El
Khoury et al., 2003; Silverstein and Febbraio, 2009). Elevated
CD36 expression in the perihematomal region is well-correlated
to experimental ICH outcomes in rodent models. Conversely,
CD36 deficits in ICH patients have been associated with
a slower hematoma clearance rate along with aggravated
neuropathological conditions, compared to patients with normal
CD36 expression. Reduced expression of CD36 is associated
with increased production of pro-inflammatory M1-microglia
mediators like TNF-α and IL-1β, thereby, inhibiting microglia
phagocytosis as well as hematoma clearance (Fang et al.,
2014). Another critical regulator of the inflammatory cascade
is the Toll-like receptor 4 (TLR4) protein. TLR4 acts as the
negative modulator of CD36 expression in microglia, and
increased TLR4 expression results in poor recovery of ICH
patients as well as slower absorption of hematoma in autologous
blood-induced ICH rodent model (Fang et al., 2014; Lan
et al., 2017a), TLR4 inhibitor TAK-242 has been shown to
upregulate CD36 expression accelerating erythrophagocytosis of
hematoma cells and suppressing H2O2 content in and around
the ICH lesions (Fang et al., 2014) Furthermore, ICH-derived
heme activates TLR4/MyD88 signaling-mediated upregulation
of proinflammatory markers including IL-6 (Lin et al., 2012),
which in turn leads to STAT3 phosphorylation, ultimately
inducing the expression of hepcidin, a master regulator of
iron metabolism, which is associated with chronic cognitive
impairment in ICH survivors (Wrighting and Andrews, 2006;
Xiong et al., 2016).

Increased hepcidin levels have been observed in both
serum and brain after ICH induction. Serum hepcidin inhibits
brain iron efflux from microvascular endothelial cells and
macrophages by binding to the iron exporting channel protein
ferroportin. Moreover, an increase in hepcidin expression is
found in various brain cells like astrocytes, microglia, and
neurons following ICH, and considered a contributor to
brain oxidative injury (Xiong et al., 2016). On the other
hand, IL-6 stimulation acts as the potent inducer for NF-κB-
mediated inflammatory signaling and its nuclear translocation
(Wang et al., 2003). To prevent the extensive oxidative DNA
damage by the resulting massive cytokine storms, nuclear factor
erythroid 2-related factor (NRF2) binds to the antioxidant
response element (ARE) DNA sequences thereby inhibiting
inflammatory responses and increasing heme oxygenase-1
(HO-1) expression through activation of the antioxidant defense

mechanism following ICH induction (Ma and He, 2012;
Sivandzade et al., 2019).

The induction of NRF2 expression has been found
well-correlated with improved blood-brain barrier integrity
as well as motor and cognitive functions in several
neurodegenerative disorders (Sivandzade et al., 2019). The
feedback loop of the NRF2-p62 axis has is involved in RBC
degradation through erythrophagocytosis in bone-marrow-
derived macrophages, which could also act in a similar way
to clean up hematoma cells after ICH (Santarino et al.,
2017). Apart from the antioxidant machinery, complement
activation contributes to another dimension of the host defense
mechanism. The terminal effector of this mechanism, MAC, has
been found to activate proinflammatory responses via induction
of noncanonical NF-κB signaling in endothelial cells (Jane-Wit
et al., 2015).

Heme and Hemoglobin
The vast majority of the iron in blood comes from Hb with
the remainder, 7.2–29 µM, from iron bound to serum proteins.
Consequently, the primary source of damaging iron in ICH
comes from the release of iron from RBCs. Iron is stored in the
form of Hb, a covalently linked tetrameric peptide containing
four heme moieties (Perutz, 1989). Hb is the primary carrier of
oxygen in the body next to myoglobin, found in the muscles
(Cotton et al., 1999; Alayash et al., 2001).

Heme is found in the oxygen carrier hemoglobin as a
prosthetic moiety. Hb carries four heme molecules, one in
each of the four globin molecules that make up Hb. Each
Hb molecule is composed of two αβ dimers (Perutz, 1989;
Buehler et al., 2020). Heme B, the metalloporphyrin found
in Hb, is made from protoporphyrin IX coordinated to a
Fe(2+) cation (Figure 1). In Hb, heme is bound to each
globin polypeptide through imidazolyl nitrogen on histidine
F8. The Fe(2+) cation sits slightly below the plane due to
its size (Perutz, 1989; Cotton et al., 1999). The heme is
pulled from the center towards the histidine F8 at the center
with an approximately 0.4 Å deflection (Perutz, 1989; Cotton
et al., 1999; Figure 1). When bound to the proximal histidine,
heme has one unoccupied axial position perpendicular to the
plane of the protoporphyrin IX (Perutz, 1989; Cotton et al.,
1999). In Hb, heme exists in the +2, +3, and +4, +5 (in
the presence of hydrogen peroxide; Gumiero et al., 2011)
oxidation states leading to different charge isomers of Hb.
The precise charge of oxyhemoglobin has been a point of
debate for many years with three competing theories. In this
review, we will use the findings made by Weiss et al. and
supported by later Mössbauer studies by Lang and Marshall
and Sharrock et al. (Lang and Marshall, 1966; Sharrock
et al., 1976; Shikama, 1998; Huang and Groves, 2018). In
order of charge, hemoglobin can exist in the following states
with the corresponding heme group: oxyhemoglobin [Hb(3+)-
O•−2 , oxyferroheme], deoxyhemoglobin [Hb(2+), ferroheme],
methemoglobin [metHb(3+), ferriheme], and ferrylhemoglobin
[Hb(4+)=O, ferrylheme; Kasai et al., 2018; Figure 1]. Notably,
the MRI T1 and T2 signal from pooled blood in the hematoma
correlate to the different oxidation states of heme and its location
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FIGURE 1 | Structures and interconversion of oxygen in the prosthetic heme found in hemoglobin. Heme contains four subunits, each with an individual heme
moiety. In oxyhemoglobin, Hb(3+)-O-

2 is predominant and is found in equilibrium with deoxyhemoglobin [Hb(2+)]. Loss of an electron gives Hb(3+) as found in
methemoglobin. Oxidation of the Hb(3+) by hydrogen peroxide produces ferryl hemoglobin [Hb(4+) = O] which degrades to Fe(3+) and porphyrin degradation
products. The oxidation state of hemoglobin and it’s extra/intracellular compartmentalization are effective biomarkers by MRI for ICH age.

inside and outside erythrocytes (Kidwell and Wintermark, 2008;
Dang et al., 2017; Liu et al., 2019).

Canonically, Hb transports oxygen in red blood cells via
ferroheme. Dioxygen binds reversibly to the Fe(2+) center of
ferroheme to form oxyferroheme (oxyhemoglobin) at an angle
60◦ from normal through its sp2-hybridized molecular orbital
(Figure 1). Due to the electronegativity of the oxygen, electron
density from the Fe(2+) is pulled to the dioxygen, the reduction
in electron density planarizes the oxyferroheme from its original
puckered conformation according toWeiss (1964); Perutz (1989)
and Shikama (1998). Histidine E7 above the opposite face, distal
to the oxyferroheme binds to the dioxygen through its imidazolyl
ε–nitrogen, at a complementary 120◦ angle making a chain to
the oxyferroheme below (Figure 1; Perutz, 1989; Shikama, 1998;
Cotton et al., 1999).

