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Abstract

Impaired glucose tolerance is a major risk factor for type 2 diabetes (T2D) and several cardi-

ometabolic disorders. To identify genetic loci underlying fasting glucose levels, we con-

ducted an analysis of 9,232 individuals of European ancestry who at enrollment were either

nondiabetic or had untreated type 2 diabetes. Multivariable linear mixed models were used

to test for associations between fasting glucose and 7.9 million SNPs, with adjustment for

age, body mass index (BMI), sex, significant principal components of the genotypes, and

cryptic relatedness. Three previously discovered loci were genome-wide significant, with

the lead SNPs being rs1260326, a missense variant in GCKR (p = 1.06×10−8); rs560887, an

intronic variant in G6PC2 (p = 3.39×10−11); and rs13266634, a missense variant in

SLC30A8 (p = 4.28×10−10). Fine mapping, genome-wide conditional analysis, and func-

tional annotation indicated that the three loci were independently associated with fasting glu-

cose. Each copy of an alternate allele at any of these three SNPs was associated with a

reduction of 0.012 mmol/L in fasting glucose levels (p = 8.0×10−28), and this association was

replicated in trans-ethnic analysis of 14,303 individuals (p = 2.2×10−16). The three SNPs

were jointly associated with significantly reduced T2D risk, with an odds ratio (95% CI) of

0.93 (0.88, 0.98) per protective allele. Our findings implicate additive effects across patho-

physiological pathways involved in type 2 diabetes, including glycolysis, gluconeogenesis,

and insulin secretion. Since none of the individuals homozygous for the alternate alleles at

all three loci has T2D, it might be possible to use a genetic predictor of fasting glucose levels

to identify individuals at low vs. high risk of developing type 2 diabetes.

Introduction

Impaired fasting glucose, also referred to as prediabetes, is a risk factor for cardiovascular dis-

ease and type 2 diabetes (T2D) [1, 2]. Investigating the genetic architecture of fasting glucose
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will lead to a better understanding of the mechanisms involved in glucose homeostasis and

subsequently the pathophysiology of T2D [3]. Genetic analysis of fasting glucose as a quantita-

tive trait complements genetic analysis of T2D as a dichotomous trait.

Genome-wide association studies (GWAS) have been widely used in investigating the

genetic architecture of fasting glucose levels. Genetic associations with fasting glucose have

been reported in 17 loci in individuals of European ancestry [3–5]. There are more than 240

published loci associated with T2D [6, 7]. Only nine T2D loci (GCKR, GCK, SLC30A8,

PROX1, ADCY5, DGKB, GLIS3, TCF7L2, and MTNR1B) overlap with fasting glucose loci,

which appear to mediate impairment of the glucose-sensing machinery in pancreatic β islet

cells [3]. One trivial explanation is low power. Alternatively, loci affecting physiological levels

of fasting glucose among normoglycemic individuals need not be the same as loci that affect

pathophysiological levels of fasting glucose when hyperglycemic individuals are also consid-

ered. As the genetic architectures of fasting glucose and T2D are incompletely known, we cau-

tion against overinterpreting this interim result.

The Atherosclerosis Risk in Communities (ARIC) study is a prospective study of ath-

erosclerosis in middle-aged adults [8]. Previously, a GWAS for the average of four fasting

glucose measurements taken over nine years was conducted in individuals without preva-

lent diabetes, and three known loci near MTNR1B (rs10830963), GCK (rs2971669), and

G6PC2 (rs853787) were replicated [4]. Here, we defined the outcome as the first fasting

glucose measurement from all untreated individuals, i.e., non-diabetic individuals as well

as untreated diabetic individuals. We then performed a GWAS using a linear mixed

model with a high-density imputation reference panel and identified three associations in

loci previously reported to influence fasting glucose (GCKR, G6PC2, and SLC30A8).

Associations at two missense variants in GCKR (rs1260326) and SLC30A8 (rs13266634)

were identified in individuals with European ancestry and all three associations replicated

in trans-ethnic meta-analysis. These three associations also affect risk of T2D, indicating

not just physiological relevance to fasting glucose levels but also pathophysiological rele-

vance to T2D.

Materials and methods

The Atherosclerosis Risk in Communities study is a prospective study of clinical atheroscle-

rotic diseases [8]. Individual-level genotype and phenotype data were obtained by authorized

access to dbGaP (https://www.ncbi.nlm.nih.gov/gap/). T2D case status was defined as fasting

glucose�7.0 mmol/L, self-report of a diagnosis by a physician, or current diabetic treatment.

