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Abstract. Most existing methods of human activity recognition are
based on supervised learning. These methods can only recognize classes
which appear in the training dataset, but are out of work when the classes
are not in the training dataset. Zero-shot learning aims at solving this
problem. In this paper, we propose a novel model termed Multi-Layer
Cross Loss Model (MLCLM). Our model has two novel ideas: (1) In the
model, we design a multi-nonlinear layers model to project features to
semantic space for that the deeper the network is, the better the network
can fit the data’s distribution. (2) A novel objective function combining
mean square loss and cross entropy loss is designed for the zero-shot
learning task. We have conduct sufficient experiments to evaluate the
proposed model on three benchmark datasets. Experiments show that
our model outperforms other state-of-the-art methods significantly in
zero-shot human activity recognition.

Keywords: Human activity recognition - Zero-shot learning - Cross
loss

1 Introduction

Human Activity Recognition (HAR) has appealed much attention in recent years
because of its usage in many applications, such as fall detection [1], game con-
soles [2], etc. HAR mainly depends on 2 kinds of signals: video camera and
inertial sensors integrated in wearable devices. With the developments of wear-
able devices, inertial sensors have been widely employed in the field of HAR. The
main reasons are threefold: (1) The wearable devices with inertial sensors are
convenient while the camera is usually fixed in a specific place. (2) The inertial
sensors’ data requires less storage while the camera usually needs large memory
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for visual data. Besides the storage, processing the videos is also costly. (3) The
inertial sensors just record the user’s information, while the video camera con-
tains information of others in the same place, so inertial sensors have inherent
advantage of protecting user’s privacy and are more target-specific.

Due to the fast developments in deep neural networks, the performance of
human activity recognition has enhanced significantly in recent years. But most
of the HAR methods are supervised learning methods [3-5]. They can just rec-
ognize the classes appeared in training dataset but are incapable of recognizing
the classes not appeared in training dataset. Nevertheless, the training dataset
can’t contain all the activities, because on the one hand every individual can do
plenty of activities, and we can’t collect all the activities before training stage,
on the other hand, it’s extremely expensive to annotate an activity and label the
training data. Recognizing the classes not appeared in training dataset is defined
as zero-shot learning problem which is first proposed in [6]. This study provided
a formal framework to solve the problem and a zero-shot learning example for
the activity decoding task. In the setting of zero-shot learning, the classes in the
training dataset (seen classes) and classes in the testing dataset (unseen classes)
are disjoint. So in order to recognize the unseen classes, it needs extra informa-
tion about the seen and unseen classes. The extra information can be defined
as semantic space. After the model have captured the relations between the fea-
ture space and semantic space of the seen classes, it can transfer the relations
to unseen classes. The main idea of zero-shot learning is to correlate the unseen
classes with the seen classes via the semantic space. The semantic space can be
divided into 2 categories. One is the text vector space, which includes the word-
embedding of the classes’ names and the text description of these classes. The
other is the attribute space, where the attributes are defined by human beings.

In recent years, there are many zero-shot learning methods proposed in
human activity recognition field. However, these methods have defects in differ-
ent aspects. In [7], it used the Support Vector Machine (SVM) classifier as base
classifier to detect attributes, and each attribute needed an SVM classifier. Once
the attribute space became larger, the model would become extremely complex.
In [8], the model needed to use the testing dataset during the training stage, so
the model could just be used in a fixed number of unseen classes. Once a new
instance which belonged to neither seen classes nor unseen classes appeared, it
would be out of work. In this paper, we present a novel model for human activity
recognition in the zero-shot learning task. It outperforms other state-of-the-art
methods and is termed as Multi-Layer Cross Loss Model (MLCLM). In this
model, it learns a multi-fully connected layers model to project features to the
attribute space, and the instance is predicted through a similarity classifier (SC).
What’s more, our model is not sensitive to the number of unseen classes, for that
it just learns the projection between the feature space and semantic space, and
once the semantic representations of new classes are defined, our model can deal
with these new classes. The major contributions of this paper are as follows:

— To the best of our knowledge, we are the first to introduce the word-
embedding into zero-shot human activity recognition.
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— We propose a novel model and split the problem into two sub-problems, which
can optimize the model in two spaces.

— Sufficient experiments on three benchmark datasets show that the proposed
model outperforms other state-of-the-art methods and through these results,
we analyze how the attribute and word-embedding impact the performance
of our model.

The rest of the paper is organized as follows: In Sect. 2, we review related work
of the zero-shot learning and HAR. In Sect. 3, the proposed model is explained
in detail. In Sect. 4, we evaluate the performance of our model. In Sect. 5, we
summarize our work and discuss future work.

