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Abstract

An appealing tool for study of the complex biological behaviors that can emerge from networks of simple molecular
interactions is an agent-based, computational simulation that explicitly tracks small-scale local interactions – following
thousands to millions of states through time. For many critical cell processes (e.g. cytokinetic furrow specification, nuclear
centration, cytokinesis), the flexible nature of cytoskeletal filaments is likely to be critical. Any computer model that hopes to
explain the complex emergent behaviors in these processes therefore needs to encode filament flexibility in a realistic
manner. Here I present a numerically convenient and biophysically realistic method for modeling cytoskeletal filament
flexibility in silico. Each cytoskeletal filament is represented by a series of rigid segments linked end-to-end in series with a
variable attachment point for the translational elastic element. This connection scheme allows an empirically tuning, for a
wide range of segment sizes, viscosities, and time-steps, that endows any filament species with the experimentally observed
(or theoretically expected) static force deflection, relaxation time-constant, and thermal writhing motions. I additionally
employ a unique pair of elastic elements – one representing the axial and the other the bending rigidity– that formulate the
restoring force in terms of single time-step constraint resolution. This method is highly local –adjacent rigid segments of a
filament only interact with one another through constraint forces—and is thus well-suited to simulations in which arbitrary
additional forces (e.g. those representing interactions of a filament with other bodies or cross-links / entanglements
between filaments) may be present. Implementation in code is straightforward; Java source code is available at www.
celldynamics.org.
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Introduction

Complex behaviors in cells often emerge from surprisingly

simple sets of underlying molecular interactions. Understanding

how such emergent behaviors arise from well-described biochem-

istry, geometry, and mechanics is a current focus in the field of

computational and mathematical biology. It is only through such a

rigorous formalization of our thinking about cellular systems that

the major reductionist agenda in biology (disassembling systems

into their fundamental molecular components) can be reconciled

with the emergence of novel properties during the process of

cellular self-organization, so that the system can be properly

understood.

Agent-based models
One useful tool for understanding emergence in cellular biology

is agent-based computer simulation. In such modeling, the state

(e.g. position and orientation in 3-dimensional space, biochemical

activation or hydrolysis condition) of each primary component in a

network of interactions is followed through time in a computer,

typically using a large number of very small time-steps to integrate

the governing system of differential equations. The calculated

interactions of components can alter biochemical states, create

complexes of components with new properties, deplete or enrich

scalar concentration fields of soluble components, and generate

forces that repel, attract, or deform. This tracking of spatial and

biochemical detail can reveal dynamic behavior important in cell

function. But both considerable computer power and many

biological details (e.g., rate and equilibrium constants for all or

most of the molecular interactions) are required for the

informative use of such methods. Complex models of this type

have been applied to actin-based motility [1,2], spindle-pole

positioning and oscillations [3], the role of motors in mitotic

spindle formation [4–7], load sharing in Brownian ratchet

mechanisms [8], and to understanding cytokinetic furrow

specification [9], to select a few.

Detailed agent-based molecular mechanics models of cellular

processes share some common challenges. For example, such

simulations often track the states of a very large number of agents,

and the modeler must determine and resolve collisions between these

agents in an efficient way. In [1], we presented one efficient collision

scheme (of many that are likely possible). To produce accurate in

silico representations of biological features and increase the use of

these methods, other techniques for overcoming computational

hurdles will need to be developed, tested, and standardized. To this

end, I present a method for representing cytoskeletal filaments in

silico. An implementation in Java code (SimFil) that demonstrates

features of this method and provides example representations for

actin filaments, microtubules, and other biological filaments is

available as a tutorial at www.celldynamics.org.
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Cytoskeletal filaments
There are three major classes of cytoskeletal filaments:

microtubules, actin filaments, and intermediate filaments. None

is a homogeneous, isotropic material, as each is formed from

chains of discrete protein monomers [10]. At the typical level of

description in molecular mechanics models, however, we can treat

them as traditional engineering elements [11]; that is, they are

considered to be Euler elastica whose mechanical behavior under

axial and bending stress is described by an elastic modulus

(Young’s modulus) and a bending rigidity, respectively. The elastic

moduli (E) of actin filaments and microtubules are large, similar to

plastic [11], and individual cytoskeletal elements typically

experience forces in the piconewton range (e.g. a motor protein

will stall at a few pN). Under such force magnitudes, these

filaments are essentially inextensible; thus, a molecular mechanics

model can typically regard filament arc length as constant under

force (For example, a 1 pN axial force will stretch a 1 mm long

actin filament by only 0.02 nM, about one hundredth of a

monomer radius (stiffness = EA/L, where E = 2.3 GPa, cross-

sectional area A = 20 nm2, and length L = 1 mm)).

In contrast, filament deformations caused by bending will very

often be critical to a molecular mechanics description. Although

these filaments have large elastic moduli, they have small cross-

sectional areas, and it is the product of the elastic modulus and the

second area moment of inertia (I) that defines the bending rigidity,

EI. Thus, thermal forces alone will deform cytoskeletal filaments

from their unstrained straight configuration. Unlike the tiny axial

change calculated above, the same 1 pN force applied transversely

to a four-fold shorter 0.25 mm actin filament, with a cantilever

support at one end (as in Fig. S1), will cause a considerable

deflection of about 31 monomer radii. The biophysical properties

of cellular filaments are discussed further in Text S1.

The Proposed Method
I approximate flexible cytoskeletal filaments as a chain of rigid

segments, each linked end-to-end by one translational and one

torsional elastic element. The translational spring enforces the

constraint that the endpoints of adjacent segments should be

coincident, while a weighted sum of the torques from the

translational spring and the torsional spring are used to

approximate the bending rigidity of the filament (henceforce the

endpoint and angular alignment constraints, respectively). It is the

manner in which these segments are connected that allows the

tuning to biophysically realistic behaviors.

