
TtIE YALE JOURNAL OF BIOLOGY AND MEDICINE 49, 45-58 (1976)

Cytomegalovirus Replication
and the Host Immune Response1

D. J. LANG, K. S. CHEUNG, J. N. SCHWARTZ, C. A. DANIELS,
AND S. E. HARWOOD

The Departments of Pediatrics, Pathology, and Microbiology-Immunology,
Duke University Medical Center, Durham, N.C.

Received June 12, 1975

Cytomegalovirus (CMV) is closely associated with host cellular structures, and this has a
significant impact upon the immunologic response following infection. CMV may be recovered
from a variety of body secretions and fluids during acute infection, and protracted shedding may
supervene in some instances. The reasons for a variable host response to CMV infection remain
unclear, and the mechanisms responsible for the establishment of persistence have not been
worked out. CMV persistence and latency are discussed, and some recently derived relevant
data are presented. An animal model has been developed consistent with clinical observations
pertaining to CMV transmission with blood. Results obtained in the course of these and other
studies support the concept of immunological activation of latent CMV. The timing of CMV in-
fection relative to an unrelated antigenic challenge is probably critical in determining the
emergence of immunodepression or enhancement. Some aspects of CMV sero-diagnosis are
also reviewed.

INTRODUCTION
It is almost 20 years since cytomegalovirus (CMV) was first isolated independently

by Smith, Rowe, and Weller; and yet, rigorous techniques have only recently been
widely applied to the study of this virus (or these viruses). The epidemiology ofCMV
infections is uncertain and at least variable in different populations. The host
response to infection is poorly defined; the immunologic response is often variable
and confusing. The responsibility of CMV for production of disease, apparently of
importance in some special groups, is only partially comprehended. The basic biology
of the virus and its impact upon cells seems to be particularly important in light of
recent evidence of the oncogenic potential ofCMV (1). And yet, while we are still in
this state of uncertainty, strains of CMV are being fed and injected into human
volunteers in an effort to devise a vaccine (2).

Clearly under these circumstances there is a pressing need to derive data relating
to CMV replication, the frequency and effect of the establishment of persistence and
latency, the means of virus activation, the timing and nature of the immune response,
and the relevance to malformations and disease (including late manifestations) of
virus cytopathology and the immunologic response of the host.
The very close association of CMV with host cells, indeed, the derivation of some

viral surfaces from nuclear and cytoplasmic membranes, certainly contributes to the
ambiguity of the immunologic response. Like many ancient parasites, CMV is, in its
natural state, a well adapted commensal; infections probably result in recognizable
syndromes and disease only in the presence of host immunologic deficiencies or in
situations where the acquisition of infection is delayed and the normal evolutionarily
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derived patterns of host/parasite interaction are interrupted. Ironically, these cir-
cumstances most frequently pertain in our own Western society where the processes
of civilization have been accompanied by vastly altered patterns of hygiene and social
interaction; where prolonged survival is facilitated in the face of debilitating disease
and where sophisticated medical techniques have been developed including transfu-
sion, extracorporeal perfusion, deliberate immunosuppression, organ transplanta-
tion, lengthy surgical procedures, and anesthesia.

It is our purpose to outline the current understanding ofCMV replication, latency,
and activation as well as the nature of the immunological response to this virus.
Where specific evidence is lacking in man, we rely upon data derived from related
systems in experimental hosts. Where appropriate, some testable hypotheses are
proposed. Since this represents a status report and not an exhaustive review, the
references cited are selective and not inclusive.

