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ABSTRACT 
 

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two most common 
pathology subtypes of primary liver cancer (PLC). Identifying DNA methylation biomarkers for diagnosis of 
PLC and further distinguishing HCC from ICC plays a vital role in subsequent treatment options selection. To 
obtain potential diagnostic DNA methylation sites for PLC, differentially methylated CpG (DMC) sites were 
first screened by comparing the methylation data between normal liver samples and PLC samples (ICC 
samples and HCC samples). A random forest algorithm was then used to select specific DMC sites with top 
Gini value. To avoid overfitting, another cohort was taken as an external validation for evaluating the area 
under curves (AUCs) of different DMC sites combination. A similar model construction strategy was applied 
to distinguish HCC from ICC. In addition, we identified DNA Methylation-Driven Genes in HCC and ICC via 
MethylMix method and performed pathway analysis by utilizing MetaCore. Finally, we not only performed 
methylator phenotype based on independent prognostic sites but also analyzed the correlations between 
methylator phenotype and clinical factors in HCC and ICC, respectively. To diagnose PLC, we developed a 
model based on three PLC-specific methylation sites (cg24035245, cg21072795, and cg00261162), whose 
sensitivity and specificity achieved 98.8%,94.8% in training set and 97.3%,81% in validation set. Then, to 
further divide the PLC samples into HCC and ICC, we established another mode through three methylation 
sites (cg17769836, cg17591574, and cg07823562), HCC accuracy and ICC accuracy achieved 95.8%, 89.8% in 
the training set and 96.8%,85.4% in the validation set. In HCC, the enrichment pathways were mainly 
related to protein folding, oxidative stress, and glutathione metabolism. While in ICC, immune response, 
embryonic hepatocyte maturation were the top pathways. Both in HCC and ICC, methylator phenotype 
correlated well with overall survival time and clinical factors involved in tumor progression. In summary, 
our study provides the biomarkers based on methylation sites not only for the diagnosis of PLC but also for 
distinguishing HCC from ICC. 
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INTRODUCTION 
 

Primary liver cancer (PLC) is the sixth commonly 

diagnosed carcinoma, and it remains the fourth leading 

cause of cancer-related death. Of note, death from PLC 

among males is next to lung cancer [1]. The number of 

PLC patients is increasing worldwide which will lead to 

a serious health issue and high economic burden. In 

addition to rare hepatocellular-cholangiocarcinoma (H-

ChC), the most common PLC pathological types were 

hepatocellular carcinoma (HCC) and intrahepatic 

cholangiocarcinoma (ICC) [2]. 

 

The proportion of HCC in PLC was 70%-80%. HCC 

originates from liver cells. Some risk factors are 

responsible for its occurrence and development, 

including hepatitis virus infection, excessive alcohol 

consumption, autoimmune diseases, and aflatoxin. ICC 

is the second most common PLC, accounting for 8% - 

15% of liver malignant tumors [3]. It originates from 

intrahepatic bile duct epithelial cells and is mainly 

associated with biliary tract diseases, for example, 

sclerosing cholangitis and hepatolithiasis [4]. 

 

For some hepatic occupied diseases with atypical 

imaging and biomarker changes, it is usually difficult to 

accurately identify the benign and malignant lesions. 

Because the treatment methods of HCC and ICC are 

completely different, misdiagnosed may bring 

disastrous consequences to the patients. Sorafenib was 

the first systemic therapy approved for the first-line 

treatment of advanced HCC [5]. While the combination 

of cisplatin and gemcitabine is the current first-line 

chemotherapy for patients with advanced-stage 

cholangiocarcinoma [6]. Accurate diagnosis of PLC 

type is very important for selecting appropriate 

treatment methods and making a follow-up schedule. 

Previous studies have demonstrated that serum 

biomarkers such as CA19–9 and AFP could be used to 

differentiate HCC from ICC but the sensitivity and 

specificity were not satisfied [7]. Therefore, some 

strategies are urgently needed to improve the certainty 

and feasibility of diagnosis. 