For fasting glucose analysis, individuals without T2D (8,902) and with untreated T2D (330)

were used; individuals without diabetic treatment were included because their fasting glucose

values were unaffected by treatment. The inclusion of untreated cases makes our analysis more

powerful than previous analysis of normoglycemic individuals. Selected variables included

age, sex, body mass index (BMI), fasting glucose, and T2D status. Among individuals with a

reported race of White, a total of 9,232 individuals without T2D or with untreated T2D were

included and used for analysis of fasting glucose. Similarly, a total of 9,731 individuals were

used for analysis of T2D.

Fasting serum samples were assayed for glucose and were measured on the Roche Hitachi

911 analyzer using the hexokinase method (Roche Diagnostics). Age, sex, race, and ethnicity

were self-reported. BMI was calculated as body weight (in kilograms) divided by height (in

meters) squared. Medication history over a period of two weeks prior to the visit was verified

by review of medication containers that participants brought to the visit.
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Genotyping and imputation

Genotyping was performed on the Affymetrix Genome-wide Human SNP Array 6.0. After

quality control for minor allele frequency (MAF)�0.01, genotype call rate�0.95, per-individ-

ual missingness rate�0.05, and a Hardy-Weinberg equilibrium test p-value>10−6, we

retained 800,099 autosomal SNPs. Imputation was performed using the Sanger Imputation

Service (https://imputation.sanger.ac.uk/) with the IMPUTE2 software [9] and the 1000

Genomes Project Phase 3 reference panel [10]. The resulting imputed SNPs were filtered for

MAF�0.01 and info score�0.7 [11]. After filtering, 7,896,808 SNPs were retained for associa-

tion analysis. Coordinates were based on the hg19 build. All alleles are reported with respect to

the positive strand.

Association analysis

Fasting glucose levels from the first available measurement were included (S1 Fig). Association

analyses were performed using a two-stage linear mixed model and an additive genetic model.

In Stage 1, residuals were obtained from a regression of fasting glucose on age, sex, and BMI.

The resulting residuals were ranked and inverse normalized. In Stage 2, SNP association was

tested by regressing the values from Stage 1 on imputed dosages, adjusted for three significant

principal components obtained from the R package SNPRelate (version 1.28.0) [12] as fixed

effects and cryptic relatedness as a random effect using the emmax test in EPACTS (version

3.3.0) [13]. The genome-wide significance level α was declared to be 5×10−8. To test for sec-

ondary signals, the analysis in Stage 2 was repeated with the inclusion of genome-wide signifi-

cant SNPs as covariates. R (version 4.0.3) was used in the analyses [14].

Replication analysis

The Multi-Ethnic Study of Atherosclerosis (MESA) [15] and the Framingham Heart Study

(FHS) [16] are prospective studies designed to identify risk factors for subclinical atherosclero-

sis. Individual-level genotype and phenotype data were obtained by authorized access to

dbGaP. The China America Diabetes Mellitus (CADM) study is a case-control study of T2D in

China [17]. The Africa America Diabetes Mellitus (AADM) study is a case-control study of

type 2 diabetes in Africans [18, 19]. The Howard Family University Study (HUFS) is a popula-

tion-based cross-sectional study of African Americans in Washington, D.C. [20].

For fasting glucose/type 2 diabetes analysis, we aggregated data from 2,204/2,314 European

Americans, 632/697 Chinese Americans, 1,080/1290 Hispanic Americans, and 1,206/1,407

African Americans from MESA; 2,211/4,378 West Africans from AADM; 1,548/1,754 African

Americans from HUFS; and 2,430/2,605 African Americans from ARIC; 985/1,883 Chinese

from CADM; and 2,007/2,061 from FHS, totaling 14,303/18,389 individuals, respectively.

Genotype data comprised approximately one million SNPs using the Affymetrix Genome-

wide Human SNP Array 6.0 (ARIC, MESA, and HUFS) or two million SNPs using the Affy-

metrix Axiom Genome-wide PanAFR Array (AADM). Affymetrix Axiom1 Exome Genotyp-

ing arrays (~ 300,000 markers) were used in CADM. The Illumina HumanOmni5M array

(~4.3M markers) was used in FHS. For in-house data sets (AADM, HUFS, and CADM) for

which we collected individual-level data from study participants, we performed sex checks.

