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During metabolic reprogramming, glioma cells and their initiating cells efficiently
utilized carbohydrates, lipids and amino acids in the hypoxic lesions, which not only
ensured sufficient energy for rapid growth and improved the migration to normal
brain tissues, but also altered the role of immune cells in tumor microenvironment.
Glioma cells secreted interferential metabolites or depriving nutrients to injure the
tumor recognition, phagocytosis and lysis of glioma-associated microglia/macrophages
(GAMs), cytotoxic T lymphocytes, natural killer cells and dendritic cells, promoted
the expansion and infiltration of immunosuppressive regulatory T cells and myeloid-
derived suppressor cells, and conferred immune silencing phenotypes on GAMs and
dendritic cells. The overexpressed metabolic enzymes also increased the secretion
of chemokines to attract neutrophils, regulatory T cells, GAMs, and dendritic cells,
while weakening the recruitment of cytotoxic T lymphocytes and natural killer cells,
which activated anti-inflammatory and tolerant mechanisms and hindered anti-tumor
responses. Therefore, brain-targeted metabolic therapy may improve glioma immunity.
This review will clarify the metabolic properties of glioma cells and their interactions with
tumor microenvironment immunity, and discuss the application strategies of metabolic
therapy in glioma immune silence and escape.

Keywords: glioma, metabolic reprogramming, tumor microenvironment, immune escape, metabolic therapy

INTRODUCTION

Glioma is the most common primary intracranial cancer with a 5-year survival rate of less than 10%
(Wang J. et al., 2019), occurring in glial cells such as astrocytes, oligodendrocytes and microglia.
Glioblastoma multiforme (GBM) arose from astrocytes is the most frequent glioma with high
malignancy and drug resistance, which was classified as grade IV in the WHO grade 2016, with

Abbreviations: 2-HG, 2-hydroxyglutarate; AA, arachidonic acid; ABCA, ATP-binding cassette sub-family A member;
BCAA, branched-chain amino acid; BCKA, branched-chain ketoacid; B-FABP, brain fatty acid binding protein; EAAT,
excitatory amino acids transporters; ELOVL2, elongation of very long chain fatty acids protein; FASN, fatty acid synthase;
FPR, formylpeptide receptor 1; HK, hexokinase; HMGB, high mobility group protein B; MCT, monocarboxylate transporter;
PFK, 6-phosphofructokinase; PGES, prostaglandin E synthase; PKM, pyruvate kinase M; R5P, ribose-5-phosphate; SHMT,
serine hydroxymethyltransferase; SOAT, sterol O-acyltransferase; SREBP, sterol regulatory element-binding protein; α-KG,
α-ketoglutarate.
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a 5-year relative survival rate of only 5% because of rapid
relapse after treatment (Gusyatiner and Hegi, 2018). According
to gene transcription characteristics, GBM can be further
classified into three subtypes: proneural [mutations on isocitrate
dehydrogenase (IDH)-1 or tumor suppressor p53, and PDGFRA
amplification], mesenchymal (mutation/deficiency of tumor
suppressor NF1), and classical [EGFR amplification and
CDKN2A (Ink4a/ARF) homozygous deletion] (Wang Q.
et al., 2017). NF1 mutation-mediated proneural-mesenchymal
transition is the key mechanism of relapse, causing resistance to
treatment (Behnan et al., 2019).

Operative resection, although improving overall survival
and prognosis in patients with low- and intermediate-grade
gliomas (LGGs and IGGs) (Hervey-Jumper and Berger, 2016),
shows limited effect on high-grade gliomas (HGGs) including
anaplastic gliomas (WHO grade III) and GBM. Ironically,
due to the changeable biological properties and the location
of gliomas, non-specific interventions including radiation and
brain-permeable cytotoxic drugs benefited patients even more
than targeted therapies (Chen R. et al., 2017; Touat et al.,
2017). Nevertheless, the tumor microenvironment (TME)
makes gliomas resistant to chemotherapeutic drugs, and
bring about inflammation to further reduce the prognosis
of patients (Wu and Dai, 2017; Yang and Lin, 2017). In
order to satisfactorily treat gliomas, one needs to be familiar
with brain TME, which determine the evolution of tumors
(Hirata and Sahai, 2017).

Since peripheral immune cells cannot enter the blood-brain
barrier (BBB) and release inflammatory factors into brain
under physiological conditions, brain tissues are protected from
inflammation (Engelhardt et al., 2017; Figure 1A). Glial cells
play an important role in the integrity and damage repair of
BBB (Lou et al., 2016), so glioma cells originating from glial
cells can impair BBB and allow peripheral immune cells to enter
the brain (Figure 1B), forming a unique TME together with
intracranial situ cells, tumor-associated vasculature, perivascular
niche and lymphatic vessels (Quail and Joyce, 2017). Immune
cells are major members of the glioma TME (Magana-Maldonado
et al., 2016; Gieryng et al., 2017), which gradually lost tumor
clearance duties or became associates when exposed to tumors.
To support tumor growth, glioma cells and glioma stem-like cells
(GSCs, also known as brain tumor initiating cells) interacted
with adaptive immune cells and recruited immunotolerant
innate immune cells to inhibit or evade anti-tumor responses
(Broekman et al., 2018).

Although the BBB was damaged, glioma TME reconstructed
the blood-brain tumor barrier (BBTB), whose structure is
still dense and makes it difficult for antibodies to enter the
lesion (van Tellingen et al., 2015). This may be the reason
why immunotherapy such as PD-1/PD-L1 monoclonal
antibody was less effective in glioma (Jackson et al.,
2019). In contrast, metabolic therapies, such as ketogenic
diet, significantly benefited patients (Winter et al., 2017).
Metabolism is a medium of the communications between
glioma and immune cells in TME (Thomas and Yu,
2017). Glioma cells interfere with immune cells through
heterogeneous metabolism to mediate tumor growth, invasion,

drug resistance and recurrence, which will be reviewed
below.

METABOLIC PROPERTIES OF GLIOMA
CELLS

Compared with normal tissues, tumors have specific anabolic
and catabolic needs due to their rapid and uncontrolled
growth. After metabolic reprogramming, tumors tend to gain
energy through glycolysis rather than oxidative phosphorylation
(OXPHOS) even under aerobic conditions (DeBerardinis and
Chandel, 2016), which is called Warburg effect. Recent studies
have found that glioma cells that initially grew in an ischemic
environment relied on aerobic pentose phosphate pathway (PPP)
instead of glycolysis after being exposed to adequate oxygen
(Kathagen-Buhmann et al., 2016). When glucose was depleted,
glioma cells re-converted the metabolic pattern to OXPHOS
via the accumulation of lactate, which is the by-product of
glycolysis (Duan et al., 2018). In addition to differentiated
glioma cells, GSCs can also switch metabolism between glycolysis
and OXPHOS catering to changing circumstances (Shibao
et al., 2018), suggesting that the metabolism of glioma cells is
environmentally plastic.

Mutations or changed levels of metabolic enzymes and
accumulation of metabolites in TME were associated with the
malignant progression and epigenetic modifications (Agnihotri
and Zadeh, 2016; Masui et al., 2019). Isocitrate dehydrogenase
(IDH), a key rate-limiting enzyme in tricarboxylic acid (TCA)
cycle regulating carbohydrate, lipid and amino acid metabolism,
was widely mutated in proneural GBM cells. Mutations in
gliomas often occur in IDH1 and IDH2, both of which caused
the conversion of α-ketoglutarate (α-KG) to 2-hydroxyglutarate
(2-HG) in a NADPH-dependent manner (Waitkus et al., 2016).
The overall survival of patients with proneural subtypes is longer
than other subtypes, but the survival became the shortest after
excluding IDH mutations, suggesting the positive significance of
IDH mutations for prognosis (Behnan et al., 2019). However,
IDH mutations may lead to the conversion of LGG to secondary
HGG and the emergence of hypermutation phenotypes (Han
et al., 2020). As another feature of proneural subtypes, mutations
in p53 led to the loss of glycolysis inhibition and promoted
tumor cells to adapt to hypoxic environments (Maurer et al.,
2019). The expansion of PDGFRA also promoted glycolysis of
proneural subtypes (Ran et al., 2013). In the classical GBM
subtype, overexpression of EGFR activated PFK1 through PI3K-
AKT signaling, leading to the upregulation of GLUT1 and the
enhancement of glucose uptake (Lee et al., 2018). Although there
is no direct evidence that the inactivation of tumor suppressor
NF1 is associated with enhanced glycolysis, the glucose uptake
and glycolysis of mesenchymal GBM cells are more active than
other subtypes, which explains the increase in the malignancy
of GBM caused by proneural-mesenchymal transition. The
accumulation of ROS caused by hypoxic lesions can induce this
transition, and PI3K-AKT was also stimulated under hypoxia,
resulting in active glucose uptake and glycolysis (Talasila et al.,
2017; Liu et al., 2020).
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FIGURE 1 | The breakage of blood brain barrier and the infiltration of immune cells into glioma. (A) Under physiological conditions, the blood brain barrier consists of
a firm multilayer barrier. Cerebral vascular endothelial cells form a tight junction structure, which is closely connected with pericytes, and is supported by basement
membrane underneath. Astrocytes wrap the basement membrane through the end foot, and microglia maintain the integrity of the barrier. The immune cells originally
present in the brain are mainly microglia and dendritic cells (DCs). Peripheral immune cells cannot penetrate the blood brain barrier, and brain tissues do not release
recruitment signals to the cerebral blood vessels. (B) Rapid growth of glioma cells not only overexcites neurons to induce seizures, but also injures blood brain
barrier. Glioma cells release chemokines and other cytokines through the cracks of blood brain barrier to induce the differentiation, expansion and recruitment of
peripheral immune cells, including monocytes (in blood)/macrophages (differentiated from monocytes in brain tissue), cytotoxic T lymphocytes (CTLs), regulatory T
cells (Tregs), natural killer (NK) cells, neutrophils, DCs and myeloid-derived suppressor cells (MDSCs), which infiltrate the lesions with immune cells in situ.