 

DNA methylation in the promoter CpG island (CGI) of 

the tumor suppressor gene (TSG), as an important 

mechanism, usually induces the occurrence and 

progression of many kinds of cancers [8]. Abnormal 

methylation of CpG sites in TSGs promoter can change 

the spatial structure of chromatin, resulting in low or no 

expression of tumor suppressor genes [9]. Recent 

studies have shown that abnormal gene methylation is 

closely correlated with the occurrence of HCC and ICC, 

which has a potential role in screening the diagnostic 

biomarkers and therapeutic targets. A previous study 

demonstrated that circulating tumor DNA methylation 

markers can be used to distinguish HCC from normal 

tissues, with a sensitivity of 85.7% and a specificity of 

94.3% [10]. Furthermore, DNA methylation of ten CpG 

sites could be used to distinguish tumor and normal 

tissue in patients with liver cancer, with a sensitivity of 

86% and specificity of 100% [11]. However, these 

studies only focus on the diagnostic markers of HCC. 

Few studies are concentrating on the diagnostic markers 

to distinguish HCC from ICC. In this context, this study 

aimed to screen methylation biomarkers that could be 

used to not only confirm the PLC but also distinguish 

HCC from ICC, which is extremely important for the 

choice of the subsequent treatment plan. 

 

RESULTS 
 

Landscapes of differentially methylated sites in HCC 

and ICC 

 

From the training data set in Table 1, methylation data of 

96 normal samples and 402 HCC samples were 

compared. A total of 8,177 hypermethylated sites and 

3,152 hypomethylated sites were identified in HCC. 

While in the comparison of 96 normal samples and 108 

ICC samples, there were 33,449 hypermethylated sites 

and 1,049 hypomethylated sites in ICC. Then according to 

the genomic region, we visualized the distribution of these 

DMC sites and corresponding genes. We can see that 

hypermethylation mainly occurred in CpG islands 

regardless of HCC (Supplementary Table 1 and Figure 

1A, 1B) or ICC (Supplementary Table 1 and Figure 1E, 

1F). However, hypomethylation accounted for a higher 

proportion in the HCC gene body (Supplementary Table 1 

and Figure 1C, 1D) compared with ICC (Supplementary 

Table 1 and Figure 1G, 1H). In promoter regions, both 

cancer types were dominated by hypermethylation 

(Supplementary Table 1 and Figure 1C, 1D, 1G, 1H). 

Such hypermethylation in promoter and hypomethylation 

in the gene body was considered to be the characteristics 

of solid tumors. The difference in gene body methylation 

level also indicates the heterogeneity between HCC and 

ICC, which proves the feasibility of using DMC sites as 

potential diagnostic biomarkers. 

 

The sites selection strategy of the diagnostic model 

 

To distinguish PLC from benign tumors of the liver, we 

selected the 6,565 common hypermethylated sites and 

187 common hypomethylated sites between HCC and 

ICC as PLC specific sites pool. Based on the mean 

decrease of Gini values of methylation sites calculated 

through the random forest method, we tried different 

combinations from the top 1 site to the top 10 sites as 

diagnostic models (Supplementary Table 2 and Figure 

2A). As Supplementary Table 3 and Figure 2B shows, 

the training set AUC values raised as the number of 
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sites increases, while the validation set AUC values 

declined after 7 sites were included. Hence, to avoid 

overfitting and ensure the performance of the model, 3 

sites (cg24035245, cg21072795, and cg00261162) were 

selected for economy and simplicity. After model 

evaluation, the PLC and normal diagnostic error rates 

are less than 6% (Figure 2C). The AUCs were 0.991 

and 0.979 in the training set and validation set, 

respectively (Figure 2D, 2E). 

 

Next, 11,759 DMC sites between ICC and HCC were 

used to construct the model for differentiating HCC from 

ICC followed the same method as described above. The 

top 10 sites with Gini values were displayed in 

Supplementary Table 2 and Figure 2F. Although the 

training set AUC ascended significantly with the augment 

of the number of sites, the validation set AUC dropped 

sharply more than 4 sites (Supplementary Table 3 and 

Figure 2G). The misdiagnosis rate of ICC is about 10%, 

slightly higher than that of HCC (Figure 2H). The AUC in 

the training set and validation set based on 3 sites 

(cg17769836, cg17591574, and cg07823562) are 0.954 

and 0.972, respectively (Figure 2I, 2J). 

