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Background: Most individuals exposed to Mycobacterium tuberculosis (Mtb)

develop latent tuberculosis infection (LTBI) and remain at risk for progressing to

active tuberculosis disease (TB). Malnutrition is an important risk factor driving

progression from LTBI to TB. However, the performance of blood-based TB

risk signatures in malnourished individuals with LTBI remains unexplored. The

aim of this study was to determine if malnourished and control individuals had

differences in gene expression, immune pathways and TB risk signatures.

Methods: We utilized data from 50 tuberculin skin test positive household

contacts of persons with TB - 18 malnourished participants (body mass index

[BMI] < 18.5 kg/m2) and 32 controls (individuals with BMI ≥ 18.5 kg/m2). Whole

blood RNA-sequencing was conducted to identify differentially expressed

genes (DEGs). Ingenuity Pathway Analysis was applied to the DEGs to identify

top canonical pathways and gene regulators. Gene enrichment methods were

then employed to score the performance of published gene signatures

associated with progression from LTBI to TB.
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Results: Malnourished individuals had increased activation of inflammatory

pathways, including pathways involved in neutrophil activation, T-cell

activation and proinflammatory IL-1 and IL-6 cytokine signaling. Consistent

with known association of inflammatory pathway activation with progression to

TB disease, we found significantly increased expression of the RISK4 (area

under the curve [AUC] = 0.734) and PREDICT29 (AUC = 0.736) progression

signatures in malnourished individuals.

Conclusion: Malnourished individuals display a peripheral immune response

profile reflective of increased inflammation and a concomitant increased

expression of risk signatures predicting progression to TB. With validation in

prospective clinical cohorts, TB risk biomarkers have the potential to identify

malnourished LTBI for targeted therapy.
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Introduction

Tuberculosis (TB) is among the world’s leading causes of

death by a single infectious agent (1). Worldwide, over 1.5

million deaths were attributed to TB in 2020, and

approximately 1.7 bil l ion people are infected with

Mycobacterium tuberculosis (Mtb) (1). While most individuals

exposed to Mtb develop latent TB infection (LTBI) and remain

in that state, 5-10% of infected individuals progress to TB disease

(2). Comorbidities such as human immunodeficiency virus

(HIV) infection, diabetes mellitus, and alcohol use as well as

socioeconomic and environmental factors increase risk of

progression from LTBI to TB (1, 3). Malnutrition is an

important predisposing factor (3, 4). An estimated 720-811

million individuals worldwide are undernourished and 64% of

the global undernourishment is in the 20 countries with 83% of

the world’s TB burden. The Food and Agriculture Organization

estimated that an additional 118 million individuals experienced

hunger in 2020 compared to 2019 likely due to the economic

devastation of the COVID-19 pandemic. The population-

attributable fraction (PAF) of undernourishment was

approximately 19% in 2020 which is greater than both HIV

(7.6%) and diabetes (3.1%) (4). In 2016-2020, 24.1% of incident

TB in 30 high burden countries was estimated to be attributable

to undernutrition. The PAF can be as high as 61.5% in women

(5, 6). Observational studies have reported an association

between malnutrition and LTBI progression in humans (4–7).

A systematic review found a consistent-log linear relationship

between body mass index (BMI) and risk of TB disease incidence

with every 1kg/m2 decrease being associated with an

approximately 14% increase in TB incidence (3). Moreover,

approximately 690 million people suffered from malnutrition
02
in 2019, and this number is expected to increase, given the

impact of COVID-19 on food security worldwide (8). TheWorld

Health Organization (WHO) End TB strategy aims to decrease

TB incidence by 90% and TB mortality by 95% by 2035 (9).

Addressing malnutrition is crucial to achieving this goal.

There has been a lack of comprehensive studies focused on

the mechanism by which malnutrition affects the Mtb immune

response. Previous studies using animal models demonstrated

effects on innate and adaptive immune responses (7). Mice fed a

protein-deficient diet had higher mycobacterial burdens,

disorganized granulomas, and lower production of

antimycobacterial cytokines NOS2, IFN-g, and TNF (8).

