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Purpose of review
Although chimeric antigen receptor T (CART)-cell therapy is best recognized for its antitumor effect in
relapsed/refractory B-cell hematological cancers, it is still associated with a high relapse rate.
Recent findings
We firstly analyzed internal immunological and genetic reasons of CD19+ relapse after treatment for R/R
B-cell hematological cancers with CART19 cells. The reasons: murine-derived scFv may limit expansion of
CART cells. Repeated antigen exposure leads to T-cell exhaustion. Activation of T cells can cause Tell
senescence and high expression of inhibitive receptors, PD-1, CTLA4, TIGIT, LAG-3, CD244, CD160,
TIM3, which might be solved by some external pharmacological intervention methods [for instance, the use
of FC (Fludarabine, Cyclophosphamide) lymphodepletion regimen, lenalidomide, PD-1 inhibitor, ibrutinib
and humanized CD19-CART cells. Secondly, mechanism of CD19 relapse can be attributed to the
preexisting of CD19 subclone, the loss or alternative RNA splicing on exon 2 of chromosome 16 on which
CD19 gene is located, B-cell transcript factors — paired-box 5 (PAX5) and early B-cell factor 1 (EBF1) are
down-regulated to cause lineage-switch from lymphoid to myeloid.
Summary
Although different preparation techniques generates various entities of CART 19 cells, these problems could
be conquered by novel agents and novel CAR system.
Video abstract
Although Chimeric Antigen Receptor T (CART) cell therapy is best recognized for its antitumor effect in
Relapsed/Refractory B-cell hematological cancers, it still shows a high relapse rate. We review
mechanisms of failure of CART therapy. http://links.lww.com/COH/A18.
Keywords
B-cell hematological cancers, novel agent and novel chimeric antigen receptor T-cell system, the relapse
mechanism after CART19 cells
INTRODUCTION

The chimeric antigen receptor T (CART)-cell therapy
was most recognized by its antitumor ability in
relapse/refractory (R/R) hematological cancers to
achieve a high complete remission rate. It thus
led us into a new era of immunotherapy. Although
CART19 cell therapy has achieved striking curative
effect in B-cell hematological cancers in recent
years, it still shows a high relapse rate.

The four generations of CART cells with differ-
ent structures of co-stimulatory domain, identical
T-cell amplification degree in vitro and CART19 cells
infusion dose, heterogeneity of the diseases, as well
as the different chemotherapy and lymphodeple-
tion regimen, have been considered as the con-
founding factors of the research results of CART
cell immunotherapy. At present, there are a series
of clinical studies on the relapsed B-cell
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hematological cancers at home and abroad. Patients
who relapse after CART cell treatment have been
divided into two categories, CD19" relapse and
CD19" relapse, providing clues for the further
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KEY POINTS

e CD19 positive relapse aftfer CARTell therapy is mainly
because of internal immunological and genetic reasons:
limitation of expansion and amplification of CART cells;
T-cell exhaustion caused by repeated antigen exposure;
T-cell senescence caused by T cells over activation and
over expression of inhibitive receptors (such as PD-1,
CTLA4, TIGIT, LAG-3, CD244, CD160, TIM3).

These immunological and genetic impact factors might
be solved by some external pharmacological
intervention methods, for instance, lenalidomide, PD-1
inhibitor, ibrutinib, and some novel CD19-CART cells.

CD19 negative relapse can generally be attributed to
external reason as preexistence of CD19" clones and
internal molecular biology and cytogenetic factors, such
as lineage convert and the RNA splicing leading to loss
or down-regulation of CD19 expression.

The feasible avenue to conquer CD19 negative relapse
could be dual/tandem CART cell infusion, SUPRA CART
system and other antibody-based therapeutics.

exploration of the complicated relapse mechanism
after CART cell treatment.