 

Performance of the diagnostic model 

 

In the training set consisting of 96 normal and 510 PLC, 

the true positive rate and the true negative rate were 

98.8% (504/510) and 94.8% (91/96), respectively (Figure 

3A). Because one PLC sample has missing values, 252 

normal and 599 PLC were combined as a validation set. 

The sensitivity and specificity were 97.3% (583/599) and 

81% (204/252), respectively (Figure 3C). Compared with 

the normal group, cg24035245 was hypermethylated, 

cg21072795 and cg00261162 were hypomethylated in the 

HCC group regardless of training set or verification set 

(Figure 3B, 3D). 

 

For three sites discriminating HCC and ICC, four 

HCC samples with missing values were removed. The 

diagnostic accuracies of HCC were 95.8% (385/402) 

and 96.8% (484/500) in the training set and external 

validation (Figure 3E, 3G). Consistent with the 

previous results (Figure 2H), the diagnostic accuracies 

of ICC were lower, 89.8% (97/108) in the training set 

(Figure 3E) and 85.4% (82/96) in the validation set 

(Figure 3G). Compared with HCC, the methylation 

levels of the three sites were higher in ICC in the 

training set and verification set (Figure 3F, 3H). 

 

Taken together, diagnostic models based on random 

forest algorithm performed well in distinguishing PLC 

from normal and distinguishing HCC from ICC. 

 

DNA methylation-driven genes and related 

pathways in HCC and ICC 

 

DNA methylation in the promoter region or near 

transcription initiation sites always negatively regulated 

corresponding gene transcription [12]. Among these

 

 
 

Figure 1. Distribution of differentially methylated sites and genes in HCC and ICC. Distribution of differentially methylated sites 
according to CpG island location in HCC (A) and ICC (E). Distribution of differentially methylated genes according to CpG island location in HCC 
(B) and ICC (F). Distribution of differentially methylated sites according to the distance to the TSS in HCC (C) and ICC (G). Distribution of 
differentially methylated genes according to the distance to the TSS in HCC (D) and ICC (H). 
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Figure 2. Screening of diagnostic sites. The top 10 methylation sites with indicated Gini values for distinguishing PLC and normal (A). The 
AUC curves of the diagnostic prediction model (PLC versus Normal) in the training and validation sets based on indicated sites combination (B). 
Evaluation of diagnostic model (PLC versus Normal) based on three sites (C). The receiver operating characteristic (ROC) curves of diagnostic 
model (PLC versus Normal) based on three sites in the training (D) and validation sets (E). The top 10 methylation sites with indicated Gini values 
for distinguishing HCC and ICC (F). The AUC curves of the diagnostic prediction model (HCC versus ICC) in the training and validation sets based on 
indicated sites combination (G). Evaluation of diagnostic model (HCC versus ICC) based on three sites (H). The receiver operating characteristic 
(ROC) curves of diagnostic model (HCC versus ICC) based on three sites in the training (I) and validation sets (J). 
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DMC sites, a total of 89 DNA Methylation-Driven 

genes (84 hypermethylation genes and 5 hypo-

methylation genes) were identified in HCC and 28 DNA 

Methylation-Driven genes (23 hypermethylation genes 

and 5 hypomethylation genes) in ICC (Figure 4A, 4C 

and Supplementary Tables 4, 5). The results showed 

that most of the DNA Methylation-Driven genes were a 

hypermethylated and down-regulated expression in

 

 
 