Dietary or pharmacological interventions on metabolism,
such as ketogenic diet (Poff et al., 2019), dimethylbiguanide,
statins and NSAIDs (Gerthofer et al., 2018; Seliger and Hau, 2018)
inhibited the growth and invasion of HGGs and the malignant
transformation of LGGs, and induced programmed tumor death.
In view of the role of cell metabolism in the progression of
gliomas, means of metabolomics based on high-throughput
analysis has been developed currently (Pandey et al., 2017),
whose application requires the familiarity with the metabolic
characteristics of glioma cells and GSCs.

Carbohydrate Metabolism
The metabolic trend of glioma cells switches between glycolysis
and PPP according to the concentration of oxygen. Under
hypoxia, glioma cells overexpressed glycolytic enzymes to
maintain energy supply and promote migration, while up-
regulating PPP enzymes for rapid proliferation and division
under oxygen-rich condition (Kathagen-Buhmann et al., 2016;
Kathagen-Buhmann et al., 2018). Glycolysis was highly activated
in HGG cells with invasiveness and resistance to conventional

treatment (Corbin et al., 2017), but weaker glycolysis was
detected in LGG cells with IDH1 mutations, which restricted
their energy and made them less aggressive (Fack et al., 2017).
Intracellular glucose was catalyzed to glucose-6-phosphate (G6P)
by hexokinase (HK), followed by the transformation to 2
glyceraldehyde 3-phosphate (GA3P) via glucose-6-phosphate
isomerase, 6-phosphofructokinase (PFK)-1, aldolase and triose
phosphate isomerase sequentially, with the cost of 2 ATP. Then
GA3P was converted to pyruvate catalyzed by glyceraldehyde
3-phosphate dehydrogenase, phosphaglycerate kinase (PGK),
phosphoglycerate mutase 1, enolase and pyruvate kinase M
(PKM), during which 4 ATP were generated. The product
pyruvate was aerobically converted to acetyl-CoA to enter TCA
cycle via pyruvate dehydrogenase (PDH), or became lactate by
lactic dehydrogenase (LDH)-A without oxygen. The level of
lactate was positively related to the speed of glycolysis, which
was significantly higher in HGG cells than neuroblastoma cells
and neurons (Kim J. et al., 2015). Apart from energy supply,
abundant glycolytic enzymes in malignant glioma cells and GSCs
promoted the shift of carbon to ribose-5-phosphate (R5P) for the
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synthesis of nucleotide (Agnihotri and Zadeh, 2016), supporting
tumor growth. To ensure enough raw materials for glycolysis,
glioma cells and GSCs took up glucose efficiently via elevated
glucose transporter (GLUT) (Libby et al., 2018), of which the
level of GLUT3 is characteristic (Xu et al., 2015; Zheng et al.,
2016), relating to the resistance to antiangiogenic drugs (Kuang
et al., 2017). Glucose is not the only carbohydrate source for
glioma cells. They also ingested fructose through GLUT5 and
utilized by ketohexokinase for limited growth (Gao et al., 2018;
Su et al., 2018).

Carbohydrate uptake and glycolysis of glioma cells were
driven by the PI3K–AKT pathway activated by receptor tyrosine
kinases including EGFR and c-Met, which up-regulated PFK1
and GLUT1/3 via the activation of PFK2 and glycoprotein
synthase kinase (GSK)-3β (Kuang et al., 2017; Lee J.H.
et al., 2017; Lee et al., 2018). The mTOR–c-Myc signaling
also facilitated glycolysis by glutamine–fructose-6-phosphate
aminotransferase 1 (Liu B. et al., 2019). In contrast, the AMP-
activated protein kinase (AMPK) inhibited glycolysis and glucose
uptake by inhibiting mTORC1 and attenuating transcription
coactivator yes-associated protein-induced GLUT3 expression
(Wang et al., 2015). As a downstream effector of mTORC2 and
a regulator of the PI3K–AKT signaling (Oh et al., 2017; Wang
G. et al., 2017), hypoxia-inducible factor (HIF)-1α induced the
production of GLUT1/3 and glycolytic enzymes such as HK2
and PDH kinase 1 to drive glucose uptake and glycolysis, and
reduced reactive oxygen species (ROS) to resist oxidative stress
(Yang et al., 2014; Gabriely et al., 2017). Augmented levels of
microRNAs that activate PI3K–AKT–mTOR and mTORC2–c-
Myc axis and repress AMPK signaling have been observed in
malignant glioma cells (Alfardus et al., 2017), reflecting the
transcriptional activation of glycolysis and glucose transport.

As an important part of anabolism, PPP was activated by
receptor tyrosine kinases–mTOR pathway by phosphorylated
6-phosphogluconate dehydrogenase (Liu R. et al., 2019),
using G6P to produce substrates needed for glioma growth.
The consumption of each G6P via 6-phosphogluconate
dehydrogenase and 6-phosphate gluconate dehydrogenase
produced 1 CO2, 3 H+ and 2 NADPH, maintaining tumor
growth by adjusting pH and producing NAPDH for the
synthesis of GSH (reduced glutathione) and fatty acids, and
the intermediate product R5P was converted into fructose-6-
phosphate and GA3P for glycolysis or purine nucleotide synthesis
(Payen et al., 2016). Over-activated PPP increased oxygen
consumption and made glioma cells more sensitive to hypoxia-
induced death (Thiepold et al., 2017). Therefore, irreversible
activating mTORC1 to forcibly drive PPP, while obstructing the
glycolysis may control gliomas by inducing hypoxic damage.

Lipid Metabolism
As building materials and energy sources, lipids are essential
for glioma cells. Exogenous lipids were mainly obtained
from intracranial glial cells in the form of lipoproteins
through intercellular exchange, but rarely from the periphery
(An and Weiss, 2016). The low-density lipoprotein (LDL)
receptor-mediated cholesterol uptake supported the survival of
glioma cells, which was counteracted by ATP-binding cassette

sub-family A member (ABCA)-1-dependent cholesterol efflux
promoted by liver X receptor agonists (Villa et al., 2016).
Even without cholesterol intake, glioma cells and GSCs can
synthesize cholesterol de novo. Cholesterol was synthesized from
acetyl-CoA through sterol regulatory element-binding protein
(SREBP)-2 and mobilized from endoplasmic reticulum via sterol
O-acyltransferase (SOAT) and stored in lipid droplets in the
form of cholesterol ester (Geng et al., 2016). Lipid droplets then
activated SREBP-1, which was overexpressed in malignant glioma
cells and can initiate angiogenesis and the synthesis of lipids
on cell membrane and organelle via fatty acid synthase (FASN)
(Zhou et al., 2016). Increased levels of polyunsaturated fatty acid
synthetase ELOVL2 (elongation of very long chain fatty acids
protein) and cholesterol synthase 3-hydroxy-3-methylglutaryl-
CoA reductase (HMGCR) were also found in GSCs, involved
in the elongation of fatty acids, synthesis of membrane lipids
and facilitation of EGFR signaling to support cell growth (Wang
X. et al., 2017; Gimple et al., 2019), and the impediment of
fatty acid activator fatty acyl-CoA synthetase VL3 decreased
the expression of stem-like phenotype CD133 and self-renewal
functional molecules aldehyde dehydrogenase, musashi-1 and
SOX2 on GSCs (Sun et al., 2014). The brain fatty acid binding
protein (B-FABP, FABP7) participating in the utilization of
unsaturated fatty acids also acted as a risk factor to drive the
migration and infiltration of glioma cells and the growth of
GSCs (Elsherbiny et al., 2013; Morihiro et al., 2013) dependent
on the ratio of arachidonic acid (AA) to docosahexaenoic
acid (DHA) (Elsherbiny et al., 2018). Prostaglandin E2 (PGE2)
is another unsaturated fatty acid and known as an inducer
of inflammation and pain, which was catalyzed from AA by
cyclooxygenase (COX)-2 and prostaglandin E synthase (PGES)
overexpressed in glioma cells, especially mesenchymal cells
(Behnan et al., 2019). After binding to their receptors (EPs)
in glioma tissues, PGE2 promoted tumor growth, invasion
and immune escape (Jiang et al., 2017), and induced the
angiogenesis with 20-hydroxyeicosatetraenoic acid (20-HETE), a
transformation product of AA mediated by cytochrome P450 4A
(CYP4A) (Feng et al., 2017; Wang C. et al., 2019). Inhibition of
EPs or application of NSAIDs hindered the growth of gliomas
(Seliger and Hau, 2018; Qiu et al., 2019). The synthesis and
utilization of fatty acids and cholesterol participated in the
malignant progression of gliomas, which were controllable under
AMPK blockade (Guo et al., 2009; Kim et al., 2018).