Similarly, guinea pigs fed a protein-deficient diet had poorly

formed granulomas and marked reductions in CD4 and CD4

lymphocytes in the blood and spleen (9). Human studies show

that malnourished individuals have decreased Th1 (IL-2 and

IFN-g) and proinflammatory (TNF, IL-6, IL-1a, and IL-1b)
cytokines and increased Th2 cytokines (IL-4, IL-5, and IL-13) (7,

10, 11). Severe protein-energy malnutrition also mediates

atrophy of the thymus and peripheral lymphoid organs,

inducing leukopenia, lower CD4/CD8 ratio, more CD4 and

CD8 double-negative T cells, and immature T cells in

peripheral blood (10, 12). Although these studies have yielded

insights pertinent to the immunological consequences of

malnutrition, our understanding of human immune response

pathways driving progression to TB disease remains

considerably limited and requires investigation. In addition,

whether immune modulation induced by malnutrition affects

the expression of gene signatures predicting risk of progression

to TB disease (13–16) also needs inquiry.

In this study, we analyzed whole blood transcriptomic data

from malnourished individuals (mal) and control individuals
frontiersin.org
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(con) with LTBI in South India with the goal of classifying

canonical pathways and gene regulators that are differentially

modulated between the two groups. We scored the samples

based on published TB risk biomarker gene sets and observed

that malnourished individuals had scores that predicted a

significantly higher risk for progression to disease compared to

those without malnutrition. Identifying malnourished

individuals with LTBI who are more likely to progress to TB

will enable timely treatment, and also allows one to consider

interventions to reduce this risk.
Methods

Sample selection

We utilized samples from the Regional Prospective

Observational Research in TB (RePORT)-India cohort based

at Jawaharlal Institute of Postgraduate Medical Education and

Research (JIPMER). The study was conducted in collaboration

with Boston Medical Center (BMC), Boston University (BU),

JIPMER and Rutgers-New Jersey Medical School. Ethical

approval was obtained by the JSAC (46/47/2017; 04/21/2017)

and IEC (JIP/IEC JIP/IEC/2017/0149; 07/21/2017) committees

of JIPMER and the institutional review boards of BMC/BU (H-

35873;12/13/2016) and Rutgers University (Pro20170000497; 5/

2/2017).

This study enrolled household contacts (HHC) of newly

diagnosed smear-positive, culture-confirmed persons with

pulmonary TB identified at National TB Elimination Program

clinics. Additional study details have been previously reported

(6, 17). Blood was collected fromHHC in PaxGene RNA tubes at

enrollment. HHC underwent tuberculin skin testing (TST) and

were monitored for symptoms of active TB for 24 months;

sputum smear and culture were performed on symptomatic

individuals, and only LTBI individuals who did not progress to

active TB were included in this study.

In addition to demographic characteristics, participant body

mass index (BMI) was measured at baseline and categorized into

severe malnutrition (BMI < 16 kg/m2), malnutrition (16-18.4

kg/m2), and normal/overweight (>18.4 kg/m2). For this study,

individuals with a BMI ≥ 18.4 kg/m2 were referred to as

“controls.” In individuals less than 18 years of age, BMI was

categorized based on standard deviations relative to the WHO

median: children (ages 9-17) whose BMI was more than two

standard deviations away from the median for their age were

categorized as severely malnourished (6 individuals) and those

less than the median were considered malnourished (6

individuals) (18). However, for this study all malnourished

and severely malnourished are grouped as “malnourished

individuals”. Questionnaires addressed comorbidities that

affect host response and TB risk, including HIV, diabetes
Frontiers in Immunology 03
mellitus, renal failure, alcohol use (using the Alcohol Use

Disorders Identification Test [AUDIT-C]), tobacco use, and

other parameters (19).
Sample preparation and analysis

We analyzed RNA-seq data from enrollment PaxGene

tubes from a subset of 18 malnourished and 32 control TST-

positive (≥5mm) HHCs. PaxGene tubes were sent to

MedGenome (Bangalore, India) for processing. RNA was

extracted from thawed samples using the PAXgene Blood

RNA kit (Cat #762164, Qiagen, Hilden, Germany). Library

preparation and sequencing were performed as described

previously (17).