Mechanisms of activation of CART cells in vivo:
because of the co-stimulatory molecules of CART19
cells, major histocompatibility complex (MHC) is
not imperative for antigen presentation in T-cell
stimulation and activation. The activated T cell
can process a series of proliferation and differentia-
tion into CD8" cytotoxic T cells (CTLs). Once
encountered and combined with CD19"-expressed
lymphoblastic cells, CART19 cells can be activated
by the dual signaling pathways, secreting perforin,
cytokines and granzyme, thus synergistically Kill
tumor cells with various mechanisms.

Mechanism had been studied by numerous
researches. The mechanism of relapse after the treat-
ment for R/R B-cell hematological cancer with
CART19 cells (Fig. 1).

CONFOUNDING FACTORS

External objective reasons

Different co-stimulatory molecules

The antitumor effects of different co-stimulatory
molecules in CART19 cells are different as well.
CD19 CAR-T cells in ZUMA-1, JULIET and TRAN-
SCEND studies have the similar structure containing
same single-chain variable fragment (FMC63) and
use CD3 for intracellular signaling but different
combinations of transmembrane and costimulatory
domains, leading to disparity on efficacy (Table 1).
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Long et al. [4] selected PD-1, LAG-3 and TIM-3
suppressor receptors as the detection markers for T-
cell senescence. Through animal experimentation,
it was found that CD28-CART19 cells had a strong
tumor Kkilling effect, whereas 4-1BB-CART19 cells
was proven to be less potent but increased antitumor
persistence.

Distinct manufacture methods

As lentivirus transfection is prone to give rise to
insert mutations, CRISPR/Cas9 gene editing technol-
ogy has become a prospective method in the
manufacturing of CART19 cells [S]. However, recent
research [6] found that CRISPR/Cas9 system causes
genomic damage and complex rearrangements,
which may lead to pathogenic consequences. The
CRISPR/Cas9 was not as precise and accurate as we
expected. Recent study indicates that CART19 cells
exhibits better differentiated ability and effector
function when harvested from cultures at day 3 or
5 rather than at the routine period of 9-14 days
in vitro [7].

Various categories and dosage of CART19
cells

Even in conventional CART19 cells, different prep-
aration methods are taken in different centers, lead-
ing to distinct T-cell amplification. Furthermore,
combinatorial antigen sensing developed to
enhance tumor specificity [87], dual-CAR, tandem
CAR and bi-epitopic CART cells [9%], that targeted
two tumor-specific antigens or epitopes, which can
reduce tumor antigen escape rate and tumor relapse
rate was also applied to clinical use [10-12]. There
are also novel CAR-modified cell varieties in treating
other hematological malignancies, such as multiple
myeloma and acute leukemia with armored CART
[13%,14], CD44ve6-targeted T cells [15], CAR-NK
[16%], CS1 CAR-Redirected T cells [17], anti-BCMA
CART cell and anti-CD138-Kappa-light-chain CART
cell, and so forth, making it hard to fully understand
the relapse mechanism of post-CART cell treatment
on B-cell malignancies.

Internal immunological and genetic reasons

Tumor heterogeneity

Different B-cell malignancies have distinct tumor
cells and are treated by different chemotherapy
regimens. Even in homologous tumors, nontumor
cells impact factors, such as somatic cells, transcrip-
tional alterations, epigenetic modifications and
molecular interactions can cause diverse disease
attributes and lead to distinct prognosis. In addi-
tion, given the heterogeneous nature of the
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FIGURE 1. The mechanism of relapse after the treatment for R/R B-cell hematological cancer with CART19 cells.

Table 1. CD19 chimeric antigen receptor T-cell structure and efficacy in ZUMA-1, JULIET and TRANSCEND studies

ClinicalTrials.gov Transmembrane Tumor
Clinical Trial CART cells number domain + costimulation category ORR% CR%
ZUMA-T [1*%] (n=108) Axicabatgene NCT02348216 PHASE 12  CD28 R/R DLBCL 83% 58%
ciloleucel

PMBCL

transformed FL
JULIET [2] (hn=93) Tisagenlecleucel NCT02445248 PHASE 2 CD28 + 4-1BB R/R DLBCL 52% 40%
transformed FL
DHL/THL