CYTOMEGALOVIRUS REPLICATION
The cytomegaloviruses are characterized by a relatively slow cycle of replication,

by species specificity (though a few exceptions have been described) by the variable,
occasionally sparse production in vitro of cell-free virus, and (like other herpes
viruses) by the capacity to establish persistent and latent infections. In vivo and in
vitro infected cells enlarge and develop sizable intranuclear inclusions and charac-
teristic cytoplasmic bodies. Viral DNA and antigens are assembled into whole virions
within the nucleus. Thereafter, the capsids (with and without dense cores) bud
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FIG. 1. Murine cytomegalovirus (VP) budding from the nuclear membrane (NM) into the dilated pe-

rinuclear cisternae (PNC) and receiving its outer membranous envelope (E) (Uranyl magnesium acetate
and lead citrate, XI 14,000). Reprinted with permission of the American Journal of Pathology (from
Schwartz et al., 51).
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FIG. 2. A cytomegalic cell in the anterior portion of a mouse eye infected intraocularly with murine
cytomegalovirus. The nucleus contains peripherally marginated nucleoli (Nc), and a centrally located ac-
cumulation of chromatin (intranuclear inclusion, IN) and viral particles (VP). Many of the viral particles
do not have dense nuclear cores. Note also the dilated perinuclear cisternae (PNC), cytoplasmic inclusion
(IC), viral particles, and vacuoles filled with membranous debris. Inset-The viral particles are shown at a
higher magnification (Uranyl magnesium acetate and lead citrate, X10,000; inset, X37,500). Reprinted
with permission of the A merican Journal ofPathology (from Schwartz et al., 51).

through and incorporate a bit of the nuclear membrane to acquire an envelope and
enter dilated perinuclear cisternae, vacuoles, and tubules in the cytoplasm. The bud-
ding and associated acquisition of the viral envelope by a mouse CMV is depicted in
Fig. 1. Some membraned virions are then shed directly to the extracellular space. A
proportion of the capsids which reach the cytoplasm seem to lose their membranes
and acquire new coats from various cytoplasmic surfaces. Additional empty capsids
are discharged after acquiring membranes. The various possibilities for acquiring an
intact core as well as appropriate or improper membranes may determine the
production of a high ratio of particles to infectious virus which has been described for
CMV (3). Figure 2 is an electromicrograph of a cell from the anterior portion of a
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mouse eye previously infected with murine CMV. Several of the features of CMV
replication described above are apparent in this photomicrograph.
Although CMV seems to replicate in vitro preferentially in fibroblasts, considera-

ble evidence demonstrates that multiplication in vivo occurs in a variety of cells,
including many of epithelial morphology. In the face of disseminated disease, CMV
has been recovered from or demonstrated in cells of virtually every organ system.
The initial recoveries of CMV were made by Smith from salivary gland (4), by

Rowe and co-workers from adenoids (5), and by Weller and his associates from urine
(6). A significant proportion of salivary glands derived from unselected pediatric
autopsies demonstrate histologic evidence of CMV infection (7). Nevertheless, very
few adults shed infectious CMV in saliva (8). The recovery in certain disease states of
CMV from washed leukocytes (9-1 1) as well as biochemical and clinical analogies to
Epstein-Barr Virus (EBV) and the epidemiologic evidence suggesting transmission of
CMV with blood products (12) has given impetus to the concept that CMV may
persist, not only in adenoids, but in a variety of cells of lymphoid origin. And yet, as
has been emphasized by extensive studies, virus is only rarely recovered from the cir-
culating cells of healthy individuals (13-15). Viruria is usually prominent and
prolonged following congenital and some postnatally acquired CMV infections.
Nevertheless, surveys of nonpregnant seropositive adults reveal only rare instances
of viruria (8). Recently Lang and Kummer have demonstrated the prolonged
presence of CMV in semen in the absence of virus in the blood, urine, or saliva (16).
Perhaps the presence of CMV in different organs or cells depends upon the strain of
virus, the route of acquisition, the maturity, genetics, and/or immunologic capacity
of the host.

THEORIES PERTAINING TO THE MECHANISM OF
ESTABLISHMENT OF CMV PERSISTENCE AND LATENCY

1. Persistence
Viral persistence in the presence of humoral antibody is prolonged for years in

most instances following congenital acquisition of CMV and often after clinically ap-
parent infection in adults. Nevertheless, indefinite persistence must not be the rule,
since active shedding ofCMV is demonstrable in very few antibody-positive adults.