Two batches of data were combined: the first batch consisted

of 31 samples (15 malnourished and 16 controls; GSE152218),

and the second batch consisted of 19 samples (3 malnourished,

18 controls) from our previous study (GSE101705), in addition

to samples from individuals with active TB removed after batch

correction (17).
RNA-sequencing data processing

QC and alignment
Raw sequencing FASTQ files were assessed for data quality

using FastQC (20). Trimmomatic was used to trim the reads

(SLIDINGWINDOW:4:20 LEADING:3 TRAILING:3

MINLEN:36) (21). Rsubread was used to align reads to human

genome hg38 and to determine expression counts for each gene.

Principal component analysis (PCA) of the raw data revealed one

outlier LTBI sample that could not be corrected by various methods

of normalization or transformation and was subsequently removed

before batch correction. Genes with expression count variance less

than 20% of the mean variance were excluded from the calculation

of differentially expressed genes (DEG).

Batch correction
Batch effects created by combining the two batches from

GSE152218 and GSE101705 were removed using ComBat-Seq

(22). The ComBat-Seq adjusted counts were normalized using a

log2-counts per million (logCPM) adjustment, and the logCPM

values were used for downstream analysis.

Differential expression
DEGs between malnourished individuals and control groups

were identified using Limma on batch corrected data. The

default parameters of Limma were used, with the model

design incorporating individuals’ nutrition status. Only

protein-coding genes were included to develop a differential

pathway list of malnourished individuals vs. control individuals.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1011166
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


VanValkenburg et al. 10.3389/fimmu.2022.1011166
Dimension reduction
PCA and t-distributed Stochastic Neighbor Embedding

(tSNE) were used to reduce the dimensionality of the data and

project the data into two dimensions (using the PlotPCA

function from the DESeq2 and Rtsne R packages, respectively).

Pathway enrichment analysis
Due to the low number of DEGs with an FDR > 0.05, we

used the top 2923 genes with a p-value <0.05 identified between

malnourished individuals and controls to identify potential

biologically relevant pathways. The gene list was analyzed with

Qiagen ’s Ingenuity Pathway Analysis (IPA), using

recommended standards (23). The activation z-score provided

a statistical measure of the direction of gene regulation (a

positive z-score indicates predicted activation, and a negative

z-score indicates predicted inhibition). To control for false

positives, we used a z-score of 2.0 as a cutoff and p<0.01 to

identify canonical pathways, and a lower than normal p-value of

p<0.001 for upstream and master regulators.
TBSignatureProfiler platform

The TBSignatureProfiler was used to profile signatures; it

contains functions for analyzing gene lists from pathways or

signatures to determine the predictive value (24). Scoring

methods used here were Gene Set Variance Analysis (GSVA)

and single sample Gene Set Enrichment Analysis (ssGSEA).

Heatmaps, boxplots, receiver-operating characteristic (ROC)

curve, and area-under the ROC-curve (AUC) were calculated

and depicted using the functions within the TBSignatureProfiler.

Bootstrapping was used to iteratively calculate AUC values using

leave-one-out cross-validation to obtain mean AUCs and 95%

confidence intervals (CI) for 100 repeats for each signature.

Over fifty previously published TB signatures were available

in the TBSignatureProfiler at the time of this study. However,

only those related to predicting risk of developing TB were used

for this study: the Suliman 4-gene signature (denoted as RISK4)

derived from a study of African, HIV-uninfected HHCs for

prediction of TB progression up to two years before TB onset

(13); the Sweeney 3-gene signature (SWEENEY3) was derived

from a meta-analysis using 14 datasets and was reported to

separate TB from other diseases (14); the Zak 16-gene signature

(ACS COR), derived from a South African adolescent cohort

study, described a prospective signature of TB risk up to 12

months preceding TB diagnosis (16); and the Leong 29-gene

signature (denoted as PREDICT29), which was derived in an

African cohort and validated in a Brazilian cohort and predicts

risk of progression/reactivation in exposed individuals at least

five years before TB disease development (15).

We generated mean AUC values for the predictive

performance of these biomarkers in their ability to distinguish
Frontiers in Immunology 04
between malnourished individuals and control samples in our

cohort. We also used the control group ssGSEA scores to

generate an empirical “high risk” cutoff for each signature and

then observed the proportion of malnourished individuals with

scores above that cutoff. We considered cutoffs at the 75th (and

90th) percentiles of the control group scores for this comparison.