2 Related Works

Supervised human activity recognition has achieved great success in recent years.
Many researches have been completed in this area [9-11]. Cao et al. [9] presented
an integrated framework that used non-sequential machine learning tools to
achieve high performance on activity recognition with multi-modal data. Wang
et al. [10] constructed a decision tree to classify different walking patterns based
on relations between gait phases. Shi et al. [11] proposed a dynamic coordi-
nate transformation approach to recognize activity with valid recognition results.
Most of these proposed methods based on supervised learning. They can only
recognize the classes in the training dataset. An instance that does not belong
to any classes in the training dataset will not be recognized. So these methods
are limited to a fixed number of classes.

Zero-shot learning aims at figuring out the defects of supervised learning
methods. In zero-shot learning methods, the methods are mainly divided into 2
categories. One category is inductive zero-shot learning [12-15], where the model
has no information about the unseen classes except the semantic information.
In other words, the unseen classes are uncertain. Kodirov et al. [12] proposed a
semantic autoencoder model with a novel objective function to reconstruct the
features after the projection from features to semantic space. Romeara et al. [13]
applied the mean square loss and Frobenius norm as the objective function to
learn a bilinear compatibility model. Liu et al. [14] employed the temperature
calibration in the prediction probability and introduced an additional entropy
loss to maximize the confidence of classifying the seen data to unseen classes.
Another category is transductive zero-shot learning [16-18], where it can use the
information of the unseen classes, including feature space and semantic space.
The above methods are in the field of computer vision. In zero-shot learning
for human activity recognition scenario, several methods have been proposed
[7,15,19]. Chen et al. [7] proposed an inductive zero-shot learning method. In
[7], for each attribute, it learned an attribute probability classifier (SVM). It then
got the class representation in the semantic space and predicted label with the
maximum a posteriori estimate (MAP). Cheng et al. [19] proposed an extended
work following [7], it changed the SVM to CRF to improve the performance.
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Wang et al. [15] proposed a model which learned a nonlinear compatibility func-
tion between the semantic space and feature space and classified an instance to
the class with the highest score.

3 Proposed Method

In this section, we will explain the proposed zero-shot learning model for
human activity recognition explicitly. We call it Multi-Layer Cross Loss Model
(MLCLM). The input of our model is the features extracted from the inertial
sensors’ data.

3.1 Problem Definition

Unlike supervised human activity recognition methods, the problem of zero-shot
learning is defined as follows: the training dataset Diyqin = (4, yz)f\[:1 contains
N labeled training instances from the seen classes S = {51, S2, S3, ..., S }. The
unseen classes are denoted by U = {U;,Us, Us, ..., U}, whose instances are not
in the training dataset. Seen classes and unseen classes are disjoint, SN U = ().
Each class ¢ € S U U owns a semantic representation, denoted by a. € R4 |
where the dimension of semantic space is A.

3.2 Data Preprocessing

The data received by sensors can’t be used directly in our model. It should be
preprocessed first. To deal with the raw data from sensor readings, we adopt
the sliding window mechanism which is commonly used in time series data to
segment the data, as shown in Fig.1. Each window of the time series data is
defined as an instance.
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Fig. 1. Data segmentation
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Then we collect statistical features from the segments, and the features are
usually the mean value, standard deviation and time, etc. As the time series data
in the window size may belong to different labels (for example, when the subject
is changing activities), we discard these instances when labeling the instances
after segmentation.

3.3 Proposed Model

Classes' semantic
representation
layerl layer2 layer3 layerd

- —{av)

=) Label’s Semantic
representation

Fig. 2. The structure of the proposed MLCLM

In our model, we define four fully connected layers to project the features
extracted from the sensor readings to the semantic space. As shown in Fig. 2.
The model can be formulated as Eq. 1.

o1(f1(zy)) i=1
hi = ¢i(fi(hi-1)) i=2,3 (1)
O4(fa([h1,ho,hg])i=4

The input of the first fully connected layer is the input of the model, and
the input of the second and the third fully connected layers is the output of the
previous layer. The concatenation of the former three layers is the input of the
forth fully connected layer. We believe that former fully connected layers’ output
can also contribute to classification as we conduct a traditional classification
experiment on the datasets. we find that even we use the input of the layerl to
do a traditional classification task, we can still get good results.

Prediction function: The classification is predicted by the similarity clas-
sifier (SC). After the multi-fully connected layers’ model, the input features x;
are projected to the semantic space, defined as ¢(x;). Then the similarities with
all the classes T' (T = S during the training stage, while T = U during the
testing stage) are calculated, as shown in the equation (2).