In addition to reversibly binding dioxygen, oxyhemoglobin
can autoxidize to form methemoglobin and superoxide (Weiss,
1964). Methemoglobin can undergo a second transformation
whereupon histidine E7 binds to the unoccupied axial site of the
ferriheme to form a molecule called hemichrome (Rifkind et al.,
1994; Riccio et al., 2002). This state may be a normal transition
state In this conformation dioxygen is unable to bind to the
iron since the axial positions are occupied by histidine (Riccio
et al., 2002). However, the bis-histidine isomer is reversible
unlike some isomers containing cysteine coordinated to the
iron which eventually precipitates as Heinz bodies, or insoluble
aggregates of hemichrome found in erythrocytes towards the
end of their lives (Blumberg and Peisach, 1971; Winterbourn
and Carrell, 1974; Rifkind et al., 1994). The formation of
hemichromes may also occur by the attack of the Fe(2+) by
the distal imidazolyl nitrogen in oxyferroheme, which displaces
dioxygen as superoxide and oxidizes ferroheme to ferriheme
(Rifkind et al., 1994).

Hemoglobin Redox Cycling
Oxyhemoglobin and methemoglobin are part of a
reduction-oxidation cycle driven by autooxidation of
oxyhemoglobin (Figure 2) followed by catalytic reduction
from NADH:cytochrome b5 oxidoreductase (Misra and
Fridovich, 1972; Wallace et al., 1982; Balagopalakrishna et al.,
1996; Nagababu and Rifkind, 2000). The autooxidation of
oxyhemoglobin produces superoxide, a process studied by EPR
by Balagopalakrishna et al. (1996), and methemoglobin (Misra
and Fridovich, 1972; Wallace et al., 1982; Nagababu and Rifkind,
2000; Kasai et al., 2018). Superoxide may also be produced
by monotopic ligand (CN−, Cl−, or others) displacement of
dioxygen from oxyhemoglobin or reduction in pH (Wallace
et al., 1982). Superoxide production has the knock-on effect
of producing H2O2 either through self-dismutation or
catalytic dismutation by superoxide dismutase (Rifkind and
Nagababu, 2013). Hemoglobin salvage by NADH:cytochrome
b5 oxidoreductase (CYB5R) was discovered by Passon and
Hultquist (1972); methemoglobin can be reduced back to
hemoglobin completing the cycle (Hultquist and Passon, 1971;
Figure 2). Congenital methemoglobinemia is associated with
a deficit in NADH:cytochrome b5 reductase and presents as
impairment of the hemoglobin salvage pathway and inefficient
oxygen transport by erythrocytes (Ashurst and Wasson, 2011).

The H2O2 produced by the dismutation of superoxide drives
two additional pathways centered upon oxyhemoglobin. In red
blood cells, there is a steady-state concentration of approximately
2 × 10−10 M H2O2 at any given time (Nagababu and Rifkind,
2000). If Oxyhemoglobin reacts with H2O2, a ferrylhemoglobin
[Hb(4+)=O] species is generated and upon the introduction
of a second H2O2 produces methemoglobin and superoxide
(Figure 2). Excess superoxide may destroy the porphyrin and
release the iron (Misra and Fridovich, 1972; Giulivi et al., 1994).
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FIGURE 2 | Redox network of hemoglobin oxidation states. The center of the hemoglobin redox network is methemoglobin which can be reduced or oxidized to
two intermediate products: deoxyhemoglobin via cytochrome b5 reductase (CYB5R), or ferrylhemoglobin radical cation with H2O2, respectively. Oxygenation of
deoxyhemoglobin forms oxyhemoglobin, and the introduction of a reducing agent such as an unsaturated fatty acid to ferrylhemoglobin radical cation (Compound I)
produces ferrylhemoglobin (Compound II). Oxyhemoglobin can also become ferrylhemoglobin if H2O2 is present; a second H2O2 destroys the porphyrin.
Ferrylhemoglobin may also oxidize a second reduced species to return to methemoglobin. Oxyhemoglobin also plays a role in generating the reactive oxygen
species needed for these oxidation state changes: oxyhemoglobin may spontaneously disproportionate to liberate superoxide which is converted to H2O2 by
superoxide dismutase (SOD).

On the other hand, approximately 3% of the Hb in a
healthy erythrocyte autoxidizes in 24 h and likely generates the
majority of the hydrogen peroxide at baseline (Giulivi et al.,
1994). The resulting methemoglobin can react with the H2O2
produced from superoxide to form a ferrylhemoglobin radical
cation [Fe(4+)=OPP•+; Compound I; Nagababu and Rifkind,
2000]. The radical is delocalized across the porphyrin as in
most heme-containing oxygen-activating enzymes (Nagababu
and Rifkind, 2000). In the ferryl state (Compound II), the iron
oxidation state is +4 and a single oxo ligand is bound to the
open axial position [Fe(4+)=O]. The ferrylhemoglobin radical
is a single electron oxidizer and has at least two substrates of
interest: hydrogen peroxide and unsaturated lipids (Nagababu
and Rifkind, 2000). Hydrogen peroxide can donate 2e− to
the ferrylheme radical cation to produce ferriheme and water
in a peroxidase-like reaction (Alayash et al., 2001). Second,
ferrylheme radical cation can abstract a hydrogen atom from
unsaturated lipids to produce lipid peroxides (Chutvanichkul
et al., 2018) and Fe(4+)=O. In a second reaction, Fe(4+)=O
abstracts an electron from a second lipid or other reducing
substance to generate methemoglobin and a second radical
(Nagababu and Rifkind, 2000; Potor et al., 2013). Because
superoxide and H2O2 are produced in red blood cells (Giulivi
et al., 1994; Alayash et al., 2001), it is quite likely that Fenton and

Haber–Weiss reactions are predominately driving the formation
of lipid peroxides and cellular damage as opposed to direct
oxidation by hemoglobin (Ohgami et al., 2005).