In addition, we calculated the Youden’s index using the

cutpointR package in R (calculated by adding the sensitivity

and specificity of a ROC curve and subtracting 1 with a higher

index representing better diagnostic ability) (25).
Data availability and accessibility

Processed data were analyzed using R version 4.0.1, and the

code and files are available on GitHub at https://github.com/

avanvalken/LTBI_malnutrition_RNAseq. Processed and raw

RNA-seq data are available. The datasets presented in this

study can be found in online repositories. The names of the

repository/repositories and accession numbers are: https://www.

ncbi.nlm.nih.gov/geo/, GSE152218; and https://www.ncbi.nlm.

nih.gov/geo/, GSE101705.
Results

Demographics

Of 50 HHCs with LTBI, 18 were malnourished individuals,

and 32 were controls. Overall, 24 (48.0%) were male, and the

median age was 26.5 years (range 9-80) (Table 1). Within the

malnourished individuals and control groups, 9 (50.0%) and 15

(46.9%) were male, and the median ages were 13 years (range 9-

35) and 37 years (range 13-80), respectively. One malnourished

individual (5.6%) and five controls (15.6%) reported alcohol use.

No malnourished participants reported tobacco use, and one

malnourished participant reported diabetes mellitus (5.6%). Of

the control group, one (2.94%) reported smoking, and 1 (3.13%)

diabetes mellitus. No statistically significant differences were

found between malnourished individuals and control groups

for tobacco use, alcohol use, diabetes, or sex, although age was

significantly younger in the malnourished group (p=8.94e-9).
Differential gene expression and
dimension reduction analyses

We first examined gene expression differences between the

malnourished individuals and controls in our dataset. We used

unsupervised computational methods and supervised methods

to identify differences between the malnourished and control

groups. Unsupervised dimension reduction with PCA
frontiersin.org
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(Figure 1A), tSNE (Figure 1B) and UMAP (Figure 1D)

demonstrated that the majority of malnourished and controls

segregated into two groups. However, a few individuals from

both groups segregated inaccurately based on their nutritional

status. This clustering pattern was further confirmed by a tSNE

plot colored by BMI (Figure 1C), and a heatmap of the top 500

DEGs by lowest adjusted p-value (with 288 upregulated and 212

downregulated genes) depicting individuals with intermediate

BMI expressing a gene expression profile similar to that of

individuals with a BMI<18.4 kg/m2 (Figure 1E). As shown in

Figure 1E, the gene expression patterns show a graded change

with increasing BMI, indicating that there is a correlation

between BMI and gene expression pattern. A volcano plot

depicting the differentially expressed genes between the

malnourished and controls with LTBI is depicted in

Supplementary Figure 1. The top DEGs (ranked by lowest

adjusted p-value) are highlighted. Genes upregulated in

controls included EDA involved in cell growth (26) and CTSE

which encodes for an aspartic proteinase implicated in antigen

processing within the class II MHC pathway (27). Several of the

top DEGs upregulated in the malnourished group such as CD27,

CD38 and CD7 are molecules regulating T cell activation. CD27

is a co-stimulatory molecule belonging to the tumor necrosis

factor receptor (TNFR) family (28, 29) CD7 is another co-

stimulatory molecule that is involved in T and NK cell

activation (30–32). CD38 is a cell surface glycoprotein with
Frontiers in Immunology 05
receptor and enzymatic functions (33). The NAD+

glycohydrolase activity of CD38 promotes T cell activation and

proliferation (34).
Malnutrition is associated with increased
inflammation and immunomodulation

Next, we used IPA to conduct an unbiased analysis of DEGs

to identify activated or inhibited immune response pathways

and gene regulators. The top upregulated canonical pathways in

malnourished included senescence, neutrophil activation (fMLP

signaling), T-cell activation (CD28 signaling, PKC signaling, T-

cell receptor signaling molecules), B cell receptor signaling,

proinflammatory cytokine signaling (IL-1 and IL-6), HMGB1

signaling, and Rac signaling (Figure 2A). Of note, Wnt/b-catenin
signal ing was the only downregulated pathway in

malnourished (Figure 2A).