Figure 3. Effectiveness of diagnostic models. The diagnosis efficiency of the model for distinguishing between PLC and normal in the 
training set (A) and validation set (C). The heatmaps (PLC versus Normal) including real status, predict status, data source, and methylation 
values of indicated sites in the training set (B) and validation set (D). The diagnosis efficiency of the model for distinguishing between HCC 
and ICC in the training set (E) and validation set (G). The heatmaps (HCC versus ICC) including real status, predict status, data source, and 
methylation values of indicated sites in the training set (F) and validation set (H). 
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tumor tissues. To explore the potential function of these 

genes, pathway enrichment analyses were achieved by 

MetaCore. In HCC, the enrichment pathways were 

mainly related to protein folding, oxidative stress, and 

glutathione metabolism (Figure 4B), which indicates 

that HCC is a metabolic disease. In ICC, these genes are 

highly enriched in immune response, embryonic 

hepatocyte maturation, and tissue factor signaling in 

cancer via PAR1 and PAR2 (Figure 4D), which 

suggested the tissue origin of ICC and its close 

relationship with the immune system. 

 

Taken together, the above results indicate that 

integrative analysis of promoter DNA methylation and 

gene expression could facilitate the identification of 

epigenetic driving factors of cancer. 

 

Methylator phenotype based on independent 

prognostic sites in HCC and ICC 

 

Next, 31 independent prognosis associated sites in HCC 

and 204 independent prognosis associated sites in ICC 

were identified through univariate and multivariate 

analyses. Then we performed unsupervised consensus 

clustering based on these sites. In HCC and ICC, the 

areas under the CDF curve did not increase significantly 

after seven categories (Figure 5A, 5B, 5D, 5E). 

Therefore, HCC and ICC samples were classified into 

seven clusters. Besides, each cluster has relatively high 

consistency and low variation (Figure 5C, 5F). 

 

The heatmaps annotated with clinical features and DNA 

methylation subgroups were shown in Figure 6A, 6C. The 

difference of methylation sites in cluster 5 and 6 was the 

largest compared with the rest of the samples in HCC. By 

comparing the clinical characteristics of different clusters, 

we found that patients in cluster 7 possessed the 

characteristics of early age (≤60 years), early-stage (stage 

I), small tumor size (T1), lymph node-negative (N0), no 

metastasis (M0), and well-differentiated (G3 and G4), 

which are indicators of better prognosis (Supplementary 

Table 6 and Figure 6B). Survival analysis also proves this 

point, cluster 7 has the best prognosis (Figure 6E).  

We can see that stage II and III accounted for the  

largest proportion in cluster 6 with the worst  

prognosis (Figure 6B, 6E). It suggested that

 

 
 

Figure 4. The methylation heatmaps and enrichment pathways of DNA methylation-driven genes. The methylation heatmap of 

DNA Methylation-Driven Genes in HCC (A) and ICC (C). The enrichment pathways of DNA Methylation-Driven Genes in HCC (B) and ICC (D). 
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patients in the later stage always have a shorter overall 

survival time. 

 

In ICC, the methylation profiles of cluster 2 and cluster 

5 have significant differences with other samples 

(Figure 6C). However, their prognosis was the opposite 

(Figure 6F). Compared with patients in cluster 5, more 

advanced stage and tumor invasive extent were 

observed in cluster 2 with the worst prognosis 

(Supplementary Table 7 and Figure 6D). 

 

To sum up, the dysregulated methylation intensity can 

not only be used as prognostic biomarkers but also 

correlated well with clinical factors involved in tumor 

progression. 

 

DISCUSSION 
 

The liver is the most common site of the tumor, and also 

the easily metastatic site of a malignant tumor from 

other organs [13]. HCC and ICC are important 

components of PLC. They have similar clinical 

symptoms and imaging findings, such as a round mass 

in the liver, abdominal pain, and abdominal distension, 

etc. [14, 15]. But in terms of etiology, pathogenesis, and 

treatment, ICC is different from HCC. Most patients 

with ICC are advanced at the time of diagnosis, it 

always hard to radical resect these no complete capsule 

tumors infiltrating the surrounding organs. Hence, the 

development of useful diagnostic biomarkers will 

contribute to timely and effective treatment, which may 

improve the prognosis of patients. 

 

The CpG methylation site is one of the most powerful 

biomarkers in cancer. Accumulated studies have shown 

that the occurrence and development of HCC and ICC 

were associated with promoter hypermethylation [16]. 