Release and Capture of Iron in
Intracerebral Hemorrhage
Eryptosis, a programmed suicidal death pathway of red blood
cells (Foller et al., 2008), is a component of intracerebral
hemorrhage (Dang et al., 2017; Liu et al., 2019). Eryptosis occurs
for reasons such as oxidative stress, inhospitable osmolarity,
and changes in membrane composition (Foller et al., 2008)
including the appearance of phosphatidylserine phagocytosis
markers on the outer leaflet of the membrane (Foller and Lang,
2020). The death of a red blood cell triggers the release of
its contents into the milieu. The potential concentration of
iron-containing detritus can be substantial with approximately
10 mM in iron or hemin (Robinson et al., 2009). The
clearance of the iron takes place via several mechanisms. First,
blood products (methemoglobin, hemin, and iron cations)
can be released by eryptosis and the uncontrolled cell death
pathway, hemolysis (Foller et al., 2008; Dang et al., 2017;
Buehler et al., 2020). Second, damaged red blood cells can
be consumed by macrophages through erythrophagocytosis
(Bulters et al., 2018).
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Methemoglobin decays in the blood into two αβ subunit
dimers. Haptoglobin, a dimeric (trimeric, or tetrameric;
depending on which exons are transcribed) polypeptide is
expressed by hepatocytes to bind hemoglobin αβ subunit dimers
in circulation. Adult humans have a wide range of circulating
haptoglobin levels (0.3–1.9 mg/ml) which binds the hemoglobin
subunit with effective irreversibility at a rate constant of
5.5× 105M−1s−1 (Kristiansen et al., 2001; Buehler et al., 2009,
2020). Haptoglobin has the additional function of reducing the
reactivity of hemin to oxygen while in circulation (Mollan et al.,
2014). Mollan et al. (2014) found that the Hp1–1, Hp2–1, and
Hp2–2 phenotypes all interact with hemoglobin to prevent the
loss of heme from hemoglobin dimers into the milieu. This effect
reduces the rate of heme autoxidation but does not have a clear
effect on ferryl heme formation (Mollan et al., 2014) meaning
that the protective capacity of haptoglobin may lay mostly in its
ability to remove hemoglobin from the blood and not necessarily
to arrest ROS generation.

After haptoglobin binds to two αβ dimers it binds to the
macrophage-expressed multidomain transmembrane receptor
CD163 (Kristiansen et al., 2001). In addition to macrophages, the
expression of CD163 has been reported in hippocampal neurons
following experimental hemorrhagic stroke (Garton et al., 2017b;
Liu et al., 2017). This finding suggests that neurons may be
inappropriately responding to the locally higher concentration of
hemoglobin as they do not express heme oxygenase 1 (HO-1), the
faster, and inducible of the HO-1/2 pair (Dore et al., 1999; Garton
et al., 2017a).

The lack of expression of haptoglobin in the brain
parenchyma and cerebrospinal fluid as opposed to serum is
dramatic: the reference range for haptoglobin in serum is
0.3–1.9 mg/ml, however, Chang et al. (2013) reported that the
concentration of cerebrospinal fluid haptoglobin in 22 healthy
adults was 0.060 mg/dL (0.006 mg/ml; Chang et al., 2013).
Likewise, Loeffler et al. (1999) reported the concentration of
haptoglobin in the brain tissue of rats was on average (of all
brain regions) 0.06 ng/mg (wet weight; Loeffler et al., 1999, p.
1710). Both astrocytes and oligodendrocytes have been shown
by Lee et al. (2002) and Zhao et al. (2009), respectively, to be
an inducible source of the majority of haptoglobin found in
the brain. In rats, Zhao et al. (2009) showed that sulforaphane
enhanced haptoglobin expression. Compared to control rats,
oligodendrocyte expression of haptoglobin was upregulated by
10 times over the ICH-naïve control at day 1, and as much as
40 times at day 3 following intrastriatal injection of hemolyzed
blood. Rats treated intraperitoneally with sulforaphane and lysed
RBCs had a 30-fold more robust expression on day 1 than
those treated with PBS. Serum expression rose and fell over the
time window for both sulforaphane and PBS-treated rats with a
maximum at day 1 (Zhao et al., 2009). The robust haptoglobin
response to hemoglobin began shortly after the time of the
modeled ICH and the response decreased over time.

The lack of haptoglobin in the CSF and brain parenchyma
likely limit the acute buffering capacity of the central nervous
system to hemoglobin which the circulatory system is otherwise
able to handle. While upregulation within the brain may at some
level keep up with the diffusion of the hemorrhage products,

lack of resident cells to generate haptoglobin in the CSF may
relate to the poorer prognosis that often accompanies ventricular
extension, particularly when associated with other clinical
factors including involvement of the 3rd and 4th ventricles
(Daou et al., 2017).

Some implications of blood in the CSF can come from
work with subarachnoid hemorrhage (Galea et al., 2012). The
fate of blood and its breakdown products in the CSF is still
unclear. In subarachnoid hemorrhage-naïve patients, CSF levels
of CD163 are approximately 50-fold lower than in serum (Galea
et al., 2012). Following SAH, CSF CD163 levels increase 8-fold.
The cells responsible for producing CD163, macrophages, and
microglia, are likely entering the subarachnoid space, and as
Galea et al. (2012) reported, not all of the hemoglobin in CSF
following SAH is captured by haptoglobin, most hemoglobin
is found free in the CSF despite the presence of haptoglobin.
Passive or other mechanisms may be involved in the clearance
of hemoglobin from the CSF (Rennels et al., 1985; Galea et al.,
2012; Iliff et al., 2012). Another trap for blood products is
hemopexin which binds heme and is both expressed intrathecally
and imported into the CSF from the circulation (Garland et al.,
2016), discussed further below.

The combined findings suggest several key points. Lee
et al. demonstrated that CD163 levels increased in the CSF
after ICH likely due to the infiltration of macrophages and
microglia (Lee et al., 2002). Chang et al. (2013) note that
CSF hemoglobin levels fall even in the absence of a robust
haptoglobin response which suggests that hemoglobin can be
passively removed from the CSF as long as the removal system
is functional. Haptoglobin administration may be a potential
therapy to reduce the detrimental effects of excessive hemoglobin
in the nervous system following ICH (Garland et al., 2020).
Ultimately it seems that the absorption capacity of hemoglobin
in the brain is inducible to an extent, and that haptoglobin
on its own is not necessarily the sole participant. There may
be translational avenues that point to using haptoglobin as a
treatment for hemorrhagic stroke; work by Zhao et al. (2009)
showed that sulforaphane upregulates haptoglobin expression
and Hugelshofer et al. (2019) showed that direct injection of
haptoglobin into the CSF reduced vasospasm and the diffusion of
hemoglobin into the brain parenchyma from the CSF in sheep.