Upstream regulator analysis indicated that the

immunomodulatory genes PRL (Prolactin, growth hormone

and cytokine), IFNL1 (type III interferon), RNY3 (small RNA

Y3), AREG (Amphiregulin, growth factor), IFNA2 (type I

interferon), and IFN-g (type II interferon) were inhibited in

malnourished individuals (Figure 2B). In contrast, IL1RN (IL-1

receptor antagonist) and MAPK1 (MAP kinase 1) were among

the genes that were predicted to be activated in malnourished
TABLE 1 Demographic characteristics.

Malnourished Controls Total P value
n = 18 n = 32 n = 50

Median age, years (range) 13 (9-35) 37 (12-80) 26.5 (9-80) 8.94e-9

Sex, n (%)

Male 9 (50.0) 15 (46.9) 24 (48.0) 1.0

Female 9 (50.0) 17 (53.1) 26 (52.0)

Smoking, n (%)

Ever 0 1 (2.94) 1 (2.0) 1.0

Never 18 (100) 33 (97.1 49 (98.0)

Alcohol, n (%)

Ever 1 (5.6) 5 (15.6) 6 (12.0) 0.399

Never 17 (94.4) 27 (84.4) 44 (88.0)

Diabetes, n (%)

Yes 3 (16.7) 1 (3.13) 4 (8.0) 0.127

No 15 (83.3) 31 (96.9) 46 (92.0)

Relation to PLWTB, n (%) 3.41e-4

Sibling 3 (16.7) 3 (9.4) 6 (12.0)

Parent 0 4 (12.5) 4 (8.0)

Child 12 (66.7) 10 (31.3) 22 (44.0)

Spouse 0 14 (43.8) 14 (28.0)

Other 3 (16.7) 1 (3.1) 4 (8.0)
front
Table depicting demographic characteristics of HHCs with LTBI.
PLWTB, person living with TB. P-values were calculated by a Welch’s t-test for ages between malnourished individuals and controls, and Fisher’s exact test for sex, smoking, alcohol,
diabetes, and relation to PLWTB.
iersin.org
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(Figure 2B). We conducted causal network analysis to identify

the predictive activity patterns of causative master regulators

upstream of targets in the DEG dataset. Most genes in the

upstream regulator analysis had similar activation and inhibition

states, except for IFN-g, which was not among the top master

regulators (Figure 2C). In addition, NCR1 (NK cell activating

receptor), CD19 (B-lymphocyte surface antigen B4), LAT (linker

of activated T cells), and CCL5 (C-CMotif Chemokine Ligand 5)

were predicted to be activated, while CTLA4 (a negative

regulator of T-cell activation) was predicted to be inhibited in

malnourished individuals (Figure 2C).
Gene sets within published TB risk
biomarkers are significantly increased in
malnourished individuals

In Mtb infected individuals, sequential increase in

inflammatory gene expression precedes diagnosis of

tuberculosis (35). We therefore hypothesized that the

increased inflammation present in the malnourished group
Frontiers in Immunology 06
could be associated with an increased risk of progression to

TB. To test the hypothesis, we evaluated four published TB risk

signatures (13–16).

We used the TBSignatureProfiler to evaluate the expression of

the 4 TB risk signatures. All signatures scored malnourished

individuals higher than controls; RISK4 (p=0.0035, AUC=0.734)

and PREDICT29 (p=0.012, AUC=0.736) were the most

significantly increased in the malnourished group (Figures 3A, B,

Supplementary Figure 2) and demonstrated the highest AUC

scores. Although there are common inflammatory genes such as

Guanylate Binding Protein (GBP) 5 and SEPTIN4 among RISK4,

SWEENEY3, and ZAK16, there is no overlap of genes from the

other biomarkers with PREDICT29 (Supplementary Figure 1).

Instead, PREDICT29 includes genes associated with early innate

immune response, including SH2D1B (SH2 Domain containing

1B), CTSA (Cathepsin A), SPSB1 (SplA/Ryanodine Receptor

Domain And SOCS Box Containing 1), IL31RA (Interleukin 31

Receptor A) and HM13 (Histocompatibility Minor 13) (15).