For the data sets from dbGaP (ARIC, FHS, and MESA), we relied on documentation available

within dbGaP. Quality control, genotype imputation, transformation of fasting glucose levels,

covariates (including three significant principal components and cryptic relatedness), and

association testing were the same as for the discovery analysis. We performed inverse vari-

ance-weighted fixed effects meta-analysis using METAL [21]. Coordinates were based on the

hg19 build.
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Variant annotation

We used SnpEff to annotate variant effects [22]. SnpEff integrates with other tools in sequenc-

ing data analysis pipelines and contains two steps, variant annotation and effect prediction.

Variant annotation datasets were built using a reference genome (hg19). Two methods, SNAP

[23] and I-Mutant3 [24], were used to assess discriminative power, a raw numerical score

reflecting direction and reliability of the prediction, for each SNP. Discriminative power is the

distance of the actual prediction to the decision boundary (score = 0), which reflects the reli-

ability of the prediction and the severity of the predicted effects [25].

PolyPhen-2 is a tool that predicts the possible impact of an amino acid substitution on the

structure and function of a human protein [26]. SIFT is a tool that predicts amino acid changes

that affect protein function, distinguishing between functionally neutral and deleterious amino

acid changes [27]. Combined Annotation Dependent Depletion (CADD) is a tool for scoring

the deleteriousness of variants in the human genome [28, 29]. CADD integrates multiple

annotations to generate scores that strongly correlate with allelic diversity, pathogenicity of

both coding and non-coding variants, and experimentally measured regulatory effects and

that highly rank causal variants. Polyphen-2, SIFT, and CADD scores were all retrieved from

Ensembl 104 [30].

Fine mapping

Region fine mapping was performed using the R package CAVIARBF (version 0.2.1), an

approximate Bayesian method that can incorporate functional annotation [31]. Minimal data

requirements are marginal statistical test results and linkage disequilibrium between SNPs.

SNPs with MAF� 0.05 within the gene region ±150kb were selected. SNP annotations were

coded for the absence (0) or presence (1) of promoter histone marks, enhancer histone marks,

DNAse I hypersensitive sites, or bound proteins as provided by HaploReg v4.1 [32]. Bayes fac-

tors were calculated conditional on a maximum number of causal SNPs. The estimated Bayes

factors and prior probabilities were then used to estimate the posterior inclusion probabilities.

Additive association evaluation

Linear regression and logistic regression were used to determine the joint additive effect across

associated independent loci for fasting glucose levels and T2D status, respectively. Whereas

rank-based transformations cannot be back transformed, we log-transformed fasting glucose

levels in order to be able to obtain effect sizes in original units. We regressed traits on the num-

ber of effect alleles, with adjustment for age, BMI, sex, significant principal components (PCs)

by study. The analysis was performed using SAS 9.4 (Cary, NC, USA). The R package meta

(version 5.1) [33] was used for meta-analysis with an inverse variance-weighted fixed effects

method.

Trait loci annotation

An expression QTL (eQTL) is a genomic locus that affects expression levels of mRNA. A splic-

ing QTL (sQTL) is a genomic locus that affects the expression of RNA isoforms generated by

alternative splicing events. We retrieved data on eQTL and sQTL annotations from the Geno-

type-Tissue Expression (GTEx) Portal (https://gtexportal.org).

Protein structure and function predictions

Based on the protein sequence-to-structure-to-function paradigm, we uploaded translated

sequences to the I-TASSER online server (https://zhanggroup.org//I-TASSER/) [34–36].
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I-TASSER uses template-based fragment assembly simulations of amino acid sequences to pre-

dict three-dimensional protein structures, which are then used to find matches in a protein

function database to predict protein functions. The predicted protein structures were viewed

and analyzed using PyMol [37].

Ethics statement

Ethical approval for the AADM study was obtained from the National Institutes of Health, the

Howard University Institutional Review Board, and from ethics committees in Ghana (Uni-

versity of Ghana Medical School Research Ethics Committee and Kwame Nkrumah University

of Science and Technology Committee on Human Research Publication and Ethics), Kenya

(Moi Teaching & Referral Hospital/Moi University College of Health Sciences Institutional

Research and Ethics Committee), and Nigeria (National Health Research Ethics Committee of

Nigeria). Ethical approval for HUFS was obtained from the Howard University Institutional

Review Board. Ethical approval for CADM was obtained from the institutional review boards

of Howard University, National Institutes of Health, and Suizhou Central Hospital (Suizhou,

China). Written informed consent was obtained from each participant. All clinical investiga-

tion was conducted according to the principles expressed on the Declaration of Helsinki.