Hemin is poorly soluble in water and is often carried
by a protein in the solution including but not limited to
albumin or the heme-trapping protein hemopexin (Robinson
et al., 2009; Figure 3). Hemopexin has a very high affinity
for hemin (kd = 10−13 M) and can remove hemin from the
blood (Robinson et al., 2009; Chen-Roetling et al., 2012), or
due to its high affinity for heme, remove it directly from
(met)hemoglobin, and may act as an antioxidant (Miller et al.,
1996). Hemopexin has a singular receptor, LRP1 (low-density
lipoprotein receptor-related protein; CD91) expressed on a
multitude of cell types and found throughout the body (Moestrup
et al., 1992; Figure 3). Upon binding to LRP1, the hemopexin-
hemin complex is endocytosed, the hemin undocks, and the
hemopexin is transported back across the membrane into
circulation. Other than protein-mediated transport, hemin is
also known to be taken up through the proton-coupled folate
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FIGURE 3 | Hemin breakdown. Hemin (brown squares) is imported into most cells via either low-density lipoprotein receptor-related protein (LRP1) or
proton-coupled folate transporter (HCP1). In the former state, hemin is transported into the cytosol bound to hemopexin (HPX). In the latter case, hemin is directly
transported into the cytosol. Once inside the cytosol, hemin is reduced to biliverdin (green squares) by NADPH:cytochrome P450 reductase (POR) and then bilirubin
(yellow triangles) by biliverdin reductase (BVR). The product, bilirubin, has two fates, aggregation within the cell, or aggregation into the membrane with the possibility
of entering the circulatory system.

transporter (PCFT/HCP1) receptor expressed in astrocytes and
neurons directly into the cytosol (Robinson et al., 2009; Dang
et al., 2010, 2011; Figure 3). Haptoglobin and hemopexin
have different fates in vivo, haptoglobin, with its Hb-αβ

dimer is degraded by macrophages whereas hemopexin with
its lone heme molecule is recycled back into circulation
(Smith and Mcculloh, 2015).

Heme Breakdown Products
Hemin retains its oxidizing characteristics when abstracted from
hemoglobin and if consumed by a cell needs to be degraded
to prevent a runaway oxidation cascade. To render hemin a
lesser threat, cells express heme oxygenase 1 or 2 (HO) to
degrade hemin or other intracellularly produced hemes, to
biliverdin, ferrous iron, and carbon monoxide. Heme oxygenase
2 (HO-2) is expressed continuously in neurons and is not
inducible (Chang et al., 2003). The regulation mechanism of
HO-2 is not clear, however recent work by Liu et al. (2020)
demonstrated that HO-2 is stabilized by hemin. HO-2 carries
three docking sites for heme but only one is catalytic, the
remaining two are heme regulatory motifs that bind heme; unlike
other heme-regulated proteins, HO-2 is only destabilized by a
loss of heme binding to the catalytic site, not the regulatory sites
(Liu et al., 2020). Heme oxygenase 1 (HO-1) is not expressed
in the brain under normal circumstances but is expressed
in macrophages (Naito et al., 2014; Vijayan et al., 2018b),
microglia (Schallner et al., 2015), and astrocytes localized to
the peripheral tissue surrounding the hematoma from ICH
(Chang et al., 2003; Yu et al., 2016). Some evidence by Yu

et al. (2016) suggests that HO-1 is expressed in neurons under
oxidizing conditions elicited by 1-methyl-4-phenylpyridinium
(MPP+) or in spinal cord neurons following injury (Lin et al.,
2016). However, HO-1 induction was shown by Nitti et al.
(2018) to not occur in neurons in cortical tissue exposed
to traumatic injury out to 30 days. Conversely, Yu et al.
(2016) reported that HO-1 expression in neurons does not
change until after 24 h and lags the immediate expression by
astrocytes. HO-1 and HO-2 are membrane-bound through a
C-terminal hydrophobic tail and are found most commonly
on microsomal membranes (Unno et al., 2007). HO-1 and
HO-2 are isozymes with only 43% amino acid sequence
homology (Unno et al., 2007). Heme oxygenases work in tandem
with NADPH:cytochrome P450 reductase (POR) and biliverdin
reductase (BVR) to degrade hemin to bilirubin, ferrous iron,
and carbon monoxide (Unno et al., 2007; Munoz-Sanchez and
Chanez-Cardenas, 2014; Figure 3). Work by Wang and De
Montellano (2003) showed that cytochrome P450 reductase
binds to HO-1 with a binding affinity (kd = 0.4 ± 0.1 µM). On
the contrary, Spencer et al. found a kd of 16.4 µM for HO-2
with POR. However, Spencer et al. also found that using their
surface plasmon resonance method, that the kd for HO-1 with
POR was 20.4 µM, that may reflect differences in technique
(Spencer et al., 2014).

In the catalytic site of heme oxygenase, several steps must
take place to break open the protoporphyrin ring, release CO,
ferrous iron, and bilirubin. First, hemin enters the binding pocket
and coordinates to His25 an arrangement not dissimilar to the
coordination pocket in hemoglobin. In the first reaction step,
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hemin [Fe(3+)] is reduced to heme [Fe(2+)] by the transfer of a
single electron from P450 reductase. Next, dioxygen enters the
binding pocket and coordinates to the heme. The addition of
a second electron reduces the oxo-heme to hydroperoxo-heme.
The next product, α-meso-hydroxyheme, is a hydroxylated
product with an -OH on the alpha carbon and is formed
through a single step. The nature of this single step is unclear
as it may involve a concerted proton-driven reaction or the
formation of Compound I [Fe(4+)=OPP•+] or Compound II
[Fe(4+)=OPP] as part of the hydroxylation step (Unno et al.,
2007). The conversion from α-meso-hydroxyheme to verdoheme
is a multistep process initiated by dioxygen followed by the
release of CO, reduction of the ferric iron to ferrous iron by
P450 reductase, and placement of cationic bridging oxygen at
the alpha position (Matsui et al., 2010). Verdoheme is oxidized
to biliverdin by dioxygen, and four electrons provided by
P450 reductase. The product is a porphyrin ring cleaved at
the alpha position where the carbons adjacent to the bridging
oxygen are now ketones. The ferrous iron leaves the cleaved ring
and enters the Labile Iron Pool (LIP). In total, the conversion
of hemin to biliverdin requires seven electrons donated from
the NADPH-dependent cytochrome P450 reductase and three
dioxygen molecules, the HO-P450 reductase complex catalyzes
the production of one equivalent of CO, Fe(2+), and biliverdin.

The conversion of biliverdin to bilirubin also occurs in
the binding pocket of HO by biliverdin reductase. Biliverdin
reductase is NADPH-dependent and binds to HO-1 in humans
and may compete for the heme-binding pocket that cytochrome
P450 reductase also binds (Wang and De Montellano, 2003).
Competition for the active site is ultimately a consequence
of both reductases participating in the degradation of hemin
while still requiring the oxidase activity that heme oxygenase
can provide. The main function of biliverdin reductase in
the conversion of hemin to bilirubin, and is the reduction of
the methine carbon to methylene. This action produces the
flexible bilirubin product and is released upon the undocking
of biliverdin reductase. In rats, bilirubin does not undergo
mono- or diglucuronidation in the brain by uridine diphosphate-
glucuronosyl transferases and therefore is not made more water-
soluble (Suleman et al., 1993). It is worth noting that defective
glucuronidation in the liver by UGT1A1 is associated with
neurotoxicity and hyperbilirubinemia (Ouzzine et al., 2014).