We also used the control risk scores to generate an empirical

“high risk” score cutoff, as determined by the 75th (and 90th)

percentiles of the risk scores from the control individuals. The
B C

D E

A

FIGURE 1

Differentially expressed genes separate individuals with LTBI who are malnourished from controls. Dimension reduction by PCA (A), tSNE (B, C),
and UMAP (D) of RNA-sequencing data are plotted here, with the points in C colored by BMI. The top 500 DEGs (by least adjusted p-value) are
depicted in the heatmap; columns are organized by BMI of individuals with LTBI from lowest to highest (E).
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malnourished group had elevated risk scores for all signatures, as

a higher proportion of the malnourished individuals were above

the cutoff than was expected (i.e., expected 25% or 10%). In

particular, the ssGSEA scores using the PREDICT29 signature
Frontiers in Immunology 07
ranked 55.6% (33.3%) of the individuals in the malnourished

group above the 75th (90th) percentile of the control group. The

other signatures also showed large increases in risk scores above

the high-risk cutoff: 50.0% (38.9%) of malnourished individuals
B C

A

FIGURE 2

Increased inflammation and immune regulation pathways in malnourished individuals with latent TB infection. IPA of DEGs among malnourished
individuals and control individuals showing top canonical pathways [p < 0.01; (A)], upstream regulators [p < 0.001; (B)], and causal regulators
(p < 0.001; (C)). Pathways and regulators in blue represent upregulation and those in red represent downregulation in malnourished individuals.
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scored above the 75th (90th) percentile of control individuals

using the RISK4 signature, 55.6% (38.9%) using the SWEENEY3

signature, and 44.4% (33.3%) using the ACS COR signature

(Table 2). Using Youden’s index, PREDICT29 was found to have

an index of 0.44, followed by RISK4’s 0.38, SWEENEY3’s 0.37,

and ACS COR’s 0.32. These results demonstrate that the

differences in gene expression led to an increase in enrichment

scores of TB risk signatures within the malnourished group.
Discussion

RNA-sequencing data from malnourished individuals and

controls with LTBI revealed that the canonical pathways,

predicted activation and inhibition patterns of the upstream

regulators, and master regulators showed an overall dysregulated

immune response in malnourished individuals. Specifically, we

observed increased inflammatory response accompanied by

suppression of immunoregulation in malnourished individuals.

Furthermore, increased expression of gene sets from published
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TB risk biomarkers indicated that malnourished individuals

were associated with an increased risk of TB.

In malnourished individuals, immune response pathways

involved in neutrophil activation (fMLP signaling), T-cell

activation (CD28 signaling, PKC signaling, T-cell receptor

signaling molecules), and proinflammatory cytokine signaling

(IL-1 and IL-6) were upregulated. In particular, we found

HMGB1 signaling pathway was upregulated in malnourished

individuals. HMGB1 is a damage-associated molecular pattern

molecule and promotes inflammation when released from

damaged cells (36) supporting increased inflammation in

malnourished individuals. We also found upregulation of the

senescence signaling pathway in malnourished individuals which

could be contributing to the enhanced inflammation associated

with malnutrition. Senescent cells are not dormant and actively

secrete proteins which is referred to senescence-associated

secretory phenotype (SASP) (37). The SASP includes a plethora

of cytokines and chemokines (38). Of note SASP factors secreted

by senescent cells also induce CD38 expression (39), which

expression was significantly upregulated in the malnourished

group. T regulatory cells and myeloid-derived suppressor cell

derived from CD38KO mice have enhanced cytokine production

and are functionally less suppressive. In addition, inhibition of

CD38 increases glutaminolysis in T cells and enhances their anti-

tumor activity (40). It is possible that although there is an overall

inflammatory response in the malnourished group, the increased

CD38 expression could nonetheless affect antigen-specific T cell

effector functions. Future studies should investigate the impact of

malnutrition on T cell immunometabolism and subsequent

functional activity.

Interestingly, the only significantly downregulated pathway

in malnourished individuals was Wnt/b-catenin signaling.
TABLE 2 Percent of malnourished individuals above percentile cutoff
of controls.