Similar to carbohydrate, lipids were also catabolized by glioma
cells to obtain energy. Ketone bodies are intermediate products
of fatty acid oxidation, which were transported to brain tissues
and converted to acetyl-CoA for vital activities. Considering that
brain tumors cannot use ketone bodies and rely on glucose,
the ketogenic diet was developed to limit the energy supply of
gliomas rather than normal tissues (Poff et al., 2019). However,
recent studies have proved that glioma cells can oxidize ketone
bodies via up-regulated monocarboxylate transporter (MCT)
during ketogenic diet (De Feyter et al., 2016), suggesting the
ability of glioma cells to gain energy from lipids. In addition
to fast-cycling glioma cells dependent on aerobic glycolysis, a
subpopulation of slow-cycling cells with lipid transport and
oxidation as the main metabolic mode has been confirmed, which
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can obtain energy in the absence of glucose (Hoang-Minh et al.,
2018). Under oxygen-rich conditions, fatty acid oxidation was an
essential energy pathway for glioma cells expressing high levels
of fatty acid oxidases such as carnitine palmitoyltransferase 1
to grow independently of glycolysis (Lin et al., 2017; Wu et al.,
2019). Nevertheless, the energy-producing efficiency of fatty acid
oxidation is far less than glycolysis. Conversion of glycolysis to
fatty acid oxidation by activating PPARα eventually led to the
depletion of ATP in glioma cells (Wilk et al., 2015).

Distinguishing from conventional lipid metabolism, lipid
peroxidation is an over-oxidation of ROS and lipids in the
cell membrane and cytoplasm, producing cytotoxic peroxides
including malonaldehyde (MDA) and 4-hydroxy-2-nonenal
(HNE). Although there is a potential correlation between lipid
peroxidation and the grade of gliomas clinically (Atukeren et al.,
2017), lipid peroxidation in differentiated glioma cells induced
ferroptosis, a type of programmed death. To resist peroxidative
damage, glioma cells initiate degradation of peroxidatively
modified proteins through proteasome system (Nakayama
et al., 2016), and abate ferroptosis by GSH, phospholipid
hydroperoxidase glutathione peroxidase 4 (GPX4) and glutamate
(Glu)/cystine (Cys) antiporter system Xc−. Depleting GSH and
Cys or inhibiting system Xc− and GPX4 impeded the survival of
glioma cells and increased their sensitivity to radiation-induced
lipid peroxidation (Wang et al., 2018; Ye et al., 2020).

Controlling lipid metabolism resisted the invasion of gliomas,
such as the application of phytol, retinol, and quercetin acting on
FASN and SREBP1/2 (Facchini et al., 2018; Damiano et al., 2019),
and the inhibition of acetyl-CoA carboxylase 1 and HMGCR
by oleic acid and hydroxytyrosol (Priore et al., 2017). PPARα

activator fenofibrate also inhibited glioma growth by inducing
the dependence of tumor cells on fatty acid oxidation instead
of glycolysis (Wilk et al., 2015). On this basis, using fatty acid
oxidation inhibitors such as etomoxir may limit the leftover
energy-producing pathways of glioma cells (Lin et al., 2017;
Petovari et al., 2018), which is a potential treatment strategy.

Amino Acid and One-Carbon (C1)
Metabolism
As synthesis materials or decomposition products of proteins,
amino acids supported and regulated the growth of tumor cells
and tumor stem-like cells (Mayers et al., 2016; Jones et al., 2018).
The heterogeneous amino acid metabolism of glioma cells is
formed during environmental adaptation. In order to eliminate
ROS accumulation caused by vigorous glucose metabolism, the
level of xCT, the light chain subunit of system Xc− in glioma
cells was up-regulated to promote the intake of Cys, providing
raw material for the synthesis of GSH. This cytoprotective effect
relied on glucose, whose deprivation rapidly depleted NADPH
during ingestion of Cys, inducing cell death of GBM cells (Goji
et al., 2017). Glu, another raw material of GSH, and its metabolite
L-glutamine (Gln) are fuels for glioma growth, both of which can
be autonomously synthesized by glioma cells or taken up from
metabolites of astrocytes (Tardito et al., 2015). The bioenergy
of conversion from Glu to Gln through Gln synthetase were
provided by lactate produced during glycolysis of glioma cells and

normal astrocytes. The glutaminase mediated the transformation
from Gln to Glu, releasing amide nitrogen for the biosynthesis
of purines and pyrimidines (Venneti and Thompson, 2017),
which was accelerated by the generation of Gln via GSH (Tardito
et al., 2015). The excessive secretion of Glu from glioma cells
can trigger glioma-related seizures by binding to receptors on
neurons around the tumor (Huberfeld and Vecht, 2016). Glu
was also released from synaptic neurons as a neurotransmitter,
initiating the cascade of AKT and MAPK signaling through the
Glu receptor on the surface of glioma cells to promote invasion.
Moreover, in a glucose-deficient condition, Glu were metabolized
by Glu dehydrogenase (GLUD1)-1 into the intermediate product
of TCA cycle, α-KG, which activated inhibitor of nuclear factor
kappa-B kinase subunit β and nuclear factor κB (NF-κB) to
promote glucose uptake by up-regulating GLUT1 (Wang X. et al.,
2019). mTOR2 was activated by high levels of Gln (Liu B. et al.,
2019) to regulate Glu/Gln metabolism, promoting Glu secretion,
Cys uptake, GSH synthesis and Gln catabolism to obtain energy
and transmit growth factor signaling for glioma cells by activating
c-Myc (Gu et al., 2017).

As another critical part of amino acid metabolism, serine
(Ser)/glycine (Gly) metabolism governs the synthesis of
nucleotides, proteins and lipids, and is the hub of glycolysis and
folate metabolism (Maddocks et al., 2017). Ser was synthesized
from the glycolytic intermediate 3-phosphoglycerate via
phosphoglycerate dehydrogenase (PHGDH), and was converted
into Gly by mitochondrial serine hydroxymethyltransferase
(SHMT2) (Kim D. et al., 2015; Venneti and Thompson, 2017).
When Ser was sufficient, PKM2 was stimulated to promote
glycolysis of glioma cells, while SHMT2 was activated to
counteract augmented TCA cycle activity and save oxygen.
Although Gly accumulation caused by SHMT2 was detrimental
to cell growth, glioma cells expressed high levels of Gly
decarboxylase (GLDC) to decompose Gly into innocuous
metabolites, inhibition of which led to the loaded cytotoxic
aminoacetone and methylglyoxal. Conversely, when Ser
deficiency was sensed, glioma cells stopped cell cycle by
activating cyclin-dependent kinase inhibitor p21 through p53
and promoted the synthesis of GSH to maintain survival
(Venneti and Thompson, 2017).

Ser is the main source of C1 units during the conversion to
Gly and the decomposition of Gly. Other amino acids including
Glu, Gln, tryptophan (Trp), and methionine (Met) are also
the source of C1 units. Glioma cells expressing high level of
IDH3α up-regulated SHMT2 and facilitated the activation of
cytosolic SHMT (SHMT1) to promote the release of C1 units
(May et al., 2019). miR-940, which obstructs the folate cycle
and C1 metabolism by inhibiting methylenetetrahydrofolate
dehydrogenase, was also down-regulated in glioma cells (Xu et al.,
2019). The abundant C1 units participate in the biosynthesis
of nucleotide and produce CO2 and NADPH, enabling glioma
cells to survive, proliferate and invade under hypoxic conditions
(Wypych and Baranska, 2020). Furthermore, C1 units can be
thoroughly utilized by GSCs with rich purine synthases (Wang Q.
et al., 2017), promoting the onset and rapid recurrence of GBM.

For malignant invasion, glioma cells overexpressed amino
acid metabolic enzymes to resist hypoxia and glucose deficiency.
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Based on the distinct metabolic characteristics of tumors and
normal brain tissues, intervention of amino acid metabolism was
a selective means to improve gliomas (Panosyan et al., 2017).
Moreover, considering efficient Gln uptake in glioma tissues, PET
technology has been developed for imaging, which overcame
the limitations of conventional nuclide 18F-FDG in the context
of normal brain tissues with similar strong capacity of glucose
uptake (Venneti et al., 2015).