¢(xz) . aP

SC(I’i7Cp) = W
J g

(2)
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¢p € T and aP is the semantic representation of the class ¢, (a? is a semantic
vector), which can be obtained in many ways such as defined by human beings or
pretrained word-embedding. The numerator is a dot product of the two vectors.
After calculating the similarity with all the classes, we choose the most similar
class as the prediction of input z;:

9(x;) = argmaz.,SC(x;,cp) (3)

Cross loss: In our model, we consider the zero-shot learning problem as a
regression problem and a classification problem. The regression problem occurs
after projecting the input features to the semantic space. In this regression prob-
lem, the mean square loss is chosen as an objective function, defined as M:

N A
=33 (@l —al)? (@

i=1 j

¢(x;) is the output of the multi-fully connected layers model and a® is the seman-
tic representation of x;’s true label. The classification problem is occurred after
the prediction function. We choose the cross entropy loss as the objective func-
tion in this problem, for that the cross entropy loss is an effective solution for
multi-class classification. Before we apply the cross entropy, we first transform
the similarity to probability as:

\ . exp(SC(xi,cp)
plepl) = >, exp(SC (i, c5)) ?

where ¢,,c; € T. Then we apply the cross entropy:
N
L==Y"% yic, *log(p(cy|a:)) (6)
i=1 c¢p
So the optimization of the zero-shot learning problem can be formulated as:

m(;nMJrLJr’yQ(f) (7)

where the Q(f) is the regularization of the multi-fully connected layers model.
In our code, we implemented the 2 regularization by weight decay.

4 Experiment

In order to evaluate the proposed model, we perform extensive experiments on
three benchmark datasets. And we compare our model with other state-of-the-
art methods. In this section, we will introduce the three benchmark datasets and
experiments.
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4.1 Datasets and Preprocessing

The three benchmark datasets are TU Darmstadt dataset (TUD) [20], Physical
Activity Monitoring Data Set (PAMAP2) [21], and Opportunity Activity Recog-
nition Data Set (OPP) [22]. When segmenting the datasets, we follow the sliding
window strategy proposed in their papers. In TUD, we use a sliding window of
30s with 15s overlap between two adjacent windows. After the segmentation,
we extract mean value and standard deviation as features in each dimension
from the sensor readings in a window. Besides the 3 axies acceleration data from
the sensors placed in the subjects, we add the time as another feature to the
feature vector. In PAMAP2, we segment the dataset using a sliding window of
5.12s with 1s overlap between two adjacent windows. After the segmentation,
we extract mean value, standard deviation as features in each dimension from
the sensor readings in a window. In OPP, we follow the sliding window mecha-
nism adopted by [23], where the window size is 1s, and the overlap is 0.5s. After
the segmentation, we extract the mean and standard deviation as features from
each dimension.

In the TUD, we discard the ‘unlabeled’ data, and in PAMAP2, we discard the
data with label ‘0’ (transient activities), while in the OPP dataset, we discard
the data of ‘drill’s file.

To adopt zero-shot learning to HAR, the semantic space is essential for the
three datasets. As presented in Sect.2, there are two categories of semantic
space: attribute space and text vector space, so we conduct experiments on the
two categories.

4.2 Experimental Results

The evaluation metric in the experiments is the average accuracy of each class,
defined as average_acc_per_class in Eq. (8) [24], which is commonly used in zero-
shot learning. This is due to the fact that the activities are unbalanced in the
dataset, e.g. Fig. 3 shows the amounts of classes in the PAMAP2. The amount
of 'computer work’ activity is extremely greater than in other activities. So if
the model predicts all the testing instances as this class, the average accuracy
on all the instances will be fine but the model has no robustness.

k .
1  orrec
average_acc_per_class = 7* g %’6“ (8)
i total

where the N, . indicates the number of correct predictions of the class
i, the Ntioml indicates the total instances of the class i, and the k indicates the
number of unseen classes.

1) Word-embedding experiments: As presented in Sect.2, there are
two categories of semantic space: attribute space and text vector space. The
attribute space is defined manually by experts with domain knowledge, which
is costly. And once the activity classes change, it needs extra efforts to rede-
fine the attributes for the new activity. So in this experiment, we firstly intro-
duce the pretrained word2vec’s [25] word-embedding on part of Google News
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Fig. 3. The amounts of instances in each class of PAMAP2 dataset

dataset as the semantic space in the HAR field. In the word-embedding, every
word has a 300-dimensional vector. But in the TUD and PAMAP2, each activ-
ity’s name may contain several words, so we calculate the mean value of all
words in the activity name as the word-embedding of the activity w™*” =
{wlrean wireon qirean | wiiee™} for the activity:

I,
E - W
w;_nean — 1[ J ,0=1,2,3,...,300 9)

w; indicates the jth word’s word-embedding; I indicates the amount of the words
in the activity name.