The key goal is to mimic the biophysical behaviors of cellular

filaments through a system of equations that is easy and fast to

solve numerically, chiefly by not being stiff (i.e. prone to numerical

instabilities). This goal is achieved by using unique elastic elements

in which the restoring force is formulated in terms of single time-

step constraint resolution. This formulation is only possible

because of the special nature of the differential equations at low

Reynolds number. That is, by neglecting inertial terms we are left

with a set of first-order equations in which the history of motion is

unimportant; bodies respond instantaneously (on the temporal

scale of our numerical integration) to incident forces.

Methods

Pairs Derivation
The Pairwise Agent Interaction with Rational Superposition

(PAIRS) method is so called because each force interaction is

considered in isolation. The actual force state on each agent is, by

the principle of superposition, taken as the sum of all the pairwise

forces. The pairwise forces are formulated in terms of the force (or

torque) required to resolve a system contraint in a single simulation

time-step. To introduce this method, I first apply it to the fast

(relative to the time-step) resolution of collisions between rigid

bodies. I then show how the same technique can capture dynamics

that are slow relative to the time-step by modeling a viscous spring.

Finally, I derive the PAIRS force and torque for a segmented

filament.

Two colliding spheres: dynamics fast relative to the time-

step. The genesis of the PAIRS approach in [1] was the need

for a non-stiff method to keep rigid bodies apart, i.e. resolution of

collisions. We assume here that collisions are resolved faster than

the simulation time-step. It is appropriate to neglect inertial terms

for small cellular bodies, and by doing so we can calculate and

apply a force that will perfectly resolve a collision (absent

Brownian motion and other external forces) in a single time-step.

Consider two colliding spheres S1 and S2 in Fig. 1A, with

viscous drag coefficients c1 and c2. The spheres overlap by d at

time t1 – we will determine the force that will just separate the

spheres at t1zDt.

First, write the force balance for S1, neglecting inertial terms…

X
F1~m€xx\~F{c1 _xx1 ð1Þ

If we use _xx~Dx=Dt and solve for Dx1 then

Dx1~
FDt

c1

ð2Þ

We want to solve for the force F such that Dx1zDx2~d, i.e. the

force F will just push the spheres apart in a single time-step.

Solving for F we find

F~
d

Dt

c1c2

c1zc2ð Þ ð3Þ

The PAIRS method superposes forces from each pairwise agent

interaction. If no other forces than F are acting on the two spheres

in Fig. 1A, then this method of collision resolution is stable at any

time-step. No stability analysis is necessary to show this: since F is

calculated to just separate the spheres it is not possible to overshoot

the equilibrium position.

If multiple bodies are colliding with each other (Fig. 1B), as is

often the case in any biological simulation, application of the entire

force in equation 3 can lead to an overshoot and/or oscillation

about the desired equilibrium. Consider the forces from spheres

S2, S3, and S4 on S1 in Fig. 1B. By the PAIRS method, each

interaction is considered in isolation and the sum of the forces on

S1 will cause that sphere to move farther than necessary to resolve

the collisions with the smaller spheres. The degree to which S1

over-shoots the correct position depends on the magnitude of S1
0s

drag relative to the drag of the smaller spheres; in the limit where

c1 is very much larger than any other drag coefficient, the method

actually works perfectly again. This potential failure of the PAIRS

method results from the coincidental alignment of forces from

multiple pairwise interactions. The degree of this failure depends

on the geometry of the interactions and the properties (e.g. drag

coefficients) of the interacting agents.

This problem with ‘‘interaction density’’ is general to explicit

numerical methods –it is not unique to the PAIRS approach.

There are a number of ways to avoid such overshoots and

oscillations. Given knowledge of a maximum expected interaction

density a constant and conservative fraction of the force in

In Silico Flexible Filaments
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equation 3 could be applied over any time-step. Alternatively, one

might adopt a scheme to actively determine the interaction density

at each time-step and attenuate the force in equation 3

accordingly, i.e. an adaptive PAIRS coefficient scheme. Adaptive

time-step schemes, useful with other explicit numerical methods,

do not help here since the PAIRS force is explicitly time-step

dependent.

A viscous spring: dynamics slow relative to the time-

step. Next consider the simple viscous-spring system shown in

Fig. 1C. I show how the PAIRS solution, once tuned to have the

proper static deflection and time-constant, is identical to the

conventional approach for this trivial example. By the

conventional approach we would derive an equation of motion

(neglecting inertial terms)

X
F ~m€xx\~F{c _xx{kx ð4Þ

The equilibrium displacement of this system under a constant

force F is found by setting _xx~0, leading to xeq~F=k. By assuming

a solution of the form x tð Þ~Ae{t=t once F is removed, we find

the system time-constant as t~c=k. This equilibrium displacement

and time-constant will be our targets for tuning the PAIRS

coefficient.

By the PAIRS method we first consider the natural system (i.e.

without external force F , neglecting inertial terms), and replace

the spring force by a force Fp.