The metabolic reprogramming allowed glioma cells to
proliferate regardless of the ischemic lesion (Table 1), and
endowed them with strong migration capabilities for a better
growth condition (Kathagen-Buhmann et al., 2018), enabling
the rapid invasion into healthy brain tissues. Concurrently, to
cope with changes in nutritional sources, the metabolic plasticity
of glioma cells resulted in the resistance to anti-metabolic
therapies, including diet and drugs (De Feyter et al., 2016; Shibao
et al., 2018). It may be a forward therapeutic strategy to block
the adaptively up-regulated metabolic enzymes and activating
factors in glioma cells appropriately while limiting the intake of
energy substrates.

GLIOMA CELL METABOLISM LINKS TO
IMMUNE CELLS IN
MICROENVIRONMENT

Metabolic plasticity not only promoted the energy supply
and the synthesis of substrates required for growth and
heredity of glioma cells, but also induced immune evasion
(Ganapathy-Kanniappan, 2017). Immune cells accumulating
and infiltrating in the glioma tissues include glioma-associated
microglia/macrophages (GAMs), T lymphocytes, natural killer
(NK) cells, neutrophils, dendritic cells (DCs) and myeloid-
derived suppressor cells (MDSCs) (Magana-Maldonado et al.,
2016; Gieryng et al., 2017; Figures 2A,B), supporting tumor
growth instead of surveillance and annihilation and limiting
the prognosis (Zhang et al., 2017; Boussiotis and Charest,
2018; Figure 2C). Metabolic remodeling increased the level of
metabolites from glioma cells to induce immune tolerance in
the TME (Kesarwani et al., 2017), and drove the production of
immunosuppressive factors such as arginase (ARG)-1, IL-10, and
TGF-β (Guo et al., 2018; Figure 3A). Moreover, the hypoxia
caused by uncontrolled proliferation of metabolic reprogrammed
glioma cells reduced the viability of tumor killer cells, further
facilitating the survival of glioma cells (Colwell et al., 2017). The
interactions between glioma cell metabolism and immune cells
are a novel perspective for understanding the immune escape and
refractoriness of gliomas.

GAMs
GAMs account for 30–50% of glioma-infiltrating immune
cells, which is the highest proportion in tumor tissues
(Hambardzumyan et al., 2016). Microglia were thought to be
macrophages settled in the central nervous system (Sankowski
et al., 2019), but their origins and phenotypes are different.
Microglia originated from the neuroepithelial yolk sac progenitor
cells (Gomez Perdiguero et al., 2015) with high level of

CX3CR-1, but low level of CD45 and no CCR-2 expression
(Hutter et al., 2019). In contrast, macrophages in glioma TME
with CX3CR1 expression were differentiated from CX3CR1lo

peripheral monocytes entered the cranial cavity (Quail and Joyce,
2017), which highly express CD45 and CCR2 (Hambardzumyan
et al., 2016; Chen Z. et al., 2017). Monocyte chemotactic
protein 1 (MCP-1, CCL2) secreted by glioma cells mediated
the recruitment of CCR2+ monocytes and macrophages (Chen
Z. et al., 2017; Vakilian et al., 2017), and CX3CL1 induced
the infiltration of CX3CR+ microglia (Hambardzumyan et al.,
2016). Tumor recognition and phagocytosis functions of these
innate immune cells were declined in glioma milieu (Poon
et al., 2017), and cytokines such as TGF-β1 and IL-10 they
secreted contributed to the formation of immunosuppressive
TME (Roesch et al., 2018).

There is an interaction between GAMs and metabolites from
glioma cells. Compared to homologous cells not exposed to
the gliomas, up-regulated Glu receptors and GS and decreased
xCT were detected in GAMs in response to Glu secreted by
tumor cells (Choi et al., 2015). Meanwhile indoleamine 2,3-
dioxygenase (IDO)-1/2 and tryptophan 2,3-dioxygenase (TDO)-
2 were highly expressed in glioma cells and were proportional
to tumor grade (Guastella et al., 2018), which catalyzed the
decomposition of Trp into kynurenine (Kyn), a ligand of the
aryl hydrocarbon receptor (AHR). The released Kyn induced
the expression of CCR2 by activating AHR, and advanced the
recruitment of macrophages to tumor sites by enhancing the
response to MCP-1 secreted by glioma cells (Takenaka et al.,
2019). In addition to the impact on recruitment, metabolism of
glioma cells was involved in the regression of innate immune
abilities. Branched-chain ketoacids (BCKAs) metabolized from
branched-chain amino acids (BCAAs) and unsaturated fatty
acid PGE2 released by glioma cells were taken up by GAMs,
accompanied by decreased phagocytosis (Ghosh et al., 2010;
Silva et al., 2017). On the other hand, Kyn secreted by glioma
cells activated AHR in GAMs to inhibit the cytotoxicity of T
lymphocytes by up-regulating the production of ectonucleotidase
CD39 and adenosine (Takenaka et al., 2019). The polarization
of GAMs to immunosuppressive M2 type is a representative
tumorigenic process positively bound up with the grading and
rapid recurrence of gliomas (Wang Q. et al., 2017; Sorensen
et al., 2018), which was widely found in mesenchymal GBM
cells and was related to NF1 loss (Wang Q. et al., 2017). M2
polarization was also induced by metabolites of glioma cells such
as adenosine (Komohara et al., 2008; Kesarwani et al., 2019),
along with the secretion of CSF-1 (Pyonteck et al., 2013), the
expression of CCR5 (Laudati et al., 2017), and DNA damage
repair (Meng et al., 2019) of glioma cells. However, GAMs
polarized into immune-promoting M1 type were not facilely
affected by metabolites (Guan et al., 2017). In addition to
immunosuppressive functions, GAMs promoted the migration,
angiogenesis, and invasion of gliomas via TGF-β2, IL-6, and
VEGF (Roesch et al., 2018), which were affected by glioma
cell metabolism as well. The secretion of VEGF and TGF-β
from GAMs were reduced by blocking CYP4A to inhibit the
synthesis of unsaturated fatty acid 20-HETE (Wang C. et al.,
2017). The metabolism of glioma cells was also regulated by
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TABLE 1 | Metabolism processes of glioma cells and GSCs.

Process Reported cell lines Condition Substrate Key media Significance

Glucose uptake (Wang et al., 2015;
Xu et al., 2015; Zheng et al., 2016;
Kuang et al., 2017;
Lee J.H. et al., 2017;
Lee et al., 2018; Libby et al., 2018)

GBM (U87, U251,
A172, LN229, U343,
T98G), astrocytoma
(U373); GSC isolated
from GBM patients

Extracellular glucose Glucose GLUT1/3 Ensure enough raw materials
for glucose metabolism

Fructose uptake (Su et al., 2018) GBM (LN229, U87) Extracellular
fructose

Fructose GLUT5 Provide supplemental energy
sources other than glucose

Fructose decompose
(Gao et al., 2018)

GBM (LN229, U87) Abundant substrate Fructose Ketohexokinase Provide
fructose-1,6-diphosphate for
glycolysis in glucose deficiency

Glycolysis (Wang et al., 2015;
Agnihotri and Zadeh, 2016;
Kathagen-Buhmann et al., 2016,
2018; Lee J.H. et al., 2017;
Lee et al., 2018; Liu B. et al., 2019)

GBM (U87, U251,
G55, U118, A172,
LN229, U343, T98G),
astrocytoma (U373),
GSC (GS-11, GS-12,
BT112)

Hypoxia Glucose HK, PFK1, PKM Ensure energy source in
hypoxic lesions;
Promote migration to healthy
brain tissues;
Promote the shift of carbon
from glucose into R5P for
nucleotide generation

PPP (Kathagen-Buhmann et al.,
2016; Payen et al., 2016;
Liu R. et al., 2019)

GBM (G55, U87) Oxygen, and
sufficient substrate
produced by HK

G6P 6-phosphogluconate
dehydrogenase

Adjust pH;
Produce R5P for glycolysis or
purine nucleotide synthesis;
Produce NAPDH for the
synthesis of GSH and fatty
acids

OXPHOS (Duan et al., 2018;
Shibao et al., 2018)

GBM (U251), GSC
derived from murine
neural
stem/progenitor cells

Glucose deficiency
with sufficient
oxygen

Lactate Transport: MCT1/4;
Reaction: TCA cycle

Switch metabolic mode from
glycolysis to resist
glucose-deficient environment

Cholesterol uptake
(An and Weiss, 2016;
Villa et al., 2016)

GBM (U87, U251,
T98, A172),
astrocytoma (U373)

Extracellular
cholesterol from glial
cells

LDL LDL receptor Provide material for organelle
formation

Cholesterol efflux
(An and Weiss, 2016;
Villa et al., 2016)

GBM (U87, U251,
T98, A172),
astrocytoma (U373)