Dysregulated DNA methylation occurs in the early 

stage of cancer, even though the tissue at this time was 

pathologically diagnosed as normal [17]. The major

 

 
 

Figure 5. Methylation typing based on independent prognostic sites. Consensus cumulative distribution function (CDF) of HCC (A) 
and ICC (D). The X-axis represents the consensus index, and the Y-axis represents the CDF curve. The area under the CDF curve for each 
category in HCC (B) and ICC (E). The X-axis represents the category number k, and the Y-axis represents the CDF curve. Consensus matrix in 
HCC (C) and ICC (F). Different clusters are annotated with indicated numbers and colors. Color gradients in matrix represent consensus 
values, white corresponds to 0 and dark blue to 1. 



 

www.aging-us.com 17599 AGING 

changes in tumors were composed of global changes 

and local changes at the site level (especially hyper-

methylation of CpG island and promoter) [18]. The 

whole-genome DNA hypomethylation (GDH) and the 

CpG island methylator phenotype (CIMP) were 

identified at about 90% tumor samples [11]. Therefore, 

epigenetic changes can be detected alone or combined 

with other biomarkers for accurate diagnosis of HCC 

and ICC. 

Through differential methylation site analysis, we 

found that promoter regions were the most 

hypermethylated in tumors. The dysfunction of tumor 

suppressor genes is associated with aberrant 

methylation in the promoter region, which leads to 

tumorigenesis. It was reported that in tumor hypo-

methylation mainly occurs in the gene body region, 

while hypermethylation in the promoter region [19]. 

This is consistent with our findings. Besides,

 

 
 

Figure 6. The methylator phenotype landscape of HCC and ICC. Heatmaps including DNA methylation classification and clinical 
factors indicated in HCC (A) and ICC (C). Comparison of clinical factors indicated among the DNA methylation clusters in HCC (B) and ICC (D).  
Kaplan-Meier survival curves of each cluster in HCC (E) and ICC (F). 



 

www.aging-us.com 17600 AGING 

HCC and ICC have their specific methylation 

changes.  

 

The existing research mainly focused on diagnostic 

biomarkers of HCC or ICC, and few studies have been 

conducted on biomarkers used to distinguish HCC 

from ICC. The key finding of this research is the 

identification of several specific methylated sites as 

potential diagnostic biomarkers for not only 

distinguishing PLC from normal but also HCC from 

ICC. Random forest is an ensemble learning method, 

which has extremely high accuracy, can effectively 

run-on large data sets. The contribution of sites can be 

reflected by Gini values. However, how many sites 

are included to ensure the accuracy and universality of 

the model has become a new challenge. Here we 

proposed an approach to prevent the overfitting of 

models. The AUCs of the models will expand with the 

increase of the included variables in the training sets 

of two diagnostic models. We also calculated the 

AUCs of different site combinations in the validation 

set. As expected, when the AUCs reach the peak, it 

will decrease with the increase of the included sites. 

To reduce the overfitting, we chose the least 

combination of sites that could reach the peak of AUC 

for its cost-effectiveness. We first build a PLC 

diagnostic model including cg24035245, cg21072795, 

and cg00261162 to distinguish PLC from normal.  

If it is PLC, we further differentiate between HCC 

 and ICC through another three sites (cg17769836, 

cg17591574, and cg07823562). By detecting  

these six methylated sites, we can identify the 

pathological subtypes of PLC with high sensitivity 

and specificity. 

 

Additionally, we identified some DNA Methylation-

Driven Genes in HCC and ICC by integrated analyzing 

DNA methylation and gene expression data. 

Hypermethylation genes account for high proportions in 

both cancer types. In HCC, DNA Methylation-Driven 

Genes are mainly involved in metabolic-related 

signaling pathways. While in ICC, they mainly regulate 

the origin and immune microenvironment of cholangio-

carcinoma. 

 

Last, we used independent prognostic sites to classify 

HCC and ICC. After survival and clinical correlation 

analyses, we found later stages correlated well with 

methylation sites, which is a biomarker for bad prognosis 

in both tumor subtypes. Of note, ICC infiltration degree is 

a poor prognostic factor for ICC, which should be paid 

more attention to in clinical practice. 