R/R DLBCL 74% 52%
PMBCL

FL3B

MCL

TRANSCEND [3] (n=91) Lisocabtagene NCT02631044 PHASE 1 CD28 + 4-1BB

maraleucel

Lisocabtagene maraleucel in TRANSCEND study has precise dose and ratio of CD8 and CD4 cells. DHL, double hit lymphoma; DLBCL, diffuse large B-cell

lymphoma; FL, follicular lymphoma; FL3B, follicular lymphoma 3B grade; MCL, mantle cell lymphoma; PMBCL, primary mediastinal large B-cell lymphoma; R/R,
relapse/refractory; THL, triple hit lymphoma.
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patients’ baseline conditions including age, disease
and risk stratification, prior chemotherapy regimens
and lines, whether using targeted drugs or not,
curative efficacy evaluation pre-CART therapy are
factors that need to be taken into consideration.

Medication history of targeted drugs and
immunomodulatory drugs

Checkpoint inhibitor

As immune checkpoints were proved to have a
critical role in immunotherapies and tumor micro-
environment, antiprogrammed death-1 (PD-1) and
programmed death ligands 1 (PD-L1) are currently
widely used in relapsed/refractory B-NHL exhibiting
high PD1 expression by T cells. Studies [18] reported
increased expression of co-inhibitory molecular PD-
1 in CART cells after infusion, and the obvious
increasing of PD-1-expressed CAR19 T cells occurred
between the time of infusion and the time of reach-
ing peak CAR19 blood levels. As well, PD-1 expres-
sion is weaker in the CD19-negative CART cells than
in CD19-positive CART cells. Zhang et al. [19"] dem-
onstrated that the combination of CD19 CART cells
with a dose-adjusted PD-1 inhibitor shows synergis-
tic antitumor capacity in a mouse trial, so the PD-1
inhibitor treatment before CART cell therapy might
affect the efficacy positively.

Immunomodulatory lenalidomide

IKZF1 and IKZF3 are transcription factors that are
critical to the differentiation of B cells, lenalidomide
can increase serum IL-2 level in vitro by down-regu-
lating the expression of IKZF1/3 [20], thereby pro-
moting the proliferation of natural Killer (NK) cells,
NK/T cells and CD4" T cells. In-vitro studies showed
that lenalidomide can decrease the amount of IL-6
that was secreted by monocytes and recede the
immunosuppression on CART19 cell through the
mechanism of reducing the quantity of CD8"CD28~
Treg cells [21].

Bruton Tyrosine Kinase inhibitor ibrutinib

Due to the significant sequence and functional
homology between BTK (Bruton Tyrosine Kinase)
and ITK (IL-2-inducible kinase) [22], ibrutinib can
inhibit the ITK signal pathway that is expressed on
the surface of NK cells, NK-T cells and especially T
cells including CART cells. There is another hypoth-
esis about the interaction between ibrutinib and
CD19 CART cell therapy as ibrutinib could cause
depletion of targeted B cells in peripheral blood, the
consequence of low-tumor burden might cause the
loss of immunogenicity, thereby impact the CART
cell expansion and proliferation. On the contrast,
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Ruella et al. [23] conducted experiments of combin-
ing CTLO19 CART cells and ibrutinib to treat mantle
cell lymphoma (MCL). Although ibrutinib changes
the balance of Th1/Th2 cells in vitro, it has lower PD-
1 expression and been proved to increase T-lympho-
cyte counts without changing T subsets by trigger-
ing T cells’” mobilization into peripheral blood in-
vivo experiments. Ibrutinib—CART-cell interaction
is complex and remains a controversial issue. We are
looking forward to the results of ZUMA-2 study
(NCT02601313) [24].

CD19-POSITIVE RELAPSES

CART19 cell abnormality

Limited CART19 expansion and
amplification

Application of humanized CART cells: as the
immune response induced by murine-derived single
chain fragment variable (scFv) region may limit the
continuous expansion of CART cells in vivo and
increase the risk of leukemia relapse, Maude et al.
[25] developed a humanized scFv, which was
derived from mouse FMC63 antibody. Results
showed that hCART19 cells therapy was effective
for R/R ALL patients and those who relapsed after
conventional CART-cell therapy.