Evidence for neuroprotection and neurotoxicity by
bilirubin is mixed. Work by Dore et al. (1999) showed that
rat hippocampal and cortical neuron cultures treated with
PKC-inducer phorbol-12-myristyl-13-acetate (PMA) were
protected against H2O2-mediated toxicity. In this model, PMA
induced protein kinase C (PKC) to phosphorylate HO-2. In
doing so HO-2 was stimulated producing more bilirubin.
Bilirubin was detectable by a substrate-selective antibody, and to
show that the effect was due to HO-2, tin protoporphyrin IX was
used to inhibit HO-2. Rat cultures expressing HO-2 showed no
toxicity against 60 or 80 µM H2O2 when treated with 0.1 µM
PMA; note that a reduction in viable cells was reported with 1
µM PMA, an effect suggested to be due to downregulation of
PKC (Dore et al., 1999). The authors reported that bilirubin is
more protective when bound to human serum albumin than on

its own and only at concentrations higher than 100 nM does it
show toxicity on its own (Dore et al., 1999).

These findings were conducted with low concentrations of
bilirubin (< 250 nM), the standard total circulating blood
bilirubin concentration in humans is between 1.71 and 20.5 µM
and therefore may not necessarily reflect the reported findings
in vivo. Bilirubin diffuses into, and out of the brain across
the blood-brain barrier if it is not glucuronidated (Bratlid,
1990; Figure 3). Bilirubin can also reside within the lipid
bilayers either through its carboxylic acid moieties that can bind
with quaternary ammonium groups on phosphatidylcholines or
through hydrophobic binding in the core of the lipid bilayer
(Bratlid, 1990; Figure 3).

Despite the potential neuroprotective aspects of bilirubin,
bilirubin may also contribute to the edema associated with
ICH. Loftspring et al. (2010) hypothesized that unconjugated
bilirubin (UBR, indirect bilirubin) such as that produced by
injured cortical tissue, stimulates the release of cytokines to
recruit microglia, macrophages, and neutrophils to the injury. It
was later shown that bilirubin increased neutrophil infiltration
of mice injected with autologous whole blood (Loftspring et al.,
2011). Fluorescence microscopy of frozen sections showed a
marked increase in the neutrophil count after treatment with
bilirubin compared to untreated control ∼90 vs. ∼40 (n = 4–5;
p ≤ 0.05) as measured by a count of Ly-6G positive cells
and a ∼30% reduction (n = 4–5, p ≤ 0.05) in macrophage
or microglial cells as measured by a count of F4/80 positive
cells. The introduction of neutrophils earlier to the injury may
be associated with a heightened inflammatory response and
comorbid edema (Clark et al., 2008; Loftspring et al., 2011). Other
potential toxic effectors are the oxidation products of bilirubin
(Pyne-Geithman et al., 2005). Bilirubin, while insoluble in water,
is avidly bound by plasma proteins and can be transported to the
liver (Clark et al., 2008; Ritter et al., 2016).

The Fate of Ferrous Iron
Ferric iron has a reduction potential of +0.770 V (1e− +
Fe3+/Fe2+) and can reduce dioxygen (−0.330 V; 1e− + O2/O•−2 )
to superoxide or H2O2 to hydroxyl radical (+0.380 V; H+ + 1e− +
H2O2/HO• + H2O). Dioxygen reduced by Fe(2+) to superoxide
can be dismutated by SOD to H2O2, O2 and H2O. The resulting
H2O2 can be reduced by Fe(2+) through the Fenton reaction to
hydroxyl radical and hydroxide (Fe2+ + H2O2 -> Fe3+ + HO•
+ HO−). In a third reaction, O•−2 can reduce Fe(3+) to Fe(2+)
whereupon H2O2 can be reduced to HO•, O2, and HO− through
the Haber-Weiss reaction. Hydroxyl radical rapidly peroxidizes
proteins (albumin: 8 × 1010 M−1 s−1), nucleic acids (RNA:
1× 109, DNA: 8× 108 M−1 s−1), and lipids (linoleic acid: 9× 109

M−1 s−1) as well as the antioxidants ascorbate and glutathione,
1× 1010 and 1.4× 1010 M−1 s−1, respectively (Davies, 2016).

Ultimately, all roads lead to hydroxyl radicals if iron is
involved. The intracellular check mechanism of free iron is its
capture and storage by ferritin (FTH; Harrison and Arosio,
1996). Ferritin stores iron in the form of a superparamagnetic
ferrihydrite core that stores approximately 4,500 iron atoms
(Harrison et al., 1976; Chasteen and Harrison, 1999). Ferritin is
a spontaneously self-assembled spherical protein cage consisting
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of 24 subunits with two functional elements, a cage for the
de-mineralization of the biomineralized iron, and the transport
into and out of the cage via a 3-fold channel (Badu-Boateng
and Naftalin, 2019). The regulation of iron transport through the
channel depends on the availability of ascorbate and hydrogen
peroxide to reduce and oxidize iron as it leaves and enters
the ferritin, respectively. H2O2 and ascorbate compete for the
reduction site of ferric iron leading to a regulatory effect: under a
reducing environment, iron is released into the cytosol, however,
under an oxidizing environment, iron is sequestered in the
ferritin (Badu-Boateng and Naftalin, 2019).

Another check on ferrous iron is lactoferrin (LTF), a serum
iron transport protein produced by neutrophils analogous to
transferrin (Ohgami et al., 2005; Zhao et al., 2018). Lactoferrin
tightly binds ferric iron (kd = 10−20 M) and prevents its
participation in the Fenton cycle with ferrous iron (Zhao et al.,
2018). The key difference between transferrin and lactoferrin is
that lactoferrin is less sensitive to pH than is transferrin and can
maintain the chelation of its iron payload (Baker and Baker, 2004;
Zhao et al., 2018). While transferrin loses its iron at pH = 6,
lactoferrin can maintain its iron chelation until pH = 5 (Baker
and Baker, 2004). In an experimental mouse model of ICH using
autologous blood injections, Zhao et al. (2018) found that LTF
levels in the brain increased despite no change in its mRNA
levels. Neutralization of circulating neutrophils using the Ly-6G
antibody caused significant degradation of neurological deficit
scores (NDS; ∼5.9 to ∼6.8, n = 10, p < 0.05) 3 days after the
injection. In vitro cell models indicated that adding lactoferrin to
media containing lysed RBCs was efficacious in a concentration
range of 10–1000 µg/ml at reducing cytotoxicity in cocultured
neuronal and glial cells (n = 3, p< 0.05; Zhao et al., 2018). Further
support to the potential beneficial effects of lactoferrin is a study
by Zhao et al. (2020) in which injection of a modified lactoferrin
derivative with a longer half-life reduced NDS after injection in
several different ICH models even with a 24 h window.