Intracellular
cholesterol

Cholesterol
ester

ABCA1 Induce cell death when
over-activated

Cholesterol synthesis and
mobilization (Geng et al., 2016)

GBM (U87, U251,
T98), tumor cells
isolated from GBM
patients

Abundant substrate
from glycolysis and
fatty acid oxidation

Acetyl-CoA Synthesis: SREBP-2,
HMGCR;
Mobilization: SOAT

Involve in the formation of cell
membranes;
Trigger SREBP-1-mediated lipid
synthesis

Fatty acid synthesis and elongation
(Geng et al., 2016; Zhou et al.,
2016; Gimple et al., 2019)

GBM (U87, U251,
T98), tumor cells and
GSCs isolated from
GBM patients

Intracellular glucose
or cholesterol on ER
membrane

Glucose,
acetyl-CoA,
cholesterol

SREBP-1, FASN,
ELOVL2

Provide lipids on cell membrane
and organelle

Unsaturated fatty acid utilization
(Morihiro et al., 2013;
Feng et al., 2017;
Elsherbiny et al., 2018;
Wang C. et al., 2019)

GBM (U87, U251,
U373, M049, M103,
M016), GSC (G144),
astrocytoma (C6),
GSC isolated from
GBM patients

Abundant AA and
less DHA

AA B-FABP, COX-2,
PGES

Provide eicosanoids and PGE2
for tumor growth, infiltration,
immune escape and
angiogenesis

Ketone body uptake and oxidation
(De Feyter et al., 2016)

GBM (RG2);
gliosarcoma (9L)

Ketogenic diet Ketone bodies Uptake:
monocarboxylate
transporter;
Oxidation:
hydroxybutyrate
dehydrogenase

Resist the energy limitation of
diet therapy

Fatty acid oxidation
(Wilk et al., 2015; Lin et al., 2017)

GBM (U87, LN-229),
tumor cells and GSCs
isolated from GBM
patients

Sufficient oxygen Fatty acids Carnitine
palmitoyltransferase 1

Obtain energy in the absence of
glucose (far less efficient than
glycolysis)

Lipid peroxidation
(Nakayama et al., 2016;
Wang et al., 2018)

GBM (U87, U251,
U373, SHG-44),
astrocytoma (C6)

Depletion of GSH
and Cys

Organelle lipids ROS Produce cytotoxic peroxide and
induce cell death

(Continued)
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TABLE 1 | Continued

Process Reported cell lines Condition Substrate Key media Significance

Cys uptake (Goji et al.,
2017)

GBM (U251, T98,
A172, LN229)

Abundant glucose Cys System Xc− Provide synthetic raw
materials for antioxidant GSH

Glu uptake and Glu/Gln
generation (Tardito et al.,
2015)

GBM (U87, U251,
LN229, LN18, SF188,
GUVW)

Gln starvation or
abundant Gln

Glu (uptake);
Glucose and alanine
(de novo synthesis);
Glu and Gln (mutual
conversion)

Uptake: excitatory
amino acids
transporters;
Synthesis: pentose
phosphate pathway,
glycolysis and TCA
enzymes, ALT;
Mutual conversion:
glutaminase/Gln
synthetase

Provide synthetic raw
materials for antioxidant GSH;
Trigger glioma-related
seizures;
Provide amide nitrogen for
synthesis of purines and
pyrimidines during
transformation from Gln to
Glu

Glu oxidative deamination
(Wang X. et al., 2019)

GBM (U87, U251,
LN18), GSC (GSC11)

Glucose deficiency Glu Glutamate
dehydrogenase 1

Replenish α-ketoglutarate for
TCA cycle;
Up-regulate GLUT1 and
promote glucose uptake

Ser synthesis (Kim D. et al.,
2015)

GBM (U251, LN229,
0308, BT145)

Abundant substrate
from glycolysis

3-phosphoglycerate Phosphoglycerate
dehydrogenase

Promote glycolysis, activation
of TCA cycle and oxygen
saving

Conversion of Ser to Gly
(Kim D. et al., 2015)

GBM (U251, LN229,
0308, BT145)

Abundant substrate Ser SHMT2 Release C1 units;
Produce cytotoxic
aminoacetone and
methylglyoxal

Gly decarboxylation
(Kim D. et al., 2015)

GBM (U251, LN229,
0308, BT145)

Gly loading Gly Glycine decarboxylase Convert Gly into non-
cytotoxic metabolites

C1 unit release
(May et al., 2019)

GBM (U87, LNZ308),
GSC (GIC-20, GIC-387)

Functional IDH3α

expression
Ser SHMT2/SHMT1 Provide synthetic raw

materials for nucleotide

Nucleotide synthesis
(Wypych and Baranska,
2020)

Astrocytoma (C6) Abundant substrate
and carrier

C1 units, amino
acids, R5P, CO2

De novo synthetase,
remedial synthase,
tetrahydrofolate (carrier)

Promote survival, proliferation
and invasion

GAMs. IL-6 secreted by M2 macrophages promoted glycolysis
of GBM cells by phosphorylating PGK1 via 3-phosphoinositide-
dependent protein kinase 1 (PDPK1) (Zhang et al., 2018),
and quinolinic acid secreted by microglia was taken up by
glioma cells for the synthesis of NAD+ to resist oxidative stress
(Sahm et al., 2013).

Glioma-associated microglia/macrophages are body guards of
gliomas from the host. The metabolism of glioma cells is closely
related to the recruitment, infiltration, and polarization of GAMs
(Figure 3B). Utilizing the communications between glioma cells
and GAMs can create the possibility to kill gliomas at close range,
such as proper interventions in metabolism.

T Lymphocytes
CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ CD25+
FOXP3+ regulatory T cells (Tregs) are active lineages
of glioma-infiltrating T lymphocytes. CTLs are the main
contributors that infiltrate and kill tumor cells. In addition
to the secretion of tumor-damaging cytokines such as IFN-γ,
CTLs can recognize antigens such as HEAT repeat-containing
protein 1 (HEATR1) expressed by glioma cells via human
leukocyte antigen (HLA)-A2 [or major histocompatibility
complex class 1 in animals] and trigger cell lysis (Wu et al.,
2014; Shao et al., 2017). Due to less chance of the contact
between ER and mitochondria, GSCs expressed low levels
of sialylated glycans on cell surface and were more sensitive

to CTLs than differentiated glioma cells (Bassoy et al., 2017).
As part of TME, the cytotoxicity of CTLs cannot function
properly. In response to the IFN-γ secreted by CTLs, glioma
cells released PD-L1 through exosomes to interact with
T cells for immune escape (Qian et al., 2018). IDH1/2
mutations reduced the release of CXCL10 that attract
the accumulation of CTLs (Kohanbash et al., 2017), and
increased the production of PD-L1 (Berghoff et al., 2017),
hinting the involvement of glioma cell metabolism in the
dysfunction of CTLs.

Glioma cells with heterogeneous carbohydrate and amino
acid uptake capacity occupied the supply of glucose and
amino acids in hypoxic niduses, leading to the exhaustion
of CTLs (Mirzaei et al., 2017; Rashidi et al., 2020), and
the accumulation of lactate during glycolysis destroyed the
intracellular and extracellular concentration gradients, which
hindered lactate efflux and reduced the viability of CTLs
(Shao et al., 2017). As an immune checkpoint (Kesarwani
et al., 2018), the Trp metabolism of glioma cells also limited
the infiltration of CTLs through IDO1 (Zhai et al., 2018).
In contrast, the histidine (His) metabolism promoted the
activation of CTLs, and the decline of His decarboxylase (HDC)
activated the inhibition of CTL infiltration by MDSCs (Ahn
et al., 2015). The elevated levels of other metabolic enzymes
including argininosuccinate lyase (ASL), ARG2, and COX-2
in glioma cells led to augmented synthesis of Trp, arginine
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FIGURE 2 | The recruitment of immune cells and the formation of immunosuppressive glioma microenvironment. (A) Glioma cells release chemokines to lesion
tissues, part of which entered peripheral blood through the pathological blood brain barrier. (B) After the chemokine receptors of peripheral and intracranial immune
cells captured their ligands, they drive the cells to migrate upstream where chemokines are released. (C) During the infiltration of inflammatory T cells,
anti-inflammatory cells, mainly regulatory T cells (Tregs), are recruited to inhibit the antigen presentation of dendritic cells (DCs) and T cell activation, resulting in
impaired immune response. In addition to the activation of anti-inflammatory mechanisms, glioma cells perform complex intercellular interactions with immune cells
in tumor microenvironment. Cytotoxic T lymphocytes (CTLs) should recognize tumor antigen HEAT repeat-containing protein 1 (HEATR1) and kill glioma cells with
natural killer (NK) cells, and CTLs were activated by mature DCs during the presentation of damage associated molecular patterns (DAMPs) released by glioma cells.
Glioma cells inhibited the maturation of DCs. Furthermore, glioma cells secreted cytokines to induce the generation and recruitment of tumorigenic Tregs,
myeloid-derived suppressor cells (MDSCs), neutrophils and M2 polarized microglia and macrophages, and inhibit the infiltration and tumor lysis of CTLs and NK cells.

and PGE2, which induced the repression of CTLs as well
(Eberstal et al., 2014; Authier et al., 2015; Kesarwani et al., 2019).
CTLs also affect the metabolism of glioma cells through
IFN-γ, which activated casein kinase (CK)-2 of tumor cells

to hold up glycolysis, impeding the growth of gliomas
(Ghildiyal and Sen, 2017).