Results

Phenotyping, genotyping, and imputation summaries for all discovery and replication studies

are presented in S1 Table and S1 and S2 Figs. Within individuals of European ancestry, males

had higher BMI than females. In contrast, BMI was higher in females than males among Afri-

cans, African Americans, and Hispanic Americans. Males had higher fasting glucose levels

than females in all groups.

The discovery and replication analyses included totals of 9,232 and 14,303 individuals,

respectively. Three loci reached genome-wide significance (Fig 1 and S2 Table). The genomic

control variance inflation factor indicated no inflation due to population stratification

(l = 1.01; S3 Fig). Two of the lead SNPs were missense mutations and the third lead SNP was

intronic (Table 1). Regional association and Bayesian fine mapping indicated that rs1260326

(GCKR), rs560887 (G6PC2), and rs13266634 (SLC30A8) had the highest marginal posterior

inclusion probabilities (PIP) in their respective loci (S4 Fig). Conditional on the lead SNPs

rs1260326 (GCKR), rs560887 (G6PC2), and rs13266634 (SLC30A8), no signal remained (S5

Fig). The effect alleles at all three lead SNPs were associated with lower fasting glucose

(Table 1). The associations at all three lead SNPs were replicated in overall meta-analysis (S3

Table). Of the two suggestive loci (Fig 1, 5×10−7� p< 5×10−8), only the association at the

locus on chromosome 11 was replicated (S4 Table).

The variant rs1260326 (GCKR) is a missense mutation, resulting in a substitution from leu-

cine to proline at position 446. The coding effect of rs1260326 was estimated by SnpEff as

moderately important (Table 1) and annotated as tolerated by SIFT and benign by Polyphen-2

[30]. Position 446 in GCKR is located at the interface with GCK (Fig 2). L446 is closer to the

middle of the interface whereas L446P is closer to GCK (S6 Fig). The variant rs560887

(G6PC2) is intronic and estimated to have low impact (Table 1). The variant rs13266634

(SLC30A8) is a missense mutation, resulting in a substitution from arginine to tryptophan at

position 325, annotated as a moderate change by SnpEff (Table 1) and as tolerated by SIFT

and benign by PolyPhen-2. I-TASSER predicted four possible protein structures based on an

amino sequence with R325W. The four predicted protein structures were similar to each

other, but all were different from wild type (Fig 3) and consistent with a moderate change in

protein structure.
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To determine a best fit model jointly across loci, the three loci and all possible interactions

were specified in a full model. Regression with backward selection (SLSTAY = 0.10) was used

to eliminate variables (S5 Table). The final model included the three lead SNPs without any

interactions. After excluding possible interactions, we found that the effect alleles influence

fasting glucose in an additive manner (Fig 4). For each copy of a T allele at any of the three

SNPs, an additive effect of -0.012 mmol/L on fasting glucose was identified in the discovery

sample (p = 3.0×10−28) and replicated in trans-ethnic meta-analysis (n = 14,303, β = -0.0088,

SE = 0.0011, p = 2.15×10−16, S7 Fig). We also estimated the joint additive effect of the three

SNPs on the risk of T2D in a total of 28,120 individuals with (n = 4,585) or without

(n = 23,535) T2D. The three SNPs were associated with significantly reduced T2D risk, with an

odds ratio of 0.93 (95% confidence interval [0.88, 0.98], p = 0.0062, S8 Fig). Notably, none of

the individuals with 6 T alleles had T2D, compared to 27% of those with 0 T alleles (Fig 5).

Table 1. Lead SNPs from discovery GWAS.

Chromo-

some

Position

(bp)

Gene SNP Reference/

Alternate

Allele

Annotation Alternate

Allele

Frequency

Beta Standard

Error

P-

value

Variance

explained

Impact Sequence

Change

2 27730940 GCKR rs1260326 C/T Nonsynonymous 0.4082 -0.0113 0.0020 1.06E-

08

0.0035 MODERATE c.1337T>C,

p.Leu446Pro

2 169763148 G6PC2 rs560887 C/T Intron 0.3026 -0.0132 0.0020 4.39E-

11

0.0047 LOW c.441-

26T>C

8 118184783 SLC30A8 rs13266634 C/T Nonsynonymous 0.3159 -0.0120 0.0019 4.28E-

10

0.0042 MODERATE c.973C>T,

p.Arg325Trp

https://doi.org/10.1371/journal.pone.0269378.t001

Fig 1. Manhattan plot for discovery analysis based on individuals with European ancestry. The x-axis represents chromosomal positions, and the y-axis represents