 
There are also some limitations in our study. Because 

biopsy is still traumatic, the diagnostic efficacy of 

these biomarkers should be further verified in 

peripheral blood. In the following study, we will 

develop a simple and sensitive technique to measure 

the methylation level of cell-free ctDNA by extracting 

peripheral blood. By detecting the methylation level 

of ctDNA, we can compare the uniformity of 

methylation level in tumor tissue and blood and 

validate the diagnosis efficiency. 

 

CONCLUSIONS 
 

Our study established a two-step diagnosis model based 

on differentially methylated sites. Firstly, cg24035245, 

cg21072795, and cg00261162 were used to diagnosis 

PLC. If the diagnosis of PLC was considered, 

cg17769836, cg17591574, and cg07823562 were used 

to further distinguish HCC from ICC. Additionally, we 

identified DNA Methylation-Driven Genes related 

pathways and performed methylator phenotype based 

on independent prognostic sites in HCC and ICC, 

respectively. 

 

MATERIALS AND METHODS 
 

Identification of differentially methylated CpG sites 

 

HCC and ICC related DNA methylation array data 

sets of Table 1 detected by Illumina Human 

Methylation450 BeadChip (GPL13534) were down-

load from UCSC Cancer Browser (https://xena 

browser.net/datapages/) and the Gene Expression 

Omnibus (GEO) database (https://www.ncbi.nlm.nih. 

gov/geo/). Probe removal criteria were as follows: (1) 

The missing β value of methylation site >30%; (2) 

Methylation sites in the sex chromosome. Only shared 

methylation sites in training data sets were retained 

and performed Wilcoxon rank-sum tests in three 

groups (96 normal samples versus 402 HCC  

samples, 96 normal samples versus 108 ICC samples, 

and 108 ICC samples versus 402 HCC samples) 

 after replenishing residual missing values with  

the Bioconductor package impute. Sites with an 

 adjusted P-value < 0.05 and a |log2FoldChange| > 1 

(log2FC) were considered DMC sites unless noted 

elsewhere. 

 

Construction and optimization of diagnosis model 

 

The diagnosis process is divided into two steps. The 

first step is the diagnosis of PLC. The second  

step is to further distinguish between HCC and ICC. 

Random forest method was utilized to select candidate 

sites with high Gini values from DMC sites (Normal 

versus PLC: common DMC sites of 96 normal 
samples versus 108 ICC samples and 96 normal 

samples versus 402 HCC samples; ICC versus  

HCC: 108 ICC samples versus 402 HCC samples) 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1. The data sets of DNA methylation. 

Training data set Na ICCb HCCc Total 

TCGA-CHOL 8 30 0 38 

GSE32079 [20] 0 50 0 50 

GSE49656 [21] 4 26 0 30 

GSE60753 [22] 34 2 32 68 

TCGA-LIHC 50 0 370 420 

Total 96 108 402 606 

Validation data set N ICC HCC Total 

GSE89803 [23] 

DS4-pumch [11] 

GSE48325 [24] 

GSE54503 [25] 

GSE56588 [17] 

GSE75041 

GSE77269 [26] 

GSE89852 [27] 

GSE99036 [28] 

GSE107038 [29] 

GSE113017 [30] 

GSE113019 [30] 

4 

10 

18 

66 

10 

0 

20 

37 

0 

40 

29 

18 

96 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

10 

0 

66 

224 

66 

20 

37 

15 

0 

29 

37 

100 

20 

18 

132 

234 

66 

40 

74 

15 

40 

58 

55 

Total 252 96 504 852 
aThe number of the normal samples. 
bThe number of the ICC samples. 
cThe number of the HCC samples. 

 

[31]. Then the combination of diagnostic sites with 

the minimum number and the highest AUC in both 

training and validation data sets (Table 1) were 

confirmed to avoid overfitting. 