CART19 cell exhaustion

T-cell exhaustion is the specific stage of T-cell dif-
ferentiation caused by repeated antigen exposure,
which weakens the function of effector T cells. CART
cells, however, will inevitably be consumed because
of the presence of co-stimulatory molecules, even
without sustained antigen exposure. CART19 cells
will be exhausted rapidly because of a high tumor
burden, whereas a low-tumor burden reduces pro-
liferation and differentiation of CART19 cells
because of the lack of antigen stimulation. Many
patients with a low tumor burden as well as low
normal blood B-cell level were less likely to obtain
remission after CART19 cell infusion [18]. This phe-
nomenon indicated that endogenous CD19™" cells
could enhance proliferation of CART19 cells and
speculated that CD19" cellular vaccines might be
another avenue to overcome immunological unre-
sponsiveness in CART-cell therapy.

T cells
T-cell senescence
The continuous activation of T cells can cause T-cell

senescence that is considered irreversible and is
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mainly related to age. T,eg cells have been proven to
be capable of enforcing CD8" cytotoxic T cells,
CD4" helper T cells and effector T cells into senes-
cence. The degradation of the effect function of
senile T cells is accompanied by high expression
of inhibitive receptors [26], such as PD-1, cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4, or
CD152), T-cell immunoglobulin and ITIM domain
(TIGIT), lymphocyte activation gene-3 (LAG-3),
CD244, CD160, T-cell immunoglobulin and mucin
domain-containing-3 (TIM3), and so forth. At the
same time, high expression of CD57 can damage the
proliferation capacity of T cells, while increasing the
ligand number of Killer Cell Lectin-like Receptor
Subfamily G1 (KLRG-1) can increase the prolifera-
tion of T cells [27]. If these two above-mentioned
biomarkers have high expression, both can cause
the CART cells lose the co-stimulatory signals, such
as CD27 and CD28, whereas the down-regulation of
CD28 expression is related to the loss of human
telomerase RNA component (hTERC), which causes
the loss of telomerase activity and leads to sub-
sequent telomere damage, with a consequence of
T cells duplicative senescence [28].

In summary, the mAb targeting the inhibitory
receptor TIGIT can administrate immunotherapy by
strengthening the antitumor function of NK cells,
which is also of great significance to improve the
efficacy of existing tumor immunotherapy. We
envisage that CART-cell therapy, when combined
with mAb to TIGIT, might further increase immune
responses to cancer.

Immune escape mechanisms

Malignant tumors utilize various strategies to avoid
the antitumor immunological effects of the adaptive
immune system by establishing a microenviron-
ment of immunosuppression. Immune escape
mechanisms include regulating the expression of
G1 regulatory proteins, producing immunosuppres-
sive factors IL-10, TGF-B and IDO, and generating
immunosuppressive receptors, such as the recruit-
ment of PD-L1 and Treg cells.

CD19-NEGATIVE RELAPSES

It is hard to find a breakthrough in the complex
immune system, so we turned our attention to the
mechanism of CD19" relapse category. However,
CD19 ™ relapse is resistant to CART19-cell reinfusion
[29] and cannot be prevented by extending the
persistence of T cells. According to the recent esti-
mates, the CD19~ ALL relapsed after blinatumomab
ranging between 10 and 30% in retrospective studies
[30], another statistics showed that CD19™ relapse
accounts for 10-20% of post-CART19 therapy ALL
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patients [31,32]. Therefore, physicians should main-
tain a high level of suspicion for the evolution of
post-CART malignancies.

The preexistence of CD19™ clones

Preexistence of a minor CD19~ population in the
leukemia bulk has been proposed as a mechanism of
resistance to blinatumomab and subsequent emer-
gence of a CD19 relapse [33]. Grupp et al. [34]
compared the samples of one pediatric case before
CART19 therapy and CD19 relapse after CART19
therapy by flow cytometry, the results which was
coincident with Fisher et al. [35] and Ruella et al. [11]
demonstrated that rare CD19