Mechanism of Ferroptosis
Ferroptosis appears to be a form of cell death that can be triggered
by glutathione (GSH) depletion and iron excess which leads
to the accumulation of lipid reactive oxygen species (L-ROS;
Cao and Dixon, 2016; Figure 4). Cystine (Cys2) is imported
via the cystine/glutamate antiporter System x−c (SLC7A11)
and is used to synthesize the stoichiometric antioxidant GSH
(Lewerenz et al., 2013). GSH is synthesized through a multistep
process. Cystine from the extracellular space is exchanged
for glutamate and then reduced by intracellular glutathione,
or thioredoxin reductase 1 (TRR1) to cysteine (Cys) and
CyS-SG (-SG; glutathiyl; Conrad and Sato, 2012). Once reduced,
cysteine is conjugated to glutamate via its side chain carboxylate
by glutamylcysteine ligase (GCL) to form γ-glutamylcysteine.
Glutathione synthetase (GSS) conjugates glycine to the cysteinyl
carboxylate to form glutathione as the product (Doll and Conrad,
2017). As discussed, glutathione can act on its own to reduce
oxidized species, or it can act as a substrate for enzymes such as
glutathione peroxidase 4 (GPX4; Cao and Dixon, 2016; Ingold
et al., 2018). GPX4 is the principal regulator of polyunsaturated
fatty acid (PUFA) oxidation (Feng and Stockwell, 2018). GSH

depletion or inactivation of GPX4 results in the uncontrolled
oxidation of PUFAs to form PUFA peroxyl radicals (PUFA-
OO*) and PUFA peroxides (PUFA-OOH; Doll and Conrad,
2017), which then are anchored to the plasma membrane by
ACSL4 and LPCAT3 (Doll et al., 2017; Agmon et al., 2018),
leading to membrane damage and ferroptosis sensitization
(Cao and Dixon, 2016).

Lipid peroxides are the critical intermediate that activates
ferroptosis by oxidizing PUFAs in lipid membranes and
forming additional PUFA peroxyl radicals. This chain
reaction is normally inhibited by GPX4 by a two electron
reduction of PUFA-OOHs to non-toxic lipid alcohols (PUFA-
OH; Girotti, 1998; Cao and Dixon, 2016). Arachidonic
phosphatidylethanolamines, a specific class of PUFA, appear to
mediate ferroptosis (Doll et al., 2017; Kagan et al., 2017; Agmon
et al., 2018), suggesting that targeting the PE pathway provides a
therapeutic approach to prevent cell death.

Ferroptosis can be triggered not only by GSH depletion but
also by iron overload, e.g. hemoglobin degradation. At any given
time there is an amount of iron available in the cytosol to be
used elsewhere; this ill-defined feature is the Labile Iron Pool
(LIP) and acts as a steady-state repository for iron as it is
shuffled between demands (Chutvanichkul et al., 2018; Philpott
et al., 2020). The composition of the LIP is not clearly defined,
no specific set of molecules have been found associated with
intracellular iron. However, there are known iron chaperones
which transport iron specifically to different recipients (Hider
and Kong, 2011; Philpott et al., 2020). Multiple mechanisms
actively control iron homeostasis via FTH, transferrin (Tf),
transferrin receptor (TfR), LRP1, HCP1, and ferroportin (FPN;
Yan and Zhang, 2019). Tf and TfR import non-heme Fe3+

into the cell, where Fe3+ is reduced to Fe2+ by ferrireductases.
Once absorbed, iron can be used for heme synthesis, exported
via FPN, or incorporated into storage molecules FTH, thus,
prevent iron retention and toxicity (Richardson and Ponka, 1997;
Lei et al., 2019). Excess uptake and deficient storage result in
an abundant Fe3+ ion in the cytoplasm. As Fe3+ accumulates
and reaches the threshold Fe3+: Fe2+ ratio, from 1:1–7:1, iron
produces massive ROS and initiates rapid lipid peroxidation
via Fenton reaction (Braughler et al., 1986; Lesnefsky, 1992;
Harrison and Arosio, 1996).

In a related pathway, cell death may be caused by excess
iron being captured by chaperone PCBP1 which activates
heat-inducible factor 1α prolyl hydroxylases (HIF-PHDs) that
then translocate to the nucleus and promote the expression
of death genes associated with leucine zipper transcription
factor ATF4 (Chac1, chop, Trib3; Ratan, 2019). Indeed, multiple
transcription factors are associated with ferroptosis (Dai et al.,
2020), one of the most important is NFE2L2 or NRF2, a basic
leucine zipper transcription factor that binds to antioxidant
response elements (AREs) and thus plays a major role in
regulating antioxidant genes as well as regulation of multiple
anti-ferroptosis genes involved in iron metabolism (Ma, 2013;
Shimada et al., 2016).

GPX4 is considered a central regulator of ferroptosis and
a common therapeutic strategy is to address GPX4 and its
downstream targets. Bersuker et al. (2019), Doll et al. (2019)
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FIGURE 4 | Ferroptosis in the Context of Iron-Overload in ICH. Glutathione is synthesized using cystine as a substrate for cysteine which is coupled to glutamate
and glycine in two steps. Glutathione can be used as a reducing substrate for glutathione peroxidase (GPX4) to reduce polyunsaturated fatty acid (PUFA) lipid
peroxides to PUFA-OHs and is oxidized to glutathione disulfide (GSSG). GSH can be recycled from GSSG by glutathione reductase at the expense of NADPH. In a
high iron-overload situation such as ICH, iron is imported into the cell in a heme group (brown boxes) or otherwise via divalent metal transporter 1 (DMT1), transferrin
receptor (TfR1), low-density lipoprotein receptor-related protein (LRP1), and proton-coupled folate transporter (HCP1). Heme degradation takes place via HO-1 or
HO-2 (HO-1/2) which releases Fe(2+) into the cell that can participate in the Fenton reaction. Unregulated ferrous iron in the cell can react with hydrogen peroxide to
form hydroxyl radicals which can generate PUFA radicals and eventually PUFA peroxides in the presence of oxygen which are quenched by GPx4. Iron overload may
also activate HIF-PHDs and the expression of ATF4 death-associated genes.

and Kraft et al. (2020) demonstrate two GPX4-independent
systems that modulate ferroptosis resistance. Bersuker et al.
(2019) and Doll et al. (2019) showed that an endogenous
ferroptosis suppressor protein (FSP1) acting parallel to the
canonical GPX4. FSP1 is an NADH-dependent oxidoreductase.
FSP1 then localizes to lipid droplets and the plasma membrane,
reduces CoQ10, and suppresses lipid peroxidation. Disrupting the
FSP1 pathway via pharmacological treatment with iFSP1 in vitro,
and FSP1 knockouts in vivo sensitize the organism to ferroptosis
(Bersuker et al., 2019; Doll et al., 2019). Recently, another
pathway that regulates ferroptosis via CoQ10 was reported (Kraft
et al., 2020). This pathway involved GTP cyclohydrolase 1
(GCH1), an enzyme required for the synthesis of CoQ10, and is
upregulated in response to multiple ferroptosis inducers without
altering GXP4-dependent factors. GCH1 selectively inhibits
oxidation of di-polyunsaturated fatty acid phospholipids (Kraft

et al., 2020) promoting resistance to ferroptosis and cell survival.
GCH1 downstream molecules, especially dihydrobiopterin
(BH2) and tetrahydrobiopterin (BH4) disrupt CoQ10 synthesis
(Kraft et al., 2020) and suggest additional treatment targets
(e.g., FSP1-CoQ10 and GCH1-BH4).