 

Pathway analysis of DNA methylation-driven genes 

 

DNA methylation data and RNA-seq counts of 

TCGA-LIHC (41 normal and 364 HCC) and TCGA-

CHOL (8 normal and 30 ICC) were acquired from 

The Cancer Genome Atlas (TCGA) portal 

(https://portal.gdc.cancer.gov/). The mean value of all 

methylation sites in promoter regions (from -1500 to 

+500 of the transcription start sites) was considered as 

the methylation value of the gene. The gene 

expression data were normalized via the edgeR 

method [32]. The DMC sites between normal and 

HCC or ICC were annotated as genes (If a site 

matched multiple genes, the first one was chosen as a 

reference). Then Bioconductor package MethylMix 

was used to screen DNA Methylation-Driven Genes 

(The correlation coefficient between selected gene 

methylation value and gene expression < -0.3  

and an adjusted P-value < 0.05) [33]. Enrichment 

pathway maps were achieved from MetaCore 

(https://portal.genego.com/). The mean values of 

normal samples and tumor samples of gene expression 

normalized by edgeR were used as input files and the 

top 10 enrichment pathways were illustrated by the 

Sankey diagram. 

 

Methylator phenotype of prognostic sites 

 

Independent prognostic related HCC DMC sites were 

screened after univariate and multivariate analyses in 

TCGA LIHC (360 samples with survival time, 229 

samples with complete clinical data). Similar in ICC, 

TCGA-CHOL (30 samples with survival time, 24 samples 

with complete clinical data) and GSE89803 (94 samples 

with survival time, 74 samples with complete clinical 

data) were combined for identifying prognostic sites. 

Based on their respective sites, the R package 

ConsensusClusterPlus was used to perform K-means-

based consensus clustering [34]. The overall survival rates 

were estimated through the Kaplan-Meier approach. 

 

Abbreviations 
 

HCC: hepatocellular carcinoma; ICC: intrahepatic 

cholangiocarcinoma; PLC: primary liver cancer; DMC: 

https://portal.gdc.cancer.gov/
https://portal.genego.com/
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differentially methylated CpG; AUCs: area under 

curves; H-ChC: hepatocellular-cholangiocarcinoma; 

CGI: CpG island; TSG: tumor suppressor gene; GDH: 

genome DNA hypomethylation; CIMP: CpG island 

methylator phenotype; GEO: Gene Expression 

Omnibus; TCGA: The Cancer Genome Atlas. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 

 
Please browse Full Text version to see the data of Supplementary Tables 1, 4, 6, 7. 

 

Supplementary Table 1. Distribution of differentially methylated sites and genes in HCC and ICC. Relating to 
Figure 1. 

 

Supplementary Table 2. The top 10 sites with Gini 
values.  

Variable importance (Normal vs PLC) 

Name Mean decrease in Gini 

cg24035245 94.87351299 

cg21072795 23.72076107 

cg00261162 4.949928302 

ch.7.135065R 2.198442961 

cg17569842 1.361948487 

cg26361533 1.099281746 

cg14373727 1.097849508 

cg11408493 1.081394428 

ch.19.50335620F 1.059194795 

cg16711650 0.956828283 
  

Variable importance (ICC vs HCC) 

Name Mean decrease in Gini 

cg17769836 26.23050017 

cg17591574 13.48966713 

cg07823562 13.19458909 

cg05663031 11.06424738 

cg16366607 10.41241696 

cg19485539 8.265638085 

cg10686044 4.8977075 

cg08417728 4.555597011 

cg20392615 4.218905655 

cg10446401 3.238699251 

Relating to Figure 2A, 2F. 

 

Supplementary Table 3. AUC of models with different number of sites.  

Normal vs PLC 1 site 2 sites 3 sites 4 sites 5 sites 6 sites 7 sites 8 sites 9 sites 10 sites 

Training set 0.968 0.988 0.991 0.991 0.99 0.99 0.991 0.99 0.99 0.995 

Validation set 0.957 0.978 0.979 0.973 0.977 0.981 0.982 0.953 0.956 0.953 
           

ICC vs HCC 1 site 2 sites 3 sites 4 sites 5 sites 6 sites 7 sites 8 sites 9 sites 10 sites 

Training set 0.942 0.95 0.954 0.958 0.986 0.988 0.99 0.99 0.995 0.996 

Validation set 0.943 0.98 0.972 0.978 0.868 0.83 0.75 0.748 0.781 0.83 

Relating to Figure 2G. 
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Supplementary Table 4. Results of differential analysis between normal samples and HCC samples. Relating to 
Figure 4A. 