Treg is a T cell subtype responsible for anti-inflammatory and
immune tolerance, secreting high levels of inhibitory cytokines
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FIGURE 3 | Interactions between glioma cell metabolism and immunomicroenvironment. (A) Metabolic reprogramming enables glioma cells to express high levels of
substrate transporters and metabolic enzymes to obtain sufficient energy in the harsh conditions of lesion, resulting in the deprivation of nutrient substrates and
accumulation of immune-interfering metabolites in the extracellular fluid. Abnormally expressed or mutated metabolic enzymes also affected immune cells by
regulating the production of chemokines and other cytokines. The actions of these molecules that enter the tumor microenvironment on immune cells and the
influences of immune cells on glioma cells metabolism are presented in part (B–H). The Arabic numerals in the figure link the metabolism of glioma cells (A) with
immune cells (B–H).
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including TGF-β and IL-10 (Qiu et al., 2020), which allowed
glioma cells to escape the cytotoxic damage of CTLs in TME
(See et al., 2015). In malignant gliomas, Tregs were associated
with the tumor recurrence, resistance to targeted drugs and
decrease of survival period (Sayour et al., 2015; Du Four et al.,
2016), whose depletion improved the condition of glioma mice
by inducing spontaneous rejection of the tumor. Glioma cell
metabolism also affects Tregs. Augmented production of Trp
and arginine, and elevated expression of metabolic enzymes
IDO1, ASL and ARG2 in glioma cells were accompanied by
increased infiltration of Tregs (Kesarwani et al., 2019). Mutations
in the metabolic enzyme IDH1/2 promoted the secretion of PD-
L1 (Berghoff et al., 2017), which induce the differentiation of
Tregs (DiDomenico et al., 2018). Differentiated Tregs recruited
into tumor region were mediated by chemokines MCP-1 and
CCL22 secreted by glioma cells (Jacobs et al., 2010; Chang
et al., 2016). Due to the efficient glucose uptake and glycolysis,
glucose was deprived in the hypoxic lesions by glioma cells,
resulting in Tregs relying on fatty acids for mitochondrial
metabolism and migrating to glioma tissues in response to
CCL22 in a HIF-1α-dependent manner (Miska et al., 2019).
Accumulated lactate further drove the infiltration of Tregs, and
the depletion of lactate from glioma cells decreased tumor-
infiltrating Tregs (Chirasani et al., 2013). PGE2 synthesis in
glioma cells with up-regulated COX-2 were also related to the
dilation and infiltration of Tregs (Rolle et al., 2012; Authier et al.,
2015). In addition, glioma cells can activate Tregs by enhancing
extracellular transport of Glu to survive anti-angiogenic therapy
(Long et al., 2020).

CTLs and Tregs are T cell lineages with opposite effects in
glioma TME, which were both influenced by the metabolic state
of cancer cells (Figures 3C,D). The intervention of glioma cell
metabolism can promote the infiltration of CTLs and restore their
anti-tumor immunity, meanwhile hinder the recruitment of Treg,
relieving the immune tolerance in TME.

NK Cells
Ly6c+ NK cells in the glioma TME are a group of innate
tumor killer cells derived from the bone marrow, which are part
of glioma-infiltrating lymphocytes. Due to different metabolic
properties, the grade of gliomas was inversely proportional to the
infiltration and anti-tumor functions of NK cells. Attributing to
the recruitment inhibitor galectin-1 secreted by HGG cells (Baker
et al., 2016), low levels of infiltrating NK cells were observed
(Domingues et al., 2016; Zhu et al., 2019), which possessed faint
cytotoxicity and expressed high level of Tim-3 to prevent the
tumor-killing helper T cells type 1, shortening the survival time of
patients (Pereira et al., 2018). Conversely, mutations of metabolic
enzyme IDH1 in LGG cells produced 2-HG and activated NF-κB
to promote the secretion of CX3CL1, which attracted CX3CR1-
expressing NK cells to infiltrate, making patients with a good
prognosis (Ren et al., 2019). The decreased immune functions
of NK cells were also related to the metabolism of glioma
cells. Soluble lactate metabolic enzyme LDH5 secreted by glioma
cells induced tumor infiltrating myeloid cells and circulating
monocytes to release the ligand of NK group 2 member D
(NKG2D), a surface receptor on NK cells in a long term, leading

to the down-regulation of NKG2D and malfunction of tumor
lysis (Crane et al., 2014; Figure 3E). According to the grade
of gliomas, a suitable metabolic intervention scheme should be
adjusted to effectively exert the tumor infiltration and cytotoxicity
functions of NK cells.

Neutrophils
High proportion of neutrophils expressing CD11b and Ly6G in
glioma tissues increased the tumor malignancy (Spiegel et al.,
2016), becoming a powerful indicator of poor prognosis (Massara
et al., 2017; Zhang et al., 2017). The S100A4 expressed in GSCs,
which is a novel biomarker promoting the transcription of genes
involving glycolysis and gluconeogenesis (Chow et al., 2017),
induced tumorigenicity of neutrophils involving the promotion
of tumor growth, metastasis, and resistance to anti-angiogenic
drugs (Liang et al., 2014). Besides, metabolism of glioma
cells interfered the recruitment and infiltration of neutrophils
(Figure 3F). Neutrophils were recruited to the periphery of
the glioma inflammatory region via chemokines including
CXCL1/2/3/5/6 and IL-8 (CXCL8), which were secreted from
glioma cells due to the expression of IL-1β (Lee S.Y. et al.,
2017; Mostofa et al., 2017). Subsequently, neutrophils infiltrated
the core area of tumor tissues through formylpeptide receptor
1 (FPR1) secreted by GBM cells to promote tumor growth,
invasion and angiogenesis (Liu et al., 2012). The expression of
COX-2 in glioma cells promoted the anabolic metabolism of
PGE2, up-regulating the expression of IL-1β and CXCL1 (Jiang
and Dingledine, 2013) to recruit neutrophils (Mostofa et al.,
2017). The IDH1 mutation in glioma cells weakened the CXCL2-
mediated recruitment of neutrophils (Amankulor et al., 2017),
which may be one of the reasons for the low malignancy of LGGs.
Despite the pro-glioma effects, utilizing the performance of
directional migration and infiltration to the tumor area through
BBB, the localized drug delivery and imaging tracer based on
neutrophil carrier raised the treatment and staging diagnosis
of glioma to a new height (Osuka and Van Meir, 2017; Xue
et al., 2017; Wu et al., 2018), and can inspect the efficacy of
metabolic interventions.

Dendritic Cells
As resident antigen presenting cells (APCs) in central nervous
system, DCs possess the ability to activate glioma-killing CTLs
(Malo et al., 2018a). The decrease of tumor-infiltrating DCs led
to reduced survival of GBM mice (Mathios et al., 2016). DC
vaccine-based immunotherapy has been widely investigated in
the treatment of gliomas (Mitchell et al., 2015; Weller et al.,
2017). However, the anti-tumor functions of DCs were covered
by the glioma-induced immunosuppression, which limited the
effectiveness of DC therapy (Garg et al., 2016; Li et al., 2018).
Glioma cells recruited DCs through the CXC chemokine family
(Dastmalchi et al., 2019). Under the exposure to glioma cells
expressing VEGF, the maturation of DCs were suppressed
and antigen presentation and T-cell activation capabilities were
diminished (Sheng et al., 2020). What’s more, DCs in the
glioma TME exhibited tumor tolerable properties, expressing
more IDO to induce Tregs to infiltrate glioma tissues for
immune escape (Wainwright et al., 2014; He et al., 2015).
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TABLE 2 | The impact of metabolic remodeling of glioma cells on immune cells.