Persistent shedding of virus implies the inability of the host to clear virus-infected
cells. This suggests the failure of host T cells to recognize and eradicate infected
cells which almost certainly manifest new virus-associated surface antigens. It would
seem that this failure of cellular immune function must reflect either a defect in T
cell function or macrophage processing. The latter is apparently a prerequisite for
the direction ofT cell-mediated cytolysis.

IfCMV replicates in or is directly or indirectly injurious to T cells, the virus might
interfere with cellular immunity in this fashion. Recently, employing the murine
CMV model, Schwartz and his associates have demonstrated that neonatal infection
with CMV is associated with damage to T cells and can result in the virtual ablation
of the neonatal mouse thymus and the depletion of lymphoid cells in the periarte-
riolar areas of the spleen (T cell areas) (18). Figures 3 and 4 depict the microscopic
appearance of the mouse thymus at 2 weeks of age uninfected and following neonatal
CMV infection. Marked depletion of cortical lymphoid cells is apparent as is the
overall reduction in organ size. Mice which have recovered after CMV infection dur-
ing this critical early postnatal period resemble animals which have been neonatally
thymectomized, are often small, and may succumb to a variety of intercurrent infec-
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FIG. 3. A section from a normal mouse thymus seen at 2 weeks of age. There is a prominent cortex (C)
tightly packed with lymphocytes. The cortex is clearly delineated from the medulla (M) which has a scat-
tering of lymphoid cells within it (H & E, XIOO). Reprinted with permission of the American Journal of
Pathology (from Schwartz et al., 18).

FIG. 4. A section from a thymus of a 2-week-old mouse who was infected at birth with murine
cytomegalovirus. The corticomedullary junction is indistinct, and there is a marked depletion of lymphoid
cells in the cortex. Note that almost an entire thymic lobule can be seen at this magnification (H & E,
XIOO). Reprinted with permission of the American Journal ofPathology (from Schwartz et al., 18).

49



LANG ET AL.

tions. Allowing for the different timing of the development of thymic and T cell
maturity in man, similar or related, more selective effects of congenital CMV infec-
tion in the human fetus might be responsible for postnatal CMV persistence. This
may be analogous to the variable influence upon cellular immunity of Lymphocytic
Choriomeningitis (LCM) and Lactic Dehydrogenase (LDH) viruses (19). These in-
fections also have a directly injurious effect upon thymus-dependent lymphoid tissue
which, after recovery, results in virus persistence in the face of intact antibody
production and unimpaired cellular immunity for other antigens.

If macrophage function is injured by CMV infection of these cells, the processing
of viral antigens might be inhibited. Selgrade and Osborne have studied the
pathogenesis of murine CMV infection (20) and suggest that macrophages from
mouse strains of varying susceptibility to this infection facilitate the inductive phase
of cellular immunity to the same extent. They speculate that heritable differences in
host susceptibility to CMV infections may be primarily dependent upon lymphocyte
rather than macrophage susceptibility. This is the only direct reference we shall
make to the very important but scarcely studied area of genetic susceptibility to in-
fection, persistence, and latency ofCMV.
The production of antigen-antibody complexes (perhaps related to the presence of

nonneutralizing antibody) may interfere with macrophage function. The existence of
such complexes in connection with CMV infection has been suspected, and some

direct evidence for such complexes is beginning to accumulate. Payne et al. (21)
make reference to "CMV-immune-complex changes in glomeruli" seen in kidneys
removed from one patient at pretransplant nephrectomy and again later from the
same individual after graft rejection. Oldstone (22) cites unpublished observations
which describe the presence (employing mouse CMV) of granular deposits of host
IgG and C3 in tissues, as well as the recovery of specific viral antibody from injured
glomeruli.