-log10(p-value). The two dotted lines represent -log10 (5×10−8) and -log10 (5×10−7), respectively.

https://doi.org/10.1371/journal.pone.0269378.g001
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Discussion

Based on a genome-wide analysis of fasting glucose, we identified three loci (GCKR, G6PC2,

and SLC30A8) that are involved in glucose regulation as previously reported [4, 38]. Here, we

showed that the joint effect of these loci was associated with lower fasting glucose levels as well

as lower risk of T2D. The missense SNP rs1260326 in GCKR is significantly associated with

fasting glucose in non-diabetic and untreated diabetic individuals with European ancestry.

This association was replicated in trans-ethnic meta-analysis of European Americans, Chinese,

Chinese Americans, Hispanic Americans, African Americans, and Africans. The SNP

rs1260326 has been associated with fatty liver, triglycerides, and very low-density lipoprotein

cholesterol in obese children and adolescents [39]. The position in GCKR changed by

rs1260326 interacts with GCK; the mutation leads to reduced capability to response to fruc-

tose-6-phosphate, increased GCK activity in the liver, and reduced glucose levels [40–42].

G6PC2 (rs560887) has been reported to be associated with fasting glucose [40, 43] and with

the 30 min. incremental insulin response in the oral glucose tolerance test [44]. The encoded

protein allows the release of glucose into the bloodstream. rs560887 is an expression QTL

(eQTL) for G6PC2 in several tissues but most strongly in subcutaneous adipose tissue, with the

alternate allele associated with lower gene expression (S6 Table). It is also a splicing QTL

(sQTL) for NOSTRIN in several tissues (S7 Table). NOSTRIN binds the enzyme responsible

for production of nitric oxide, which is involved in neurotransmission, inflammatory

Fig 2. Wild type GCKR protein (pink) interacts with wild type GCK protein (blue). The position of interaction in

GCKR is L446 (rs1260326, red). Green dotted line presents the proximity of the interface between GCK and GCKR.

https://doi.org/10.1371/journal.pone.0269378.g002
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responses, and vascular homeostasis [45]. An effect on NOSTRIN could explain the association

of rs560887 with pulse pressure and other phenotypes [46]. The SNP rs560887 is in strong LD

with rs573225 (r2 = 0.90) in EUR but weaker LD in AFR (r2 = 0.60) [32]. rs573225 is 207 bp

upstream of G6PC2. Like rs560887, rs573225 was associated with lower fasting glucose (β =

-0.010, SE = 0.002, p = 6.57×10−8) in our discovery study and was replicated (β = -0.005,

SE = 0.0018, p = 0.0031). Also like rs560887, rs573225 is an eQTL for G6PC2 (S6 Table) and an

sQTL for NOSTRIN (S7 Table). However, rs573225 has a phred-scaled CADD score of 15.97,

compared to 0.210 for rs560887, indicating that rs573225 is more strongly deleterious than

rs560887 [30]. rs573225 maps to the highly conserved 2nd position of a predicted regulatory

motif for HNF4, with the alternate allele associated with weaker binding of HNF4 [32] and

lower expression of G6PC2 (S6 Table). Thus, annotations not included in the fine mapping

analysis (specifically, CADD scores and predicted regulatory motifs) provide evidence that

rs573225 might be a better candidate causal variant and that rs560887 might simply be tagging

rs573225.

We found that the missense variant rs13266634 in SLC30A8 was associated with fasting glu-

cose levels and was previously reported to be associated with T2D risk as well as glucose and

proinsulin levels [3, 47]. The T allele at rs13266634 is associated with enhanced insulin

Fig 3. The SLC30A8 protein structures for Wild Type (Wt, top) and R325W (rs1326634, bottom). Each amino acid sequence yielded four predicted protein structures

called models 1 to 4 for Wt and mutant, respectively. Wt-Model 1 (top left) is the 1st 3D structure predicted by comparative molecular modeling through I-TASSER. Wt-

Model 1–4 shows the overlap of the four predicted 3D structures for SLC30A8 wild type (top right). The mutant structures (bottom) are labeled correspondingly.

https://doi.org/10.1371/journal.pone.0269378.g003
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secretion from pancreatic β cells and inhibited hepatic insulin clearance, leading to increased

peripheral insulin levels and decreased peripheral glucose levels [48]. SLC30A8 is a transmem-

brane transporter, with the ligand zinc binding to a histidine-rich region from positions 197 to

205 [49]. The position in SLC30A8 changed by rs13255534, position 325, is located on the sur-

face of the protein and maps to the cytoplasmic tail at a point where the protein bends back on

itself [49]. Therefore, rs13266634 might not affect binding affinity but might affect either pro-

tein stability or interaction with other cytoplasmic components of the transport process.