Table 1. Results of word-embedding experiments

Methods |TUD | PAMAP2|OPP
DCN [14] | 27.42% |32.97% | 46.03%
ESZSL [13] | 20.57% |27.66% | 52.37%
SAE [12] |17.71%  31.79%  44.55%
NCBM [15] | 20.15% | 27.49% | 30.80%
MLCLM | 29.89% 54.93% | 51.50%

We compare the proposed model with the methods proposed in [12-15]. Wang
et al. proposed a zero-shot learning method called NCBM [15] for HAR. Several
representative methods of zero-shot learning in computer vision are also chosen:
DCN [14], ESZSL [13], SAE [12] and we transfer them into HAR. In the
experiments, we choose the class splitting strategy of the train and test datasets
proposed in [15]. Here we adopt the 5-fold cross validation strategy to evaluate
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the performance of the methods and our model. Here we didn’t choose the DAP
[26] method, because the DAP used the SVM classifier as the attribute classifier,
but the word-embedding is a continuous number, so the SVM classifier is not
befitting.

The results are shown in Table1l. From the results, we can see that our
method(MLCLM) outperforms other state-of-the-art methods significantly in
the TUD and PAMAP2, while in the OPP, we are very closed to the best.

2) Attribute experiment: Besides using the word-embedding as the seman-
tic space, we also conduct experiments with attributes defined by human beings.
The results are shown in Table2. From the results, we can see that our model
(MLCLM) outperforms others over more than 23%-32% in PAMAP2 and is
the best in OPP. While in the TUD, our method is also closed to the best in the
table.

Table 2. Results of comparison experiments

Methods | TUD | PAMAP2|OPP

DAP [26] | 16.08% | 29.24% | 30.93%
DCN [14] | 24.69% | 37.85% | 47.52%
ESZSL [13] | 27.36% | 32.58% | 60.55%
SAE [12] |34.73% | 34.46% | 61.41%
NCBM [15] | 31.07% | 38.06% | 28.44%
MLCLM | 31.87%  61.28% | 62.30%

We analyze that the reason why the MLCLM outperforms the others is that
in the MLCLM, the optimization has two constraints: On the one hand, the
mean square loss can minimize the gap between the conversion of the features
and the semantic space. On the other hand, the cross entropy loss can further
optimize the results on classification. So combining with the two losses, our
model can be optimized both on semantic space and the classification results.

In the DCN, there are two optimization functions in the DCN: the cross
entropy loss of predicting seen data on seen classes and the entropy of predicting
seen data on unseen classes. However, the second entropy loss can cause mis-
classification of seen data on unseen classes, which may cause an underfitting
problem. The SAE uses an autoencoder model, and it reconstructs the features
which are projected to the semantic space. However, even when the reconstruc-
tion is perfect, the classification results don’t benefit from the reconstruction. In
the DAP, it assigns an SVM classifier for each attribute. Assembling all results
of SVM classifiers, the features are projected to the semantic space, and the pre-
diction is made by the maximum a posteriori estimate (MAP). However, each
SVM classifier only concentrates on its attribute and ignores the relations of
the attributes and the truth label. In other words, it doesn’t optimize directly
on the classification results, which can cause overfitting on the attribute clas-
sification but underfitting on the class classification results. The ESZSL also
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has the problem that it is only optimized on the semantic space, but not on the
class classification results. The NCBM learns a nonlinear compatibility func-
tion, which gives the compatibility scores of the input and all class prototypes,
and the class with the highest score is the result of the input. The optimization
of NCBM is the hinge loss, which is not sensitive to the outliers, however, the
unseen classes are outliers to the seen classes, so this loss can not employ the
outliers’ information.

3) Comparison experiments: To evaluate how the attribute and word-
embedding impact the performance of our MLCLM, we compare the perfor-
mance when using them as semantic space, and Fig. 4. shows results. From the
results, we can see that the performance of attribute outperforms the word-
embedding. To find out why the attribute outperforms the word-embedding, we
take the PAMAP2 dataset as a representative: we calculate the Pearson Product-
Moment Correlation Coefficient (PPMCC) of these classes’ semantic representa-
tions in attributes and word2vec. We find out that the PPMCC of attributes is
larger than the PPMCC of word2vec. According to zero-shot learning, the model
needs to learn the relations between the feature space and the semantic space
in the seen classes, and then it transfers the relations to the unseen classes. So
the more relevant between the seen classes and unseen classes in the semantic
space, the better the model performs in the testing stage. This conclusion can
guide us on how to define the attribute space better for the zero-shot learning
task.
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Fig. 4. Results of the word-embedding and attribute as semantic space

5 Conclusion and Future Work

In this paper, we propose a Multi-Layer Cross Loss Model for zero-shot learning
in human activity recognition. Sufficient experiments validate that the proposed
model is effective with both attributes and word-embedding as semantic space.
In the future, we will upgrade our model for better performance in zero-shot
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learning, and apply our method to other fields like computer vision and natural
language processing. As the results shown in Fig. 4, the results are not very ideal
when using word-embedding as semantic space, so in the future, we will explore
more researches on the employment of word-embedding as it needs fewer efforts
of human beings.
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