Recently we were afforded the opportunity to examine a 14-week-old female infant
who died due to a congenital CMV infection. Aside from the customary virologic and
morphologic findings of the disseminated virus disease, interesting lesions were found
in the kidney, examples of which are depicted in Fig. 5. The glomeruli were hyper-
cellular and showed evidence of endocapillary proliferative changes. In a few of the
glomeruli a marked proliferative reaction of the parietal layer of Bowman's capsule
was present, reminiscent of the epithelial crescent formation that is frequently found
in rapidly progressive (subacute) glomerulonephritis. Fluorescent antibody studies
revealed the deposition in a segmental and granular pattern of IgG and C3 within the
glomerular tuft as is often found in immune complex glomerulonephritis. CMV-
infected proximal convoluted epithelial cells also exhibited IgG and C3 on their sur-

faces. Paradoxically the immune system was apparently harming this patient as well
as helping her to cope with the disseminated virus disease.
The persistence of actively replicating virus, possibly suppressed by the presence

of antibody, can be demonstrated in some instances by employing explant tech-
niques. Cheung and Lang have recently presented evidence for the prolonged cyclic
production of murine CMV in salivary gland explants (23). Extracts of the same

glands made at the time of their original dissection were apparently virus negative.

2. Latency

It is proposed that in most instances CMV persistence is not established, either
because the quantitative relationships between antibody and antigen are not optimal
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FIG. 5. Sections from the kidney of a patient with a disseminated cytomegalovirus infection. In the up-
per panels a marked endocapillary proliferation is seen on the left and subcapsular crescent formation is
demonstrated on the right. The lower panels show granular deposits of IgG (left) and C3 (right) within the
glomerular tuft. Adjacent infected proximal tubular cells also show a diffuse deposition of these
substances (X400). Fluorescent microscopy study performed by Dr. Ralph C. McCoy.

for the production of complexes, or because T cell function is not directly or in-
directly impaired by CMV. In some (possibly all) other cases a latent infection is es-
tablished. In this case it may be that the CMV genome is integrated with the DNA of
cellular chromosomes. The analogy to EBV, a closely related virus, may be relevant.
Presence of EBV genetic material has been demonstrated in nonproductive lympho-
blastoid cells (24, 25), and cloning experiments support the concept that viral genetic
material is present in all of the cells of a given culture; even those without demonstra-
ble intact virus or viral antigens (26-28). The need, in order to demonstrate CMV in
leukocytes, for prolonged cocultivation of these cells with sensitive feeder layers of
fibroblasts is reminiscent of the means required to activate nonproductive viruses
such as SV40 (29). The elegant techniques employed by Huang and Pagano (30) are
beginning to provide data which will permit the evaluation of these questions as they
pertain to CMV infection.

Recent observations of Cheung and Lang suggest that latency of CMV may be
more widespread than has been previously suspected (23). Prolonged observations
were made of explants of normal prostate and prostate derived from mice previously
infected with murine CMV. No cytopathic effects were observed in either case, and
the cells (which appeared morphologically identical) were passaged separately
several times. When a sufficient quantity of cells from both sources had been accu-
mulated, they were each superinfected with murine CMV in a plaque procedure. It
was anticipated that residual virus might be manifest by interference. However, the
number of plaques were the same in each case, but a difference in morphology was
evident. Small, uniform plaques were seen in the normal prostatic cells, while larger
plaques were evident in the prostate cells derived from previously infected mice. This
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suggests that all of the prostate cells from the previously infected animal may carry
incomplete or defective CMV, and that the superinfection succeeded in rescuing
latent virus either by complementation or perhaps by supplying certain critical
enzymes.

ACTIVATION OF LATENT VIRUS
Cytomegalovirus is activated in conjunction with pregnancy, transplantation and

immunosuppression, perfusion and multiple transfusions, and disseminated (reticu-
loendothelial) malignancies (31). All of these conditions are accompanied by the
presence of a homograft or homograft analogy; most by varying degrees of im-
munodepression. It is possible that either or both of these factors contribute to the
activation of CMV.