X
F ~m€xx\~{c _xx{Fp ð5Þ

We then calculate a value for Fp such that the system, perturbed

by d, moves to its relaxed position in a single time-step

d~ _xxDt~{
Fp

c
Dt[Fp~

cd

Dt
ð6Þ

At this point we introduce a PAIRS coefficient, C, to tune the

system response to match our deflection and time-constant targets,

i.e. Fp~C cd
Dt

. Instead of a particular perturbation, replace d with

any displacement x and substitute this value for Fp into equation 5

to obtain the discrete equation of motion

_xxtz
C

Dt
xt~0 ð7Þ

If we make the forward Euler substitution of xtzDt~xtz _xxtDt

then the numerical solution for x tð Þ is

xtzDt~ 1{Cð Þxt ð8Þ

This solution for xtzDt is stable provided that 1{Cj jv1; the

PAIRS coefficient C is thus restricted to be less than 1, a general

result for PAIRS method representations of more complex

dynamics, such as the hydrodynamic flexible beam.

There is no time-step dependence in equation 8, which might

be initially worrisome as the numerical solution does not seem

to converge, i.e. how can this numerical scheme approach the

exact solution as the time-step goes to zero if there is no explicit

time-step dependence? Resolution is found in the nature of the

PAIRS coefficient C, since that coefficient is actually a function

of time-step, i.e. C~C Dtð Þ. If we impose either the deflection or

time-constant constraints (by reintroducing an external force

into equation 7 and requiring that the solution for _xx~0 match

the expected deflection xeq~F=k, or by substituting

x tð Þ~Ae
{t=t into equation 7 and requiring that t~c=k) we find that

Figure 1. Colliding spheres demonstrate PAIRS method
stability and failures. In A, calculation of the force F required to
separate two spheres in an actual pairwise interaction (i.e. no other
forces besides F are present) yields a stable collision resolution that can
be accomplished in a single time-step, if desired. In B, the sum of the
forces on S1 , from collisions with the three other spheres, can lead to an
overshoot, and non-convergent oscillations for some geometries. To
avoid this failure, the PAIRS forces should be applied fractionally, such
that collisions are resolved over multiple time-steps. C shows sphere S
with drag c attached to a fixed wall by spring k. For an applied external
force F the equilibrium position is F=k (assuming the spring is
unstrained at x = 0) and the system should relax from that equilibrium,
once the force is removed, with time-constant t~c=k. Modeling this
simplest dynamic system by the PAIRS method involved replacing the
spring force with a force calculated to return the system to its relaxed
position in a single time-step. That force is then modulated by a PAIRS
coefficient to allow tuning of the system to match physical properties of
the system, such as expected deflection and relaxation time-constant.
doi:10.1371/journal.pone.0004748.g001
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C Dtð Þ~ kDt

c
ð9Þ

Thus, substitution into equation 8 of the proper PAIRS coefficient (for

the correct deflection and time-constant) gives a numerical master

equation identical to the conventional approach, and thereby

identically convergent.
Derivation of Pairwise Agent Interactions with Rational

Superposition (PAIRS) force and torque for connected

filament segments. Consider the rigid segments that are part

of a segmented representation of a continuously flexible filament

as in Fig. 2A. I will now derive the PAIRS force and torque that

will align segment endpoints and segment orientations,

respectively, in a single time-step. Then I will introduce PAIRS

coefficients, as with the viscous spring, that allow the tuning of

filament behavior to match the biophysical targets of deflection

and relaxation time-constant.
PAIRS axial force. The segments labeled 1 and 2 are pinned

together at their endpoints, but we soften this hard constraint by

introducing springs that work to keep segment endpoints

coincident. We will approximate the value of force F that will

work to satisfy this pinned constraint by moving the endpoints

back together in a single time-step. For a cytoskeletal filament, this

pinned constraint enforces a constant filament arc length; since

cytoskeletal filaments are very stiff longitudinally their arc lengths

should not change appreciably under cellular force magnitudes.

The derivation sums the displacements of each pinned

endpoint, along the line of action ~uuF ~cosb~uuEzsinb~uu\, due to

force F . We then find the value of F such that this sum of

displacements is equal to the current misalignment distance d.

Begin by expressing the force F in body-fixed components for

segment 1…

~FF~~FFEz~FF\~Fcosb~uuEzFsinb~uu\ ð10Þ

where b is the angle between the filament and the line of action of

the force. We have omitted a subscript 1 from b and the drag

terms c below for simplicity in the notation. Since the summation

of forces on each rigid element has a viscous term cn, we use

n~d=Dt and express the displacement in any coordinate direction

as d~FDt=c. Consider also the rotational displacement of

endpoint 1 from the torque applied by F\, which for small

time-steps is wholly in the ~uu\ direction. This torque has magnitude

F\L=2 and for small angles the translation in the ~uu\ direction

from an angular rotation h is hL=2. The total displacement of

endpoint 1 in body-fixed coordinates is then

~dd~~ddEz~dd\~Dt F
cos b

cE
~uuEz

1

c\
z

L2

4ch

� �
sin b ~uu\

 !
ð11Þ

where cP, c\, ch are the viscous drags for axial, transverse, and

rotational motions, as shown in Fig. 2C and D. The dot product of

Figure 2. A lumped-parameter representation of an Euler
elastica (dotted line in A) by a chain of straight segments. To
avoid the computationally expensive algebra that enforces exact
alignment of the segment endpoints (as in A), we let segment ends
drift apart slightly at each time-step (as in B), and install springs that act
to correct that drift and pull separated endpoints back together again.
The translational spring k, unstrained when d~0, applies an axial force
to bring endpoints together. The torsional spring kh , unstrained when
dh~0, applies a torque to co-align adjacent segments. The axial force
acts through a point a distance R from the segment centroid. Unique
elastic elements generate forces that allow the model to resolve
constraints in a single time-step: the Pairwise Agent Interaction with
Rational Superposition (PAIRS) method. (C) Two rigid segments, joined