TB Risk Signatures 75th Percentile (%) 90th Percentile (%)

ACS COR 44.4 33.3

SWEENEY3 50.0 38.9

RISK4 55.6 38.9

PREDICT29 55.6 33.3
Table depicting the percentage of malnourished individuals with higher ssGSEA scores
than the 75th or 90th percentile cutoffs of the controls for each TB risk signature.
BA

FIGURE 3

Malnourished individuals with LTBI demonstrate a higher risk of TB progression than controls with LTBI. Accuracy of TB risk signatures in
predicting differences between malnourished individuals and control groups as depicted by boxplots showing ssGSEA scores [RISK4, p=0.0003;
PREDICT29, p = 0.0038; ACS COR, p = 0.076; and SWEENEY3, p = 0.10; (A)] and bootstrapped upper and lower AUC scores and means [RISK4,
AUC = 0.73; PREDICT29, AUC = 0.74; ACS COR, AUC = 0.63; and SWEENEY3, AUC = 0.61; (B)]. * significant p value.
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Besides playing a critical role in cell growth, homeostasis, and

differentiation, Wnt/b-catenin signaling can also modulate the

immune response (41) by repressing NFkB activation and

curtailing the production of proinflammatory cytokines from

cells in response to a number of stimuli (42). Another

mechanism that Wnt/b-catenin signaling employs to limit

inflammation is by biasing dendritic cells to a tolerogenic state

(43). Furthermore, in mouse models of TB an inverse correlation

of Wnt/b-catenin signaling and inflammation has been reported

(44, 45). Together, these findings suggest that in malnourished

individuals , inflammation is further promoted by

downmodulation of the Wnt/b-catenin signaling.

IPA revealed several inhibited immunomodulatory

regulators. Among these immunomodulatory regulators,

IFNL1 is of significance since it is anti-inflammatory and has

been reported to curb inflammation via suppression of

neutrophil infiltration (46), IL-1b production (46), and also

via non-translational inhibition of ROS production and

degranulation of neutrophils (47). Another immunomodulator

of interest is AREG which promotes CD4+ Treg cell-mediated

suppression of localized immune responses (48). Despite

increased act ivat ion of inflammatory pathways in

malnourished individuals, however, we observed a predicted

downregulation of IFN-g in this group. Data from a previous

study showing diminished induction of cytokines in

malnourished individuals in response to Mtb antigens (11)

leads us to posit that in malnourished individuals, there may

be attrition of Mtb antigen-specific T cells which places them at

higher risk of progression to TB. The increased expression of TB

risk signatures supports our hypothesis.

The study had the following limitations. Although the individuals

included in this study did not develop active TB disease for at least

two years after blood samples were taken, it is likely the effects of

malnutrition on immune pathways leads to reactivation of LTBI at a

later time. Furthermore, malnourished individuals are likely to

experience deficiencies in several nutrients that impact the immune

system, such as vitamins A and D, E and others. We did not directly

address the contribution of individual micronutrient deficiencies

toward TB risk and expression of risk signatures. This is important

since there is accumulating evidence that vitamin deficiencies

(particularly vitamins A, D, and E) increase the risk of developing

active TB. Studies demonstrate that vitamin A deficiency might

increase TB risk up to 10-fold. A cohort study of HIV-uninfected

Peruvians found that serum retinol <0.70 mmol/L was associated with

increased TB risk in close contacts after adjusting for confounders

(49). Among 332HIV-infected individuals, serum retinol <0.7umol/L

was associated with an adjusted hazard ratio (aHR) of 5.33 (95%CI

1.54-18.43) for developing TB compared to those with normal

vitamin A levels (50). Analysis of baseline samples of a longitudinal

cohort study nested within a randomized clinical trial among HIV+

adults in Haiti found that vitamin A deficiency was a good predicter

of incident tuberculosis (51). Higher levels of pro-vitamin A

carotenoids (that are metabolized intracellularly to vitamin A) in
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conjunction with low IL-18 were associated with reduced hazard of

incident TB among 290 HIV-infected individuals (aHR 0.48; 95% CI

0.26–0.87) (52). Vitamin D deficiency (<20 ng/mL) is associated with

incident TB in contacts of TB patients and HIV-infected individuals

(HR 2.89 [95%CI 1.31-7.41] and aHR 3.66 [95% CI 1.16-11.51]