It has been suggested that the cellular response to the presence of foreign antigens
might activate CMV (15). Precedents exist for immunological activation of latent
viruses. The subject has been discussed in a recent review dealing with the activation
of mammalian leukemia viruses (32). Initially it appears that the activation of CMV
in connection with transfusion and perfusion must relate only to the host response to
a homograft (in this case leukocytes) since it seems that immunosuppression is not
involved. However, some published data (33) and our own preliminary studies (34)
again have clouded the issue since they indicate that perfusion, transfusion, or
possibly even extended anesthesia may result in a variable depression of parameters
associated with cellular immunity.

In spite of these uncertainties, information is accumulating which supports the
concept of immunological activation of CMV. Wu, Dowling, Armstrong, and Ho
have been able to enhance the replication of chronic murine CMV in the absence of
immunosuppression with allografts of skin and lymphoid cells derived from spleen
(35). Olding, Jensen, and Oldstone were also able to initiate synthesis of murine
CMV with an allogenic reaction in vitro to lymphocytes which they characterize as B
cells. Cheung, Smith, and Lang have developed a murine model for transmission and
activation of CMV with blood transfusion (37). Blood from previously infected mice,
virus-negative by tissue culture assay, was "transfused" intraperitoneally into
uninfected allogenic and isogenic hosts. After a latent period of better than 1 month,
virus was invariably detectable in the salivary glands of the allogenic recipients and
only rarely in the case of isogenic recipients. Transfusion of blood from uninfected
animals into previously inoculated but presently virus-negative mice was followed by
activation of CMV in both heterologous and homologous recipients. This model ap-
pears to mimic the situation in man and may provide a suitable test system for defini-
tion of the virus carrier state, the impact of leukocyte depletion, and several addi-
tional problems relevant to the risks of CMV infection transmitted by blood
products.

Within renal dialysis units Hepatitis B infections have presented a significant
problem. The frequency of anicteric Hepatitis B infections and the establishment of
the posthepatitis carrier state among dialysis patients in contrast to the unit staff and
household contacts has been ascribed to the immunological inadequacies of patients
with chronic renal disease (38). This environment seemed an appropriate one in
which to assess the risks of CMV activation among patients with compromised im-
mune surveillance systems in the absence of significant allografts, as well as the risk
ofCMV transmission to their contacts. Drs. Sexton, Gutman, Smith, and Lang have
carried out a study of CMV within a hospital and home dialysis program. The data
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seem to indicate that neither chronic renal disease nor the dialysis procedure serve to
activate CMV.

Immunodepression may be induced by several viruses including CMV (19).
However, Simmons and associates at the University of Minnesota have reported the
apparent acceleration of allograft rejection in patients with preexisting evidence of
CMV infection (39). Initially it appears that these observations are in conflict with
the studies which demonstrate CMV-associated immunosuppression as reported in
mouse systems by Osborn (40, 41), Schwartz (18), and even by Howard and co-
workers (42), some of whom also collaborated with Simmons et al. Howard dem-
onstrated prolongation of allograft survival after murine CMV infection and showed
that as the interval increased between the initiation of the CMV infection and sub-
sequent grafting, the duration of graft survival was diminished. When CMV infection
occurred 13 days prior to skin graft (the longest interval reported), the rejection pat-
tern approached that of the uninfected controls. Employing a similar mouse model,
Hamilton, Elliott, Cheung, and Lang have been able to demonstrate that when a skin
graft is applied more than 3 weeks after induction of a sublethal CMV infection, the
rejection of the allograft is enhanced. At the same time the titers of the persisting
CMV infection are increased. The latter effect is notable since it occurs without ac-
companying immunosuppression. Thus, these apparently conflicting data may be re-
solved by a careful analysis of the timing of the CMV infection relative to the initia-
tion of the immunologic challenge. Initially, after the virus is introduced, direct injury
may be incurred by T cells and/or macrophages which impairs the immune response.
When the infection is initiated during a critical phase of T cell maturation as in the
studies of Schwartz (18), the damage to cellular immune function can be protracted.
CMV infection acquired later in life may be accompanied by transient T cell dysfunc-
tion, thus explaining the inverse temporal relationship between infection and immu-
nosuppression reported by Howard (42). The studies of Hamilton (43), which are
consistent with the clinical observations of Simmons (39), indicate that when grafting
is delayed still longer after CMV infection, the immune surveillance mechanisms
may actually be enhanced. The timing of infection relative to antigenic challenge has
been shown to alter the degree of immunodepression in other systems; although in
the case of Friend leukemia virus, the related immunodepression is said to become
ever greater as the interval is increased between infection and administration of the
antigen (19).