 

Supplementary Table 5. Results of differential analysis between normal samples and ICC samples.  

Gene Normal mean ICC mean logFC P value Adjust P cor cor P value 

NRSN2 0.265258974 0.12171362 -1.12391 3.93E-06 0.000573 -0.60727 0.000373 

PATZ1 0.65938025 0.34791105 -0.92239 1.64E-07 2.39E-05 -0.60113 0.000443 

SPP1 0.605498782 0.3271744 -0.88806 0.000183 0.026664 -0.59963 0.000462 

C6orf223 0.572928919 0.35862386 -0.67588 3.93E-06 0.000573 -0.58952 0.000608 

AHNAK2 0.790859731 0.58680545 -0.43054 0.000202 0.029526 -0.70736 1.24E-05 

M1AP 0.538616569 0.72546894 0.429655 2.74E-06 0.0004 -0.62173 0.000245 

HORMAD2 0.438715914 0.60332508 0.459649 0.000137 0.020002 -0.82221 2.51E-08 

SERPINA10 0.306045445 0.42803955 0.483998 0.000107 0.015668 -0.6095 0.00035 

ZYG11A 0.316567749 0.46899738 0.567066 0.000182 0.026642 -0.57065 0.000992 

FES 0.400817591 0.60842559 0.602135 1.89E-05 0.002765 -0.78972 2.12E-07 

TMEM176A 0.228656995 0.34725144 0.602796 2.74E-06 0.0004 -0.62337 0.000233 

ADORA2A-AS1 0.349828035 0.57527269 0.7176 7.69E-06 0.001123 -0.58009 0.000779 

EMP3 0.354403029 0.58503871 0.723141 0.000202 0.029526 -0.6061 0.000385 

KLF15 0.258977664 0.43466174 0.747065 5.37E-05 0.00784 -0.65116 9.74E-05 

TAT 0.293132521 0.49681662 0.76116 5.56E-06 0.000812 -0.63698 0.000154 

HPX 0.416278862 0.73742367 0.824943 1.84E-06 0.000269 -0.71835 7.82E-06 

TF 0.263338122 0.46728678 0.827392 2.74E-06 0.0004 -0.62542 0.000219 

A2M 0.249939542 0.4816613 0.94644 2.74E-06 0.0004 -0.6927 2.22E-05 

DEPDC7 0.104488228 0.2085257 0.996885 1.06E-05 0.001541 -0.59664 0.000501 

RRN3P1 0.147728654 0.32820824 1.151662 3.25E-05 0.004747 -0.68214 3.30E-05 

IGF1 0.286284071 0.64556513 1.173115 1.84E-06 0.000269 -0.71957 7.42E-06 

BNC1 0.24159043 0.54522145 1.174279 2.74E-06 0.0004 -0.59823 0.00048 

FUOM 0.150583042 0.34631798 1.201538 2.74E-06 0.0004 -0.5788 0.000806 

AF186192.1 0.173482553 0.40342318 1.217503 3.25E-05 0.004747 -0.60556 0.000391 

ACSL5 0.161039038 0.40662332 1.336282 4.09E-08 5.97E-06 -0.60973 0.000348 

ZNF582 0.124543989 0.32179253 1.369475 0.000133 0.019477 -0.65413 8.83E-05 

HLX 0.106896714 0.33317347 1.640056 1.06E-05 0.001541 -0.60329 0.000417 

CFH 0.04875832 0.19137859 1.972709 0.000247 0.036035 -0.58316 0.000719 

Relating to Figure 4C. 

 

Supplementary Table 6. Clinical information of HCC patients. Relating to Figure 6A. 

 

Supplementary Table 7. Clinical information of ICC patients. Relating to Figure 6C. 