Iron and the Development of Diseases
Because iron plays a vital role in biological processes, including
oxygen transport, protein synthesis, and electron transport, it
requires intensive regulation to maintain homeostasis. Relatively
small changes can exhibit larger effects on the body, and has
been implicated in disorders ranging from anemia (Abbaspour
et al., 2014) to neurodegenerative diseases (Perry et al., 2018),
reproductive disorders (Ng et al., 2019), cardiovascular disease
(Kobayashi et al., 2018) and tumors (Basuli et al., 2017;
Yamaguchi et al., 2018).
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Iron and Ferroptosis in ICH
ICH is an example of the pathological release of Hb and
its derivatives. RBC lysis begins one day after the damage
(Aronowski and Zhao, 2011), results in a sustainable iron buildup
starting at day 3 to at least 4 weeks (Wu et al., 2003). Most
of the iron distributes centrally in the basal ganglia, thalami,
and white matter (Dietrich and Bradley, 1988). Nonheme iron
not only generates excessive ROS and induces oxidative brain
damage but appears to also activate ferroptosis and contributes
to pathogenesis after ICH. As early as the 6 h time-point there is
a 5.5-fold increase in Tf protein expression; seven days later Tf
levels return to the basal level (Xie et al., 2019).

The use of ferroptosis inhibitors prevents neuronal death and
can rescue neuron loss in a variety of models (Li et al., 2017a;
Kenny et al., 2019; Xie et al., 2019). Significantly, ferrostatin-
1, lipid radical-trapping antioxidant, at the most effective dose
10 µM in vitro, reduces Hb-induced cell death from 83 to 2%
and decreases up to 50% lipid ROS formation (Li et al., 2017a).
Other drugs targeting lipid ROS, such as the flavone triacsin
C and the polyunsaturated hydrazone baicalein, also provide
similar protections (Kenny et al., 2019) as inhibitors of the
ferroptosis promoters 15-lipoxygenase 2 (15-LOX) and acyl-CoA
synthetase long-chain family member 4 (ACSL4). Additionally,
emerging studies have shown promising therapeutic benefits
of ferroptosis inhibitors in the prevention of secondary brain
injury caused by iron-mediated toxicity in rodent and piglet
models (Hua et al., 2006; Gu et al., 2009; Okauchi et al., 2009;
Jaremko et al., 2010; Li et al., 2017b). For example, post-ICH,
iron accumulates, and is associated with caudate atrophy after
3 months (Hua et al., 2006). The administration of an iron
chelator deferoxamine (DFO) reduced 50% of ICH-induced
ferritin upregulation in the perihematomal zone (Hua et al.,
2006). DFO also prevented neuronal degeneration and white
matter injury in piglet models (Gu et al., 2009). A more brain
permeable iron chelator, VK28, showed greater restoration of
neurological function, white matter damage, and mortality rate
than DFO (Li et al., 2017b).

Ferroptosis can also be inhibited with selenium. Alim et al.
(2019) found that glutathione peroxidase 4 (GPX4) among
other selenoproteins was upregulated following collagenase-
induced ICH in rats. Also, hemin on its own can cause
GPX4 expression to increase despite not rescuing the cell.
Intracerebroventricular injection of the Se-containing Tat SelPep
peptide reduced infarct volume after ICH (Alim et al., 2019).
This finding is similar to that reported by Dharmalingam et al.
(2020) with the nano-antioxidant PEG-HCCs, which sensitized
to ferroptosis in murine endothelial cells while a deferoxamine-
functionalized counterpart, DEF-PEG-HCCs reversed this effect
(Dharmalingam et al., 2020).

Roles of Macrophages and Microglia in
ICH
The relationship between erythrophagocytosis and neuronal
ferroptosis after ICH could be a promising clue to the
pathogenic mechanism(s) driving the chronic neuropathological
and neurodegenerative conditions in ICH. However, there is

very limited information available so far on this mechanistic
link. A recent study by Li et al. (2018) demonstrated brain
ultrastructural alterations due to neuronal death and white
matter injury following ICH in the collagenase rodent model.
Notably, the study illustrated the co-existence of ferroptosis,
autophagy, and necrosis in and around the ICH lesions.
Axonal degeneration was observed in the acute phase of
ICH, axonal demyelination was noticed in the striatum and
corpus callosum in the subacute phase. Furthermore, rapid
accumulation of activated resident microglia and infiltrating
monocyte-macrophages was observed around the RBCs in the
microvascular structures and degenerating neurons leading to
erythrophagocytosis as well as clearance of neuronal debris
from the lesions or hematoma regions. While protection against
neuronal ferroptosis may be a key step to prevent overall brain
injury in collagenase-induced ICH mice model (Li et al., 2017a),
for erythrophagocytosis to occur in this setting, sequential
activation and polarization of themicroglial M1–2 phases require
extensive cross-talks between various cytokines induction and
neurons, astrocytes, oligodendrocytes and T lymphocytes (Lan
et al., 2017b), providing multiple opportunities for intervention.

Efficient clearance of damaged RBCs and ferroptotic neurons
are features of initiation of regeneration processes (Neumann
et al., 2009; Youssef et al., 2018) Notably, excessive engulfment
of damaged RBCs (erythrophagocytosis) surrounding the
ICH lesions could, in turn, induce ferroptosis in monocyte-
macrophages (Youssef et al., 2018), resulting in further neuronal
damage, oxidative injury, and activation of proinflammatory
responses. Studies have shown that inducible nitric oxide
synthase (iNOS) expression and nitroxyl free radical enrichment
of activated M1 microglia/macrophages essentially regulate their
susceptibility toward ferroptotic death via reprogramming of
lipid redox mechanism (Kapralov et al., 2020). Emerging studies
have highlighted the pathogenic roles of ferroptosis in several
most common neurodegenerative diseases as well as in ICH
(Weiland et al., 2019).

Iron and Brain Hypoxia in Hemorrhage
In ICH, insufficient oxygen delivery to the brain a hypoxic
environment is induced, activating adaptation responses
mediated by hypoxia-inducible factor (HIF). HIF 1-alpha
(HIF-1α) has a key role in neuroprotection during hypoxia.
Under normal conditions, HIF-1α is degraded by enzymes prolyl
hydroxylase domain (PHD) or factor inhibiting HIF (FIH; Tian
et al., 2011). The lack of oxygen causes PHD and FIH to be
inactivated leading to HIF-1α upregulation and dimerization
with HIF-1β to initiate transcription of hypoxia-responsive
genes (Aragones et al., 2009).

Besides oxygen, iron is another necessary co-factor for
PHD and FIH activities. Hence, iron chelators can be used to
mimic hypoxia, activate HIF-1α, and inhibit neural injury in
experimental models. For example, deferoxamine (DFO) can
stabilize HIF-1α, and restore viability against oxidative stress
(Siddiq et al., 2005). A similar compound, deferasirox (DFR)
has advantages over DFO because it can be administered orally
at half the dose than DFO with comparable neuroprotection
within a 24 h onset (Zhao and Rempe, 2011). However, in
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clinical trials, any benefit has been modest, perhaps because of an
overwhelming cascade of not just iron but other toxic breakdown
products and/or that other cellular pathways are engaged, such as
senescence, discussed below.