Functional studies that follow up on findings of genetic associations are critical. One way to

assess function is based on analysis of predicted amino acid sequences [50]. Two of the three

genetic variants identified in our study were missense. Wild type and mutant amino acid

Fig 4. Joint effect size and standard error for fasting glucose at rs1260326 (GCKR), rs560887 (G6PC2), and

rs13266634 (SLC30A8). The reference group is homozygous for the reference allele at all three SNPs. At each SNP, the

T allele is the allele associated with lower fasting glucose.

https://doi.org/10.1371/journal.pone.0269378.g004

Fig 5. Joint effect size for the prevalence of T2D at rs1260326 (GCKR), rs560887 (G6PC2), and rs13266634 (SLC30A8).

The label above each bar provides the number of individuals (% prevalence of T2D). At each SNP, the T allele is the allele

associated with protection against T2D.

https://doi.org/10.1371/journal.pone.0269378.g005

PLOS ONE Genetic protection against type 2 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0269378 June 3, 2022 9 / 15

https://doi.org/10.1371/journal.pone.0269378.g004
https://doi.org/10.1371/journal.pone.0269378.g005
https://doi.org/10.1371/journal.pone.0269378


sequences were uploaded onto the I-TASSER server and predicted protein structures were

imported into PyMOL for predicted protein function. Moderate protein structure differences

were predicted at both rs1260326 (GCKR) and rs13266634 (SLC30A8), leading to predicted

changes in protein function. The protein structures modeled by I-TASSER suggest that both

rs1260326 and rs13266634 have the potential to change the corresponding protein structures

and functions, which might result in altered glucose levels. The predicted structure of GCKR

revealed that position 446 is located at the proximity of the interface between GCK and GCKR;

therefore, L446P could affect the relative positioning of GCK and GCRK at the interface. This

alteration could potentially impact the interaction efficiency of the two proteins, which can be

assessed in vitro through either immunoprecipitation or fluorescence resonance energy trans-

fer. Mutations in mice can be created using CRISPR editing technology so that the functional

impacts of both GCKR-L446P and SLC30A8-R325W mutations could be tested in vivo. Struc-

tural information can also facilitate the rational design and development of targeted drugs and

antibodies.

An intergenic locus on chromosome 11 33.4 kb upstream of MTNR1B reached suggestive

levels of significance in the discovery study and was replicated. There are two variants with

r2�0.8 in Europeans for the lead SNP rs6483204: rs3847554 and rs6483205 [32]. The variant

rs3847554 has been previously reported as associated with fasting plasma glucose [51], but the

association at rs3847554 did not replicate in our study due to heterogeneous effect sizes. The

variants rs6843204 and rs3847554 are eQTLs for SLC36A4 in esophagus mucosa. SLC36A4 is a

non-proton-coupled amino acid transporter. There is no evidence based on histone marks,

proteins bound, or binding motifs that rs6483204 could be causal [32]. For rs3847554, the only

evidence is a change in a binding motif for CDCL5 [32].

Conclusions

We analyzed GWAS data with 23,535 individuals, either nondiabetics or untreated diabetics,

and identified and replicated three independent SNPs in GCKR, G6PC2, and SLC30A8 associ-

ated with fasting glucose levels. Each copy of the alternate allele at any of these three SNPs was

associated with a reduction of 0.012 mmol/L in fasting glucose. The alternate allele at

rs1260326 (GCKR) is associated with increased glycolysis, the alternate allele at rs560887

(G6PC2) is associated with decreased gluconeogenesis, and the alternate allele at rs13266634

(SLC30A8) is associated with increased insulin secretion. Each copy of the alternate allele at

any of the three SNPs was associated with a 7% reduced risk of T2D, indicating that the associ-

ations are not just physiologically relevant but also pathophysiologically relevant.
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