respectively) (50, 53) and separately vitaminD (25(OH)D) <75nmol/l

associated with an OR of 6.5 (95%CI 1.8-23.5) for increased risk of

TB among contacts of TB cases in Greenland (54). A meta-analysis

found that vitaminD levels <12.5 nmol/L are associatedwith a pooled

OR for TB risk of 4.6 (95% CI 2.2 - 9.4) (55). Another meta-analysis

of data from 3,544 participants found that severe vitamin D

deficiency had an OR of 2.05 (95%CI 0.87–4.87) for TB risk overall

and 4.28 (95%CI 0.85–21.45; p=.08) among HIV-infected individuals

(56). That same cohort study from Peru showed that having the

lowest tertile (compared to highest) of d-Tocopherol (vitamin E) was

associated with a 2.29-fold increased TB risk in close contacts after

adjusting for confounders (95%CI 1.29-4.09) (57).

Host genetic studies of tuberculosis suggest that besides co-

morbidities such as malnutrition, genetic factors may also

influence susceptibility to pulmonary tuberculosis (58, 59).

These genetic association studies focused on candidate genes

and reported that sequence variants in several immunity-related

genes influenced tuberculosis susceptibility (60). However, most

of these studies were under-powered and conducted in different

ethnic populations and so it has been difficult to reach a

consensus on tuberculosis disease susceptibility genes (60, 61)

Findings from genome-wide association studies of pulmonary

tuberculosis have also not yielded clear data in terms of whether

common variants may have an effect on individual susceptibility

to adult pulmonary tuberculosis. Although, a meta-analyses

study of genetic association with tuberculosis risk found 9

variants in 9 genes showing strong cumulative evidence for

significant association with risk of TB (62). Our study cohort

consists mainly of children and the association of increased

susceptibility to tuberculosis in children with mendelian inborn

errors of immunity (63, 64) suggests that the influence of

underlying genetic background should be considered in our

malnourished study population. Furthermore, host responses

to mycobacteria can be influenced by age-associated differences.

For example, macrophages from infants have delayed

maturation of toll-like receptors over the first year of life (65,

66), reduced phagocytic capacity for Mtb (67) and reduced

cytokine production (68) in comparison to adult macrophages.

At the adaptive T cell level, distinct methylation patterns exist in

CD4+ naive T cells between cord blood and adult peripheral

blood which results in differences in IFN-g production and T cell

effector functions (69). Whether the compromised innate and T

cell functions in the pediatric population, together with

increased numbers of regulatory T cells (70) would lead to

impaired Mtb immunity and increased risk of progression to

TB needs investigation.

Despite these limitations, our transcriptomic study suggests

that malnourished individuals with LTBI are a particularly
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vulnerable population predisposed to increased risk of

progression to TB. Using a combination of in-vitro models

and animal models, future studies should focus on validating

and evaluating the mechanistic basis of the increased

inflammatory immune responses in malnutrition. In addition,

studies investigating the immunological outcomes of nutritional

interventions are needed to determine whether large-scale

nutritional supplementation should be considered to decrease

TB risk. TB risk biomarkers could be effectively employed to

risk-stratify and identify malnourished individuals with LTBI for

preventive therapy or nutritional interventions. Insights from

these studies will be integral to the End TB strategy.
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SUPPLEMENTARY FIGURE 1

A Volcano plot of differentially expressed genes between the
malnourished and controls suggests differential immune regulation. A

volcano plot depicting the differentially expressed genes between the
malnourished and controls with LTBI is depicted here, with the top 15

genes by lowest p-value labeled. Differential expression is relative to

controls, with blue signifying downregulation in controls, and red
signifying upregulation in controls, with an adjusted p-value of < 0.1.

Non-significant genes were colored as black.

SUPPLEMENTARY FIGURE 2

Differential expression patterns of all genes within each risk signature.

Gene enrichment of TB risk signatures is scored by ssGSEA and GSVA;

heatmaps for each signature are depicted. RISK4 (A), SWEENEY3 (B),
PREDICT29 (C), and ACS COR (D) are each depicted in their

respective panels.
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