Ferroptosis and Oxytosis May be the Same
Pathway
Decades before the description of ferroptosis with its dependence
on iron, a cell death pathway that resulted in similar endpoints
including lipoxygenase activation and glutathione depletion was
described, and because it occurred in the context of the release
of reactive oxygen species was termed oxytosis (Murphy et al.,
1989). The experimental conditions that led to the identification
of oxytosis were exposure to the excitatory transmitter glutamate
and depletion of glutathione, with a massive influx of calcium
considered amajor contributor (Murphy et al., 1989;Maher et al.,
2018). Indeed, lipophilic antioxidants such as Vitamin E were
able to mitigate toxicity (Miyamoto et al., 1989), the toxicity that
was enhanced in low cystine (precursor to glutathione) media.
The link to glutamate-stimulated inhibition of cystine transport
was quickly made identifying glutathione depletion as a key
event. As can be gathered from both the inciting events and
consequences, oxytosis shares many similarities with ferroptosis.
The key differentiator of these two cell death pathways was the
more recent finding that intracellular iron was also increased,
associated with alterations in transferrin receptor and ferritin
chains, and the reduction in cell death that occurred with
iron-chelating agents (Yang and Stockwell, 2008). Reviewing
the overlap between these two pathways, some have concluded
that indeed these represent a similar cell death process,
with the later inclusion of iron as the primary differentiator
(Lewerenz et al., 2018).

Iron and Senescence in ICH
A variety of stress stimuli can, instead of causing cell death,
induce a state of senescence (Childs et al., 2014, 2015).
While usually associated with aging, cells can also undergo
stress-induced premature senescence (SIPS; Sun et al., 2018)
through events such as oxidative injury and acute DNA damage
response signaling (Chen et al., 1995; Dharmalingam et al.,
2020). Senescent cells are typically larger with altered organellar
structure, characteristic expression of a variety of cell cycle
arrest, inflammation, and other molecules (Yoon et al., 2006;
Childs et al., 2015), including the accumulation in lysosomes of
senescent associated beta-galactosidase (Lee et al., 2006). While
not specific, a pattern of expression and cellular morphology
can identify the transitional states, resulting ultimately in what
is termed the senescence-associated secretory phenotype where
cells secrete high levels of inflammatory mediators and other
factors (Coppe et al., 2010). This phenotype can influence and
indeed recruit neighboring cells.

Senescent cells also accumulate iron. However, iron overload
in senescence does not sensitize the cells to ferroptosis. Instead,
they inactivate ferritinophagy, the process of ferritin (FTH)
degradation, and inhibit ferroptosis (Masaldan et al., 2018).
Senescent cells enter the growth arrest phase and are resistant
to a variety of cell death pathways, including ferroptosis. The

hypothesis is supported if we carefully examine data from the
downstream effect of GSH depletion. Besides lipid peroxidation
and ferroptosis, it has been shown to simultaneously trigger
autophagy and stress-induced premature senescence (SIPS; Sun
et al., 2018), with SIPS potentially having a more dominant
effect on cell phenotype. Under a variety of stressors that
induce SIPS, cells survive and enter senescence instead of cell
death, but the senescent phenotype can result in a nidus of
inflammation, and resulting nidus for inflammation may induce
further, non-ferroptotic mechanisms of injury contributing to
cellular dysfunction (Dharmalingam et al., 2020).

Our group has recently linked senescence and ferroptosis in
ICH models. Hemin (5 µM), likely through rapid induction of
persistent DNA double strand breaks induced senescence in 40%
of cultured neurons or endothelial cells after 24 h and prevented
cell death after the addition of a normally toxic level (90 µM)
of iron to the media (Dharmalingam et al., 2020). If the same
occurred in-vivo, it would suggest that a subset of cells exposed
to hemin become both pathological inflammatory and resistant
to the high iron and oxidative stress environment generated
in the ICH. While a highly active nano-antioxidant, PEGylated
hydrophilic carbon clusters (PEG-HCCs) could reduce the
presence of senescent cells, it increased sensitivity to ferroptosis
and other cell death pathways after the addition of iron,
thus in some ways negating the benefit of reducing senescent
cells especially in the high iron-overload conditions and ROS
milieu of ICH. Importantly, both senescence and ferroptosis
could be prevented by treatment with deferoxamine-conjugated
PEG-HCCs (Dharmalingam et al., 2020). This result underscores
that addressing any single disease pathway may not be sufficient
to ameliorate the major deleterious effects of ICH.

Because the accumulation of senescent cells is a feature of
aging, their presence may influence outcome following ICH. It is
generally thought that outcome is related to the survival of tissue,
and in the context of ICH, cells are likely exposed to pathological
processes for a prolonged period, and indeed, most recovery
occurs within 6 months after the injury (Kitago and Ratan,
2017). Thus, cells must adapt to a persistent pathological and
highly oxidating environment. In aging cells, iron accumulates
and favors cells with iron-induced ROS resistance to survive
(Toyokuni et al., 2020). Increased iron content is a feature of
senescent cells and so senescent cells may be in a favorable
condition to endure chronic ROS. However, given that senescent
cells contribute to pathological inflammation, their ability to
survive this chronic oxidative environment may inhibit good
functional outcomes andmay be a factor in poorer response from
ICH related to age (Mandava et al., 2019).

CONCLUSION

This review article has described the complex biology of
Hb oxygen binding, the role of iron in regulating Hb
function, and the multiple neurotoxic events associated with
the release of Hb and its degradation products in ICH, all of
which provide multiple opportunities to generate pathological
processes. Cell death pathways have been described, including
their vulnerabilities to intervention. Prominent among these
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targets include reactive radicals that are generated both as part
of the redox reactions these constituents participate in but also
potentiated through the release of free iron and its catalytic
generation of additional radicals. While targeting some of these
pathologies has been effective in pre-clinical models, the benefit
has been underwhelming clinically. Removal of blood itself is a
rational target but is invasive and the optimum methods and
blood removal goals are still under investigation. Lactoferrin
is emerging as a pleiotropic therapy with both excellent brain
penetration, the capture of free iron, and multiple other
potentially beneficial effects that await clinical confirmation
(Zhao et al., 2018).

For the most part, however, non-iron mediated effects
of blood breakdown products have been less of a focus,
and prominent among these include hemin’s stimulation of
both ferroptosis and the senescent phenotype. The resistance
to ferroptosis by senescent cells had been well known and
more recently confirmed after exposure to hemin, suggesting
anti-ferroptosis therapy will be partially effective only in those
cells not senescent. While the contribution of senescent cells to
clinical outcomes in ICH is not established, in other conditions,
it is considered a major factor in inflammation and downstream
damaging effects. The upshot of these multiple events is

that no single therapy is likely to be optimally effective, and
therefore combination therapies, removal of blood plus therapies
directed at specific cell death and phenotypic pathways may be
required to yield therapies that can improve outcome from this
devastating condition.
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