Altered metabolic
media

Metabolic
characteristics
after remodeling

Influence on immune cells in
glioma TME

Significance Treatment strategies

Upregulated GLUT1/3,
amino acid transporters
and glycolytic enzymes

Increased glucose
and amino acid
uptake and activation
of glycolysis

Deprive nutrients and accumulate
intracellular lactate in CTLs to
deplete CTLs

Block tumor lysis (Mirzaei et al.,
2017; Shao et al., 2017; Rashidi
et al., 2020)

Glycolysis inhibitors
(targeting HK, PFK-1,
PKM), glucose and
amino acid uptake
inhibitors (targeting
GLUT1/3 and MCT4),
and ketogenic diet

Induce Tregs to survive on fatty acid
oxidation and promotes CCR4
expression by activating HIF-1α

Promote immunosuppressive
recruitment (Miska et al., 2019)

Enhance lactate uptake of
macrophages and DCs through
MCT1 to induce the malignant
transformation of macrophages and
DCs

Induce the tumorigenicity of
immune cells (Sheng et al., 2020)

IDH1/2 mutations Conversion of α-KG
to 2-HG in TCA cycle

Inhibit the generation of CXCL10 to
prevent the infiltration of CTLs

Block tumor lysis (Kohanbash et al.,
2017)

Mutant IDH
brain-targeted inhibitors
(AG120, AG221,
AG881) (Fujii et al.,
2016)

Induce glioma cells to secrete
PD-L1 to inhibit the antigen
recognition of CTLs and promote
the differentiation of Tregs

Suppress anti-tumor response and
promote immune suppression
(Berghoff et al., 2017)

Activate NF-κB to promote the
generation of CX3CL1 to promote
the infiltration of NK cells

Promote anti-tumor infiltration in
low-grade gliomas (Ren et al.,
2019)

Inhibit the generation of CXCL2 to
prevent the infiltration of neutrophils

Suppress the infiltration of
tumorigenic cells (Amankulor et al.,
2017)

Increase VEGF generation to
reduce the expression of
co-stimulatory molecule in DCs and
hinder the maturation

Prevent antigen presentation to
inhibit anti-tumor response (Wang
et al., 2014; Malo et al., 2018b)

Increased Trp synthesis
and up-regulated IDO1

Increased synthesis
of Kyn

Activate AHR of macrophages and
increase CCR2 expression to
promote the recruitment of
macrophages

Promote the infiltration of
tumorigenic cells (Takenaka et al.,
2019)

IDO1/2 and TDO2
inhibitors

Up-regulate CD39 to promote
adenosine synthesis by GAMs to
decrease the activity of CTLs

Suppress tumor lysis (Takenaka
et al., 2019)

Activate AHR of Tregs to promote
their proliferation and infiltration

Promote immunosuppressive
infiltration (Kesarwani et al., 2019)

Up-regulated COX-2
and PGES

Increased synthesis
of PGE2

Impair the phagocytic activity of
GAMs and the tumor lysis function
of CTLs, and promote the
proliferation and infiltration of Tregs
by activating EPs

Suppress anti-tumor response and
promote immunosuppressive
infiltration (Ghosh et al., 2010;
Kesarwani et al., 2019)

Drug uses NSAIDs as
the lead compound

Increase IL-1β transcription and
CXCL1 generation to promote the
recruitment of neutrophils

Promote the infiltration of
tumorigenic cells (Jiang and
Dingledine, 2013; Mostofa et al.,
2017)

Increase IL-8 and MCP-1
generation to promote the
recruitment of MDSCs

Promote immunosuppressive
infiltration (Venza et al., 2011, 2012)

Increase VEGF generation to
reduce the expression of
costimulatory molecule in DCs and
hinder the maturation

Prevent antigen presentation to
inhibit anti-tumor response (Feng
et al., 2017; Malo et al., 2018b)

(Continued)
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TABLE 2 | Continued

Altered metabolic
media

Metabolic
characteristics
after remodeling

Influence on immune cells in
glioma TME

Significance Treatment strategies

Up-regulated MCT1 Excessive generation
and efflux of BCKAs
from the catabolism
of BCAAs

Impair the phagocytic activity of GAMs
during the uptake and re-aminate of
BCKAs

Block tumor phagocytosis
(Silva et al., 2017)

MCT1 inhibitors

Overexpressed Cys/Glu
transporter (xCT)

Mass release of Glu
to the outside of cell

Up-regulate Glu receptors and GSH,
down-regulate xCT in GAMs

Reflect the response of immune
cells to glioma cell metabolism
(Choi et al., 2015)

xCT inhibitors

Activate and expand Tregs Promote the resistance to
anti-VEGF therapy (Long et al.,
2020)

Activated adenosine
metabolism

Increased synthesis
and release of
adenosine

Promote M2 polarization of GAMs Induce the formation of
immunosuppressive cells
(Kesarwani et al., 2019)

inhibitors targeting
adenosine or its
receptors

Up-regulated ASL and
downregulated iNOS

Increased synthesis
and inhibited
catabolism of arginine

Induce the proliferation of GAMs and
Tregs

Enhance immune suppression
(Kesarwani et al., 2019)

ASL inhibitors and
agonists targeting iNOS
and creatine kinase
mitochondrial 1

Generation of LDH5 Secretion of
extracellular soluble
LDH5

Induce GAMs and circulating
monocytes to release NKG2DL to
inhibit the cytotoxicity of NK cells by
down-regulating NKG2D

Block tumor lysis (Crane et al.,
2014)

LDH5 inhibitors

Up-regulated HK2,
PHGDH, and HMGCR

Increased synthesis
of Ser and
cholesterol, and
stimulated glycolysis

Increase VEGF generation to reduce the
expression of costimulatory molecule in
DCs and hinder the maturation

Prevent antigen presentation to
inhibit anti-tumor response
(Wolf et al., 2011; Liu et al.,
2013; Slawinska-Brych et al.,
2014; Malo et al., 2018b)

HK2, PHGDH and
HMGCR inhibitors

Up-regulated GPX4
and system Xc−

Increased synthesis
of GSH and inhibited
lipid peroxidation

Block the release of DAMPs and
prevent DCs from recognizing glioma
cells

Inactivate CTL-mediated
anti-tumor response (Li et al.,
2018; Wang et al., 2018; Ye
et al., 2020)

GPX4 and system Xc−

inhibitors

The decrease of immunosuppressive glioma-infiltrated DCs via
immune checkpoint inhibitors improved T cell responses and
survival of GBM mice (Hung et al., 2018).

The recruitment of DCs was affected by amino acid
metabolism of glioma cells (Figure 3G). Glycine-N-methyl
transferase mediates the conversion of Gly to sarcosine, which
released from glioma cells and competed with DCs for Gly uptake
through glycine transporter type-1 (Gly-T1) (Dastmalchi et al.,
2019). Gly depletion led to decreased GSH and oxidative stress of
DCs, leading to the up-regulation of COX-1 to promote CXCR2
expression and responding to IL-8 from glioma region. The
immune tolerance and malignant transformation of DCs were
also related to glioma cell metabolism. By inhibiting glycolysis
or LDHA, the proliferation, migration and infiltration into
glioma tissues of malignantly transformed DCs were repressed
(Sheng et al., 2020), and these DCs secreted high levels of
IL-12 to induce anti-tumor behavior of T cells (Chirasani
et al., 2013). In addition, DCs stayed in immature state
and co-stimulatory molecules CD80 and CD86 were down-
regulated owing to elevated secretion of VEGF from glioma
cells (Malo et al., 2018b) expressing elevated metabolic enzymes
(He et al., 2015), involving HK2, PHGDH (Wolf et al., 2011;
Liu et al., 2013), HMGCR (Slawinska-Brych et al., 2014), COX-
2 (Feng et al., 2017), nitric oxide (NO) metabolic regulation

enzyme dimethylarginine dimethylaminohydrolase (Boult et al.,
2011) and mutated IDH1 (Wang et al., 2014).

The loss of immunogenicity of tumor cells is a cause of
the failure of APCs. Inducing the release of damage associated
molecular patterns (DAMPs) from glioma cells restored their
immunogenicity, and triggered the activation of CTLs by DCs
(Dastmalchi et al., 2019). Lipid peroxidation and ferroptosis
induced by photodynamic therapy induced dying glioma cells to
release DAMPs such as calreticulin, high mobility group protein
B1 (HMGB1) and ATP that can be swallowed by DCs, stimulating
DC maturation and activation (Turubanova et al., 2019). It
can be inferred that the restoration of antigen recognition
and presentation abilities of glioma-infiltrating DCs via the
domination of glioma cell metabolism is critical to their anti-
glioma functions, which could authentically exert the efficacy of
DC vaccine on gliomas.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells are a lineage of immature bone
marrow-derived cells (BMDCs) activated under pathological
conditions, including CD11b+ Ly6Chi Ly6G− immature
monocytes (M-MDSCs) and CD11b+ Ly6Clo Ly6G+ immature
polymorphonuclear cells (PMN-MDSCs, also known as
G-MDSCs, immature granulocytes) (Marvel and Gabrilovich,
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2015). Regardless of their origins, the monocyte marker HLA-DR
is hardly expressed in M-MDSCs, while PMN-MDSCs express
lectin-type oxidized LDL receptor 1, which is hardly detected in
neutrophils (Gabrilovich, 2017). MDSCs account for more than
40% of glioma-infiltrating immune cells (Kamran et al., 2017)
and expressed IL-4Rα, inducible nitric oxide synthase (iNOS) and
ARG1 to inhibit the responses of glioma-killer T lymphocytes
and NK cells (Kohanbash et al., 2013; Gielen et al., 2016), causing
patients poor prognosis (Alban et al., 2018). Among MDSCs,
PMN-MDSCs induced CD4+ glioma-infiltrating T lymphocytes
to express PD-1, exhibiting more prominent T cell suppression
(Dubinski et al., 2016). Furthermore, the expression of VEGFR2
in MDSCs promoted the malignant progression of gliomas by
inducing angiogenesis (Huang et al., 2017).