by a translational and a rotational elastic element, form the basic unit in
computational simulation of a continuously flexible filament. (C–D) By
the PAIRS method, the spring coefficients for the translational and
r ot a t i o na l e l a s t i c e l e m e n ts a r e k~D1D2=Dt D1zD2ð Þ a n d
kh~ch1ch2=Dt ch1zch2ð Þ, respectively, where c are the viscous drag
coefficients in the different coordinate directions. The force and torque
both take the form of F~dC=Dt where C is the equivalent drag for two
dissipative elements in series. See Methods for the derivation and
discussion of the form of these results.
doi:10.1371/journal.pone.0004748.g002
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this displacement vector with the vector ~uuF gives the displacement

in that direction for endpoint 1

d1F
~Dt F

cos2b

cE
z

1

c\
z

L2

4ch

� �
sin2b

 !
~

Dt F

D
where D

~
1

cos2b
cE

z 1
c\

z L2

4ch

� �
sin2b

ð12Þ

An identical derivation holds for endpoint 2, and we set the sum of

these to the misalignment distance

d~d1F
zd2F

~DtF
1

D1
z

1

D2

� �
ð13Þ

Solving finally for F we have

F~
dD1D2

Dt D1zD2ð Þ ð14Þ

PAIRS torque. Here we calculate the torque T that will, in a

single time-step Dt, align segments 1 and 2 that are misaligned by

angle dh. In contrast to the pinned constraint, alignment of

adjacent segments represents the much softer spring of a beam in

bending. While we are deriving the torque that will align segments

in a single time-step, we will in practice use a PAIRS coefficient to

accomplish this relaxation to an unstrained state (i.e. a straight

filament) in many time-steps, as defined by the system time-

constant.

The angular rotation of segment 1 due the torque T is just

dh1~
DtT

ch1

ð15Þ

and likewise for segment 2. Setting the sum of these rotations to

the misalignment angle, we can solve for T

T~
dhch1ch2

Dt ch1zch2ð Þ ð16Þ

Equivalent spring constants. The results from equations 14

and 16 can alternately be written in terms of special spring

constants, which depend on time-step, filament orientation, and

drag coefficients:

k~
D1D2

Dt D1zD2ð Þ and kh~
ch1ch2

Dt ch1zch2ð Þ ð17Þ

These derivations consider the contribution to translational or

angular displacement from each of the two linked segments. In the

torque calculation, this contribution is only a function of the

rotational drag of each segment (ch). In the force calculation the

displacement contribution depends on both drag coefficients and

the particular orientation of the segment.

Equivalent drags. The final form for both force and torque

is perhaps best understood as being in the form

F~
d

Dt
C ð18Þ

where C is the equivalent drag of the two elements. The equivalent

drag for two viscous elements in series (analogous to the equivalent

resistance of two electrical resistors in parallel) is given by the

reciprocal of the sum of reciprocals, i.e.

1

C
~

1

c1

z
1

c2

or C~
c1c2

c1zc2

ð19Þ

This form is apparent in both the derived force and torque

expressions, though the D terms in the force expressions mask

some underlying details.

Pairs Coefficient Tuning
Equations 14 and 16 reveal the force and torque necessary to

align endpoints and orientations, respectively, in a single time-step.

By introducing and tuning three PAIRS coefficients and two

Brownian force related coefficients, this flexible filament repre-

sentation can capture the biophysical essence of actin (and actin-

like) filaments, microtubules, and other polymers

Cd – PAIRS force attenuation: In practice, the PAIRS force

in equation 14 will be attenuated through the coefficient Cd.

Instead of attempting to align adjacent filament segment endpoints

in a single time-step, this coefficient ‘‘softens’’ that constraint. For

a filament composed of identical rigid segments, this coefficient

should, theoretically, be less than 0.5. This will maintain an over-

damped response if the PAIRS forces from each of the two

adjacent and connected segments are aligned.

CR – The PAIRS force torque arm: As indicated in Fig. 2B,

the PAIRS force is applied at a tunable distance R from the segment

centroid. The tuning coefficient CR is the fractional distance from

the centroid at which the PAIRS force is applied, i.e. if CR~0 then

the force is applied at the centroid and if CR~1 then the force is

applied at the segment endpoint. In practice, CR can range higher

than 1, dependent upon the value of Cd. The degree of freedom

afforded by CR is critical – it allows us to mimic biophysical

behaviors of different filaments at different segment sizes, time-steps,

and viscosities.

Ch – PAIRS torque attenuation: The PAIRS torque in

equation 16 is, in practice, attenuated through the coefficient Ch.

As with the PAIRS force, the theoretical upper limit for Ch is 0.5,

i.e. for identical linked segments any value less than this maintains

an over-damped response in case the PAIRS torques from each

adjoining segment are aligned.

BT – Translational Brownian forcing: This coefficient

scales the translational Brownian motion of a rigid segment that is

part of a larger filament. The reference force is the force that

would be applied to identical free segment, i.e. BT~1 specifies

translational forcing identical to that for a free segment.

Bh – Rotational Brownian forcing: This coefficient scales

the rotational Brownian motion of a rigid segment that is part of a

larger filament. The reference torque is the torque that would be

applied to identical free segment, i.e. Bh~1 specifies rotational

forcing identical to that for a free segment.

The Tuning Procedure. In equation 9 we found a simple

relationship between the PAIRS coefficient introduced in that

analysis and the spring and damping constants for a viscous spring.

For the more complex dynamical representation of the

hydrodynamic beam equation –the focus of this manuscript– we

cannot derive analytical expressions for Cd, CR, and Ch; those

tuning coefficients are empirically chosen to compensate for the

coarse spatial discretization of a filament (choice of segment size)

and for the lumping of continuous elastic properties into discrete

elements.

In Silico Flexible Filaments
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Tuning for deflection and relaxation time-constant. To

tune in silico filaments to the correct static deflection and relaxation

time-constant, adjust CR and Ch. CR and Ch multiply the two

independent constraint torques and independently affect both

deflection and time-constant –they must be empirically tuned in

concert to match both behaviors. I use the following procedure

with the SimFil code to find appropriate PAIRS tunings for CR and

Ch.

1. Set Cd~0:4, an arbitrary value close to, but less than 0.5.

2. Set CR~1, an arbitrary starting guess

3. Adjust Ch till deflection d~dexpected (for a point load at the

midpoint of a simply-supported filament as in Fig. S1).

4. Relax the supports to measure the relaxation time-constant, t.

5. Decrease CR if twtexpected, and vice versa.

6. Repeat steps 3 through 5 till t and d are within the desired

tolerance of their expected values. If either CR or Ch is outside

of its stable range, a different filament discretization and/or

time-step must be used.

Tuning for thermal motions. Since all filament motions

depend on the PAIRS coefficients Cd, CR, and Ch, tuning for

the appropriate degree of thermal writhing (i.e. time-averaged

angular correlations between segments of the same filament)

must be done after the tuning for deflection and relaxation

time-constant. I use two coefficients, BT and Bh, to

independently adjust the magnitude of a random force and

torque, respectively, that are used to approximate the Brownian

forces on each rigid segment. The reference force and torque,

i.e. when BT and Bh~1, is calculated to simulate the Brownian

motion of a free (unlinked) rigid segment. I use the following

procedure with the SimFil code to find appropriate tunings for

BT and Bh:

1. Start with BT~1:0 and Bh~0:5 –final values are usually close

to these.

2. Record the time-averaged angular correlations (i.e. the dot

product of segment unit vectors) between the first and all

subsequent segments over a simulation period that is much

larger than the filament relaxation time.

3. Compare the result with the expected curve ex=Lp .

4. If the slope of the interior segments is too shallow, increase BT ,

and vice versa. If the slope of the end segments is too shallow,

increase Bh, and vice versa.

5. Repeat steps 2 through 4 until the simulated and expected

angular correlations are within the desired tolerance.

I have empirically found that this method works best if Bh~0
for internal segments, and this is how the application of Brownian

forces in currently implemented in SimFil. This ad hoc technique for

matching thermal writhing is limited to filaments comprising a

small number (,20) of rigid segments, which should be considered

when choosing a segment size (see Discussion). This limitation is

an artifact of the simple scheme I use in applying Brownian forces

and toques; a different / more sophisticated approach should be

developed, e.g. applying correlated, instead of random, Brownian

forces to adjacent segments.

Solution Procedure. Fig. 3 graphically summarizes the

solution procedure for a single flexible filament. Newton’s laws

are applied –after a summation of PAIRS and Brownian forces /

torques– to move each filament segment forward in time. External

forces from interactions with other filaments, motor proteins,

cross-linkers, etc could be considered as well.

Results

An example tuning
ParM is a bacterial protein that forms actin-like filaments [12].

Fig. 4 shows the results of this tuning for a 3.2 mm long ParM

filament (Lp = 15 mm) comprising 13 rigid 100-monomer segments,

and 0.5 microns from the nearest surface. I adjust the tuning

coefficients CR and Ch to match, simultaneously, the expected

static deflection for a simply-supported beam (Fig. S1) and a free

time-constant of 0.753 seconds for relaxation from the 1st bending

mode. The coefficient CR is constrained to the range 0 to 1.5, and

a value of 1 is preferred. Therefore, the tuning procedure begins

with CR~1 and Ch is adjusted (within a range from 0 to 0.5) to get

the correct deflection. If the resulting time-constant is too slow,

decrease CR, and vice versa. To demonstrate that this method

accurately represents the bending elasticity of filaments, rather

than simply matching the tuning criteria in a narrow region,

Fig. 4A and 4B show that, with the same values of CR and Ch, we

also reproduce the 2nd mode free and 1st mode cantilevered time-

constants. Fig. 4C shows the close match that is possible between

simulated and expected angular correlations along a 3.2 mm ParM

filament.

Choice of filament discretization
Several competing concerns must be considered together when

choosing a rigid segment size. Large segments will reduce the

number of independent bodies in the simulation and lead to faster

run times. Smaller segments better capture tight bends and better

match expected deflections and time-constants for shorter filament

lengths. Additionally, constraints from the tuning method (i.e.

inability to achieve proper deflection and time-constant with the

practical range of CR and Ch values) may force an increase or

decrease of segment length, if a particular time-step is desired. A

limitation in matching the expected angular correlations from

thermal writhing, discussed in Methods, might put a lower limit on

segment size by requiring the longest filament to comprise no

more than 20 segments, if that biophysical behavior is deemed

critical.

As an example of balancing these competing criteria, consider

my choice of a 100-monomer (at 2.45 nm per monomer) rigid

segment size in simulating ParM mediated segregation of plasmids

in E. coli with longest axis of 3 mm. At ,0.25 microns per rigid

segment, the longest filaments will comprise no more than 13

segments and will exhibit appropriate thermal writhing. A

0.25 mm segment of the ParM filament is by no means rigid

under piconewton forces (see calculation in the Introduction), but I

assume that deflections of filaments shorter that this are not

important in the overall emergent behavior –a decision that I have

substantiated by a few computationally more expensive simula-

tions with a smaller segment length. The entire filamentous ParM

population will comprise just over one hundred segments at the

steady-state ParM concentration, allowing very rapid collision

detection and solution of the associated equations of motion.