MEASUREMENT OF THE HUMORAL ANTIBODY
RESPONSE OF THE HOST

The importance for the control of CMV infections of cellular immunity is implied
by much of the information discussed in the previous sections of this report. The
assessment of humoral immunity to CMV has provided most existing pertinent
epidemiologic information. Thus, it is sobering to note that all of the existing tests for
CMV humoral antibody possess significant drawbacks. The complement fixation
(CF) test will identify antibody to most (though not all) strains of CMV. The
sensitivity of this test has been repeatedly questioned. In addition the CMV CF
procedure may not record the presence of IgM antibody effectively. It is certain that
in some instances the CF will yield negative results in congenitally infected newborns
possessing IgM antibody. Drs. Waner and Weller, with Dr. Kevy, have dem-
onstrated that longitudinal patterns of CMV CF antibody may vary significantly
(44). In 11 individuals followed for 18 months, titers changed at least once from
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significant to undetectable levels. We have been able to confirm these findings in the
course of the previously mentioned longitudinal study of renal dialysis patients and
controls. It may be said that CMV CF titers can wane and well unpredictably!
The CMV neutralization test is less broadly reactive than the CF procedure.

Weller and co-workers demonstrated CMV antigenic heterogeneity employing the
neutralization test (45), and these observations have been repeatedly confirmed. The
plaque technique as well as the addition of complement may sharpen and improve the
sensitivity of this test, and the procedure may provide important CMV strain-related
epidemiologic information if it becomes feasible to routinely produce high titered
type-specific antisera in heterologous hosts.
The indirect hemagglutination (IHA) test yields results which are qualitatively

comparable to those of the CF test, though the sensitivity of the IHA procedure is
apparently greater than that of the CMV CF test. Some sera, negative by CF, are
IHA positive. Less frequently, we have found serums which are CF positive and IHA
negative. The accuracy and reproducibility of the IHA procedure depends upon the
preparation of serum-free antigens, careful control of buffer pH and composition, the
choice of reactive sheep erythrocytes, and effective tannic acid.
The indirect fluorescent antibody technique has also been applied to the study of

CMV serology. Although this procedure has also been employed for the overall
assessment of CMV antibody, its main application has been to the recognition of
specific CMV macroglobulin (46). The measurement of specific IgM antibody has
been used most effectively to identify congenitally infected infants as well as some
postnatally acquired primary infections. This technique, originally applied to the
study of CMV by Hanshaw, has been modified by him to increase the test sensitivity
by prolonging the initial incubation of the serum with infected cells. In spite of
improvements, the interpretation of the test is frequently subjective. A positive CMV
IgM test is depicted in Fig. 6. The reaction of IgM-positive and -negative serum is
evaluated with uninfected and infected cells. Although in this instance the reaction of
the positive serum with the CMV infected fibroblasts stands out clearly, in other cir-
cumstances the residual fluorescence, particularly apparent with positive serum and
uninfected cells, can be confusing. The nonspecific reaction of CMV antibodies with
normal cellular structures may reflect the incorporation into CMV of elements of
cellular membranes.