The generation, infiltration, and acquisition of
immunosuppressive capacity of MDSCs were regulated by
the metabolism of unsaturated fatty acids and amino acids
of glioma cells (Figure 3H). When exposed to the exosomes
released by glioma cells, the expansion of BMDCs with MDSCs
phenotype was induced in healthy BMDCs (Gielen et al.,
2016; Guo et al., 2019), secreting IL-10, TGF-β, Fas-ligand and
B7-H1 to inhibit the activation of T lymphocytes (Chae et al.,
2015). The development of ARG1 phenotype in MDSCs was
also induced by GSCs in a CXCR2-dependent manner, via the
secretion of macrophage migration inhibitory factor (Otvos
et al., 2016). Then, M-MDSCs and PMN-MDSCs migrated to
TME in response to MCP-1 and IL-8 released from glioma
cells separately, which can recruit monocytes and neutrophils
expressing same chemokine receptors, CCR2 or CXCR1/2
(Chang et al., 2016; Ding et al., 2019). Anabolism of PGE2 in
glioma cells was involved in the generation and recruitment
of M-MDSCs and PMN-MDSCs. Depending on the level of
COX-2 (Fujita et al., 2011; Kosaka et al., 2014), PGE2 promoted
the secretion of IL-8 from glioma cells through autocrine
(Venza et al., 2011, 2012), advanced the migratory response
of M-MDSCs to MCP-1, and promoted the expression of

ARG1 in PMN-MDSCs. However, histamine secreted from
glioma cells mediated the maturation of MDSCs and the loss of
immunosuppressive functions. The exhaustion of histamine via
HDC knockout resulted in augmented infiltration of MDSCs into
glioma tissues with suppressed CTLs (Ahn et al., 2015). Studying
the relationship between the generation and recruitment of
MDSCs and glioma cell metabolism is expected to improve the
immune microenvironment of the lesions.

METABOLIC IMMUNOTHERAPY
STRATEGIES FOR GLIOMA

Metabolic heterogeneity of tumor cells and their initiating
cells promoted the rapid invasion and recurrence of gliomas
(Kathagen-Buhmann et al., 2016; Shibao et al., 2018). In the
hypoxic area of intracranial lesions, these malignant cells made
thorough use of glucose, lipoproteins and amino acids to
ingest energy, synthesize hereditary substance, and produce
antioxidants to resist oxidative stress. Metabolic reprogramming
also brought enhanced migratory ability for glioma cells to invade
healthy brain tissues for more energy supply. In order to ensure
the smoothness of these biological processes, glioma cells took
advantage of their metabolic properties for immune tolerance
and escape mainly through the following ways.

(1) Their powerful nutrient uptake depleted the energy supply
of tumor killer cells, and enhanced the synthesis of immune
checkpoints including PD-L1 and IDO, impairing the anti-
tumor responses.

(2) The metabolites secreted into TME promoted the
infiltration and expansion of inflammatory neutrophils
and suppressive Tregs and MDSCs to activate

TABLE 3 | Differentials in cell metabolism and immune TME of gliomas compared with peripheral tumors.

What’s special Specific performance Significance

Richer energy substrate Compared with peripheral tissues, brain has higher energy substrate requirement,
especially for glucose (Aldana, 2019). The vascular endothelial cells in BBB highly
express GLUT1 to take up abundant glucose from the periphery blood into the
brain (Jais et al., 2016).

Glioma cells possess more energy
substrates than peripheral tumor cells.

Utilization of Glu/Gln metabolic
coupling of brain cells

Glu released from synaptic ends is absorbed by astrocytes and metabolized into
Gln, which can be absorbed and utilized by the glutamine transporters on glioma
cells before being transported to neurons (Strickland and Stoll, 2017).

Provide a special source of amide
nitrogen for glioma cells to synthesize
purines and pyrimidines.

Special genetic mutations Mutations or expression changes of IDH, p53, PDGFRA, EGFR, NF1 and other
characteristic genes of glioma not only promote glucose uptake and glycolysis in
glioma cells, but also induce the infiltration and M2 polarization of GAMs (Wang Q.
et al., 2017).

Make glioma cells use the glucose-rich
condition of brain TME more efficiently,
and promote immune escape.

Participation of microglia As a special member of glioma TME, microglia are recruited to lesions through
CX3CL1/CX3CR1 chemokine channel (Hambardzumyan et al., 2016), while
peripheral monocyte-macrophages through the MCP-1/CCR2 channel (Vakilian
et al., 2017).

There is a certain difference in the
immune recruitment between glioma
cells and peripheral tumor cells.

Presence of a biological barrier The chemokines released by glioma cells recruit most of the immune cells in the
TME from the periphery after penetrating BBTB, and immune cells also need to
penetrate this barrier to enter the lesion.

There is a barrier for glioma cells to
recruit immune cells, which does not
exist in peripheral tumors.
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anti-inflammatory mechanisms and immunotolerant
responses.

(3) The metabolites led to malignant transformation of
tumor-infiltrating APCs and phagocytes and exerted
immunosuppressive functions, indirectly resisting tumor
killer cells.

(4) After metabolic remodeling, the ability to recruit immune-
tolerant cells was enhanced, but anti-tumor cells were
less recruited. On the contrary, peroxidation metabolism
enhanced immunogenicity and attract the presentation of
tumor antigens (Turubanova et al., 2019).

Energy production and antioxidant responses during
metabolism of glioma cells can also be induced by GAMs
(Sahm et al., 2013; Zhang et al., 2018), but inhibited by CTLs
in TME (Ghildiyal and Sen, 2017), reflecting the bidirectional
conversation between glioma cell metabolism and immune
microenvironment.

Several strategies for improving glioma TME through
metabolic therapy are recommended (Table 2). Glycolysis
inhibitors, or drugs targeting GLUT3 and MCT4 can restore
the supply of extracellular glucose and reduce the lactate stress,
improving the growth of CTLs, and hindering the tendency of
Tregs to fatty acid oxidation to inhibit the infiltration of Tregs.
Inhibiting inflammation and the release of PGE2 by anti-COX
drugs such as NSAIDs can hinder inflammatory infiltration and
activate anti-inflammatory mechanisms, restore the phagocytosis
of GAMs and tumor lysis of CTLs, and repress the recruitment
of Tregs, neutrophils and MDSCs. Inhibiting key enzymes in
Trp–Kyn pathway and adenosine synthesis to prevent the loaded
Kyn from activating AHR of GAMs and Tregs, and reduce
the concentration of adenosine to enhance the cytotoxicity of
CTLs is also a good choice. Compounds designed to act on
amino acid transporters, including MCT1 and system Xc− can
inhibit the release of BCKAs and the uptake of GSH synthetic
materials, so as to restore GAMs phagocytosis, and induce the
release of glioma-derived DAMPs recognized by DCs during
ferroptosis. In addition, local injection of sarcosine and histamine
can promote the migration of DCs to glioma region and promote
the maturation of MDSCs. For glioma cells with IDH mutations,
targeting mutant IDH can restore the release of CXCL10 and
inhibit the production of PD-L1, promoting recruitment and
tumor recognition of CTLs and inhibiting Tregs. It can be
combined with imaging methods such as PET to analyze the
metabolic characteristics of the lesions (Venneti et al., 2015) and
formulate an individualized metabolic treatment plan.

DISCUSSION

The microenvironment where glioma cells regulate immune cells
through metabolic reprogramming is in the brain. Therefore,
a challenge for glioma metabolic immunotherapy is the BBTB.
In order to selectively act drugs on the lesions and reduce
the impact on peripheral tissues, a brain drug delivery system
needs to be established. Osmotic BBB disruption based on intra-
arterial infusion of hypertonic mannitol solution, intravenous
bradykinin analogs that relax tight junctions, drugs coupling
to a mediator targeting and shuttling insulin or transferrin
receptors, nanoparticle drug delivery system, and direct delivery
of drugs to the brain parenchyma or excision cavity are potential
methods for metabolic immunotherapeutic drugs to cross BBTB
(van Tellingen et al., 2015; Li et al., 2020). Targeting metabolic
functional proteins selectively and highly expressed in glioma
cells, such as GLUT3 (Xu et al., 2015; Zheng et al., 2016), or using
targeted metabolic drug delivery systems based on neutrophils
(Osuka and Van Meir, 2017; Xue et al., 2017) or other immune
cells accumulating in glioma tissues is also a good solution.

To conclude, glioma cells show different metabolic pattern and
immune microenvironment from peripheral tumors (Table 3).
Interfering with cell metabolism could not only hinder the
growth of glioma cells, but also improve the immune response
in the focal area to systematically resist tumor progression,
which is expected to become a new direction for clinical
treatment of gliomas.
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