(Twenty minutes of simulated time, a typical division period for E.

coli in the associated experiments, can be accomplished in just a

few hours of computer time).

Dependencies and errors
It is important to note that this tuning procedure assumes a

particular time-step, segment size, filament length and viscosity; each

of these values can greatly affect the C and B tuning coefficients.

This does not mean, however, that a simulation is limited to constant

time-step, segment size, or viscous environment. Variable time-step

numerical integration schemes, changing viscous environments (e.g.
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a simulation in which proximity of a filament to a surface modulates

viscous drag), and different segment size filaments (e.g. a simulation

in which spatial location dictates filament tessellation) can be

accomplished with look up tables or functions that are fit to the

tuning coefficients across the range of variability.

Fig. 5 explores the PAIRS coefficient dependence on time-step

and the method accuracy as a function of filament length and

external force. For filaments both shorter and longer than the

tuning length (from 1 to 6 mm), the 1st mode free time-constant

varies by only a few percent from the expected value (Fig. 5B).

However, the error in both deflection and time-constant grows

large for filaments comprising a very small number of rigid

segments, as might be expected (Fig. 5B). The PAIRS method

develops only a small error for forces that deflect a simply-

supported beam 0.1 to 10% of its length (Fig. 5C).

Discussion

A modeler will not typically be sure, a priori, which biophysical

realisms are appropriate in a model of any particular biological

system. This is because the emergent property under study may

depend critically on one set, but not on other sets, of component

interactions. For instance, a modeler might find that the particular

behaviors of a motor protein were unimportant, so long as the

motor’s processivity and stall force were of the right magnitude.

Alternatively the specific way in which a cortically attached motor

Figure 3. Synopsis of the solution method. The constraints between rigid segments in an in silico representation of a continuous filament (A) are
applied through the forces shown in the free-body diagram of a single segment (B). The random force and torque, FB and TB, generate an
appropriate Brownian motion. The flow chart in C summarizes the solution steps: (1) determine all forces for the set of segment positions at time t, (2)
apply the PAIRS coefficients, (3) move each segment to time tzDt through application of Newton’s second law, neglecting inertial terms.
doi:10.1371/journal.pone.0004748.g003
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protein regulates filament length could be essential to an emergent

behavior [9]. The flexibility of cytoskeletal filaments, however, is

likely a necessary and critical component for many cell processes.

Techniques for realistically modeling this flexibility in agent-based

simulations therefore need to be tested and standardized. One

such technique forms the basis for this communication.

The method I propose for capturing the realistic biophysical

behaviors of cytoskeletal filaments in agent-based computer

simulations can match three critical properties of biological

filaments: their deflection, relaxation time-constant, and thermal

writhing (Fig. 4). These realistic filament properties emerge from

an entirely local (pairwise) consideration of forces, making this

method highly suitable for biological simulations with complex

interactions, e.g. local modulation of filament stiffness by protein

decoration, cross-linking of filaments, etc. This tuning to match

biophysical properties could be achieved with any type of elastic

elements, if segments are connected as in Fig. 2B – the variable

attachment of the translation spring adds the critical degree of

freedom. Such a system of rigid segments connected by simple

springs could be solved by any number of explicit or implicit

numerical schemes. To confront and evaluate numerical instability

when using the forward Euler method (justified in Text S2), I

additionally propose a novel pair of elastic elements to link a series

of rigid segments that model a continuous filament.

With this method, a modeler balances the competing criteria of

computational speed and coarseness of filament representation

(plus several modeling subtleties) to determine an appropriate

filament discretization (i.e., its number of rigid segments). For a

particular chosen discretization, time-step, and fluid viscosity, a

unique pair of tuning coefficients, CR and Ch (see Methods), can

be found that grant the in silico filament representation the proper

deflection and relaxation time-constant. By the PAIRS method,

analysis of numerical stability is immediate at any time-step,

segment size, or viscosity: invariant to these properties, the tuning

coefficient Cd must range from 0 to 0.5, CR must range from 0 to

1.0 (or slightly larger), and Ch must range from 0 to 0.5 for

stability. Two additional tuning coefficients, BT and Bh, adjust the

magnitude of the simulated Brownian force and torque,

respectively, to achieve the expected degree of thermal writhing.

In practice, PAIRS forces are straightforward to implement (see

Text S3 for pseudo-code example, or the SimFil source code at

www.celldynamics.org), and they have numerical advantages

beyond the aforementioned stability. Because each pair of linked

segments is considered in isolation from other forces and links, the

method scales well to any discretization of filaments (the rigid

segment size in Fig. 2). This is not true in an exact matrix solution

for each filament, where an increasingly large matrix must be

inverted as the segment size is decreased. It is also trivial to alter

the properties of particular sections of a filament by adjusting the

forces for a subset of segments. A model that includes proteins that

side-bind to filaments and modulate their mechanical properties

(e.g. tropomyosin or cofilin on actin filaments) might well want to

include this level of realism.

This way of representing filaments, in which the ‘‘agents’’ in the

model are rigid subsections of a filament, deserves further

comment. Any actual cellular process might involve many

different cellular bodies, which interact with each other biochem-

Figure 4. The biophysical targets, and results from one
implementation with ParM filaments. (A) The expected and in
silico 1st and 2nd mode time-constants for a free 3.2 mm (13 segments of
100 monomers in silico) ParM filament in a viscosity 100 times that of
water, located 0.5 microns from a plane surface. The expected values
are from solutions to the hydrodynamic beam equation. The tuning
coefficients CR and Ch are adjusted such that both the static deflection
for a simply-supported beam (see Fig. S1) and the 1st mode time-
constant (when the applied force and supports are simultaneously
removed) match expectations. Unlike the 1st mode free time-constant,
the 2nd mode free and the 1st mode cantilevered time-constants (B) are
not involved in the tuning, yet the in silico representation faithfully
reproduces those responses. In these tests an external force and
boundary conditions are applied to a filament. After equilibrium is
achieved the force and boundary conditions are removed and the

relaxation time to displacement d=e is measured. (C) Independent of
the deflection and time-constant tuning, the magnitude of the
rotational and translational Brownian forces can be adjusted to achieve
expected angular correlations between rigid segments, using a
persistence length of 15 mm for ParM filaments.
doi:10.1371/journal.pone.0004748.g004
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ically and/or mechanically. My approach is to break the large

system of interacting components, which can have complicated

and changing connection topologies, into a larger group of

independent agents whose connections to each other, whether

persistent or transient, are mediated by force. By considering

filaments and other spatially dispersed cellular bodies as a large

number of rigid agents, I handle all mechanistic interactions

pairwise and locally. The force state on any agent with multiple

pairwise interactions is determined by the principle of superpo-

sition, i.e. as the sum of the pairwise interaction forces. At each

time-step, the local elastic forces naturally work to relax the entire

interconnected system of agents to a lower energy state, consistent

with the Principle of Minimum Total Potential Energy. A

philosophically similar, but mathematically very different, meth-

odology for implementing agent-based modeling of cellular

processes is described in [13].

Why does this tuning method work?
The two constraint torques, TR and Th, work to align the

connected segments in different ways and with different time-

scales. One of these torques, TR, arises from enforcement of the

endpoint constraint (equation 14), while the other is the PAIRS

torque, Th, from equation 16. The magnitude of TR is

proportional to endpoint, not angular, misalignment; typically

TR –which is the torque associated with the springs pulling

segment endpoints together –slowly but incompletely aligns

segments. By contrast, the PAIRS calculation of Th assumes the

alignment of segments in a single time-step. The magnitude of this

torque is reduced for numerical stability (i.e. Chv0:5), but the

torque nevertheless provides relatively rapid co-alignment of the

segments. The tuning coefficients CR and Ch weight the alignment

contributions from TR and Th, respectively, allowing any

intermediate time-scale to be chosen. At some ratio CR=Ch the

system will have a time-constant that matches the one expected for

the particular type of filament; but only one set of values CR,Chf g

that satisfies this ratio will, in addition, deflect appropriately under

external forces.

Mathematical Justification and Limitations
The PAIRS method is best understood as a reformulation of

elastic forces in terms of the ‘‘maximum stable restoring force’’ –

the force required to move a dynamic system to its relaxed state in

a single time-step. The trivial application of the PAIRS method to

a viscous spring (equations 4–9) makes this interpretation clear. In

that example, the Hookean spring force is replaced by a force

calculated to move the system to its relaxed position in a single

time-step. This force is then modulated by a PAIRS coefficient,

chosen so that the static deflection and time-constant are as

expected. For this simple system we can find an analytical

expression for the PAIRS coefficient (equation 9), which reveals

that we simply recover the same master numerical equation as by a

conventional approach. The PAIRS method is thus identically

convergent as a conventional explicit Euler approach.

The PAIRS formulation can consistently represent dynamics

that are both fast and slow relative to the numerical time-step. In

the case of fast dynamics (relative to the time-step), such as the

longitudinal extension of biological filaments or the resolution of

collisions, the PAIRS method is essentially enforcing a rigid

constraint (e.g. no filament elongation, no impingement of rigid

bodies) in a pairwise manner. By other solution methods these

constraints might be formulated in terms of Lagrange multipliers,

and would involve the simultaneous (as opposed to pairwise)

solution of an entire system of equations. The enforcement of

fast-dynamics constraints by the PAIRS method is invariant to

time-step, viscosity, spatial discretization, etc, i.e. we can change

these properties and the fast dynamics in a simulation will continue

to be resolved as fast as is stably possible.

In the case of slow dynamics (relative to the time-step), the

PAIRS method can capture, through a time-step dependent

tuning of PAIRS coefficients, whichever biophysical properties

Figure 5. Dependencies of PAIRS coefficients and method on time-step, filament length, and force. The reference filament for all the
results presented here is a 3.2 mm ParM filament represented by 13 rigid segments, each 100 monomers long (the example tuning from Methods and
the SimFil default parameter set). A demonstrates, numerically, the near linear dependence of Ch on Dt at two different viscosities (106 and 1006
water). A variable time-step method could thus use look-up tables or functions to set Ch , i.e. for a given segment size and viscosity we could establish
Ch Dtð Þ. B shows the error in deflection (for a simply-supported filament) and first mode free time-constant as a function of filament length. The PAIRS
coefficient tuning was for a filament of 13 rigid segments. The errors –reported as the difference between actual and expected values divided by the
expected value– are reasonable for long filaments, though errors grow large for filaments with very few segments, as might be expected. The
absolute errors are reported here but filaments shorter than the tuning point are stiffer and slower to relax than expected, and vice versa for longer
filaments. C shows the error in deflection (for a simply-supported filament) and first mode free time-constant as a function of the magnitude of the
test force. The test force is calculated as the theoretical force required to deflect a simply-supported filament (see Fig. S1) to a target deflection –the
abscissa is thus reported as target deflection divided by filament length. Over an order of magnitude change in force in either direction from the
tuning point (tuning point = 0.01, i.e. a 1% deflection) the error remains small. Errors increase to a few percent as the test force gets very large (0.1, i.e.
a 10% deflection). Filaments are stiffer and slower to relax than expected at large test forces.
doi:10.1371/journal.pone.0004748.g005
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the user deems most important. I have demonstrated such

tunings for the case of biological filaments, choosing deflection

and relaxation time-constant as the critical targets. By the

PAIRS formulation, the tuning coefficient CR is dependent only

on the spatial discretization of the filaments (i.e. on the choice of

rigid segment size). Additionally, I can numerically show that the

tuning coefficient Ch is linearly proportional to choice of time

step (Fig. 5A) and inversely proportional to viscosity (data not

shown).

The beam equation and hydrodynamic beam equation (for

beams immersed in viscous fluid) are second-order ordinary and

fourth-order partial differential equations, respectively, describing

transverse displacements as a function of position along the beam

as a function of beam properties (EI and C\) and applied forces

Figure 6. Applications of flexible filaments in silico. In A two gene-carrying plasmids in E. coli are segregated by a single ParM filament.
Appropriate flexibility of this filament may be important in exploring the details of this primitive mitotic process. A large number of free (non-plasmid
bound) ParM filaments, whose dynamics are important to segregation process, are not shown in this image. In B, protein nodes with formins and
myosins on the cortex of S. pombe form a dynamic actin contractile ring in silico. In vivo this ring will ingress and divide this cell. Realistic biophysical
behavior for the actin filaments in this simulation may be important. For example, it is energetically favorable, because of the potential energy stored
in the bending of filaments, for filaments to align themselves with the long axis of the cell. A finely tessellated and properly tuned in silico filament
will accurately reproduce this alignment bias.
doi:10.1371/journal.pone.0004748.g006

In Silico Flexible Filaments

PLoS ONE | www.plosone.org 10 March 2009 | Volume 4 | Issue 3 | e4748



(e.g. due to collisions, attached linkers, or motors) and applied

moments. The in silico representation I propose –in order to

approximate both this proper analytical description and the real

filament behavior– considers only interactions between rigid

bodies, elastically linked in series to form a beam, one segment

pair at a time (Fig. 2). This representation is a form of lumped-

parameter model; commonly in engineering and physics, the

continuous axial and bending compliance of a beam are ‘‘lumped’’

into equivalent compliances at discrete locations along the beam.

More broadly, I justify this representation as being conceptually

identical to finite element modeling (i.e. a body is tessellated into a

meshwork of elements with prescribed local elasticity, Poisson

ratio, etc), a well-accepted practice for studying dynamics in bodies

of complex shape and/or composition.

As is typical for finite element models, filaments may be

discretized with arbitrary fineness. For example, given sufficient

computational power the rigid elements in a representation of an

actin filament could be any length, down to actin monomer-sized.

It is important to note that the added complexity of viscous forces,

considered by the hydrodynamic beam equation, are explicitly

applied to each rigid element in our in silico representation.

Applications
In computational experiments (in progress and to be presented

elsewhere) I use this technique to model ParM and actin filaments

in simple biological examples of two important cell processes,

DNA segregation and cell division (Fig. 6). ParM filaments can

segregate bacterial plasmids [14,15]. This segregation occurs in

cells whose longest dimension (,3 mm) is far shorter than the

ParM filament’s persistence length. But filament flexibility is

nevertheless important in determining the filament bundling and

buckling behaviors in that model, ultimately effecting plasmid

segregation competence in the model and the conclusions we

reach from our simulations. Another application in progress is a

detailed in silico study of the actin-based contraction of protein

nodes in S. pombe –appropriately flexible actin filaments are likely

critical to modeling both contractile ring formation and ingression.

As a tool for understanding cellular behavior, nano-scale agent-

based modeling is in its infancy, but holds great promise. Both our

factual knowledge of biological detail, and our ability to closely

mimic those details in silico (i.e. processing power) are growing

rapidly. The success of this modeling approach will depend on

computationally efficient and biophysically realistic methods for

representing the very many types of agents that may be present –

and interacting– in a complex cellular process. The PAIRS

method for in silico cytoskeletal filaments is one such method.

The few detailed force-based models of cellular phenomena

published to date are custom-made for each biological study

(though perhaps through relatively slight modification of an

existing model), which is costly. At present there is no general in

silico cellular arena sufficiently adaptable in scale, agents, and

agent interactions to serve all the needs of the biological

community. A development and standardization of best methods

for representing each type of agent will hopefully allow for a

consensus modeling framework. With such a tool biologists might

routinely construct force-based nano-scale models using such an

arena to test their intuition and explore the mechanisms involved

in micro-scale emergent behaviors.

Supporting Information

Text S1 Biophysical Properties of Cytoskeletal Filaments.

Discusses the biophysical properties of cytoskeletal filaments that

are relevant to the in silico modeling

Found at: doi:10.1371/journal.pone.0004748.s001 (0.08 MB

DOC)

Text S2 Rationale for using the forward Euler method. Defends

use of the forward Euler method for this simulation

Found at: doi:10.1371/journal.pone.0004748.s002 (0.03 MB

DOC)

Text S3 Psuedo-code implementing the Pairwise Agent Interac-

tions with Rational Superposition (PAIRS) method with tuning

coefficients. Method psuedo-code

Found at: doi:10.1371/journal.pone.0004748.s003 (0.05 MB

DOC)

Figure S1 Deflection of beams. The expressions for expected

deflection, from engineering beam theory, for simply-supported

and cantilevered beams subjected to a single force applied at beam

center and free end, respectively. These formulas are used to tune

in silico biological filaments to the correct deflection under force

Found at: doi:10.1371/journal.pone.0004748.s004 (0.06 MB TIF)
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