Dr. Harwood, then a graduate student in microbiology at Duke University, had as

her investigative goal to apply the technology of the radioimmunoassay (RIA) to the
problem of quantitatively assessing CMV antibody, ultimately hoping to accurately
measure the IgM response to CMV. Initially, she worked to devise an RIA
procedure for measuring IgG antibody to murine CMV (47). In our experience with
the virus neutralization technique, antibodies had been detected in relatively
concentrated sera (usually only if diluted less than 1:64). It seemed, therefore, that a

radioimmunoassay designed to detect low antibody concentrations, such as the
sequential adsorption analysis described by Day (48), would be well suited to the RIA
procedure. This technique, after modification for use in the Microtiter system, had
the advantage of requiring few reagents and minute quantities of 125I-labeled anti-
serum.

It was found that, following sequential adsorption of mouse immune serum on con-
trol cellular antigens, species-specific antibodies to mouse CMV were detectable by
reacting the test serum with viral antigen prepared from virus-infected cells or virus-
infected salivary gland suspension and then adding 125 I-labeled goat antiserum
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FIG. 6. Indirect fluorescent antibody demonstration of CMV-specific IgM antibody. IgM positive
serum on (1) uninfected and (2) infected cells. IgM negative serum on (3) uninfected and (4) infected cells.
(Reprinted from thesis of S. E. Harwood, 47).

against mouse immunoglobulin. Although nonspecific binding of both normal and test
serum did occur, this nonspecificity was substantially reduced by sequential adsorp-
tion. Although it was not possible to completely eliminate the binding of antibodies to
control antigen, the relative increase in binding seen when viral antigens were used
made antibody activity easily detectable. Further exploitation of this and other RIA
procedures may be fruitful. Knez et al. have recently reported the development of an
RIA technique for the assessment of IgM antibody to CMV (49).

Furukawa, working with Dr. Plotkin, has found that the humoral immune response
to CMV may also be detectable in a precipitin test (50). Although two common pre-
cipitin lines were detectable using several strains of CMV, some strain differences
were recognized and it was felt that this procedure might have applicability to the
delineation of CMV variants. In general, the precipitin antibody response following
acute infections seemed to parallel the CMV antibody response as measured by CF
and IHA. Most precipitin tests have the disadvantage of being relatively insensitive,
but it may be that with the application of countercurrent immunoelectrophoretic
techniques the sensitivity of this procedure can be enhanced.
There is still a considerable need to sharpen the techniques applicable to assessing

the humoral immune response to CMV. Many of the problems experienced in de-
fining the epidemiology of infections caused by this virus can be related to confusing
or inadequate procedures. There is a need to further apply techniques such as
membrane fluorescence used with success in the study of EBV. In addition it would
seem appropriate to extract CMV core antigens in order to test for core antibody, an
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approach which has been fruitful in the investigation of Hepatitis B infections. The
preparation of core antigens may also facilitate the study ofCMV subtypes.

CONCLUSION
This past decade has seen the gradual recognition of the importance of CMV as an

opportunistic invader and as the transmissable agent most frequently responsible for
congenital infection and injury (at least in the United States and Western Europe).
We remain reasonably certain that CMV can be transmitted with and activated by
blood transfusion. Employing mouse models, it has been possible to reproduce many
of the virus-related findings which have been reported in association with
cardiopulmonary bypass perfusion and massive transfusion. These model systems
may enable us to more accurately define the carrier state and to determine whether
component transfusion will solve this problem. As a matter of fact, it may be possible
to solve this and several related clinical problems before we possess an entirely satis-
factory understanding of the close and complex virus-host relationships pertaining to
CMV. Elucidating these relationships will still be of considerable importance, indeed
perhaps a prerequisite, for the development of a vaccine and in order to understand
the pathogenesis and significance ofCMV persistence, latency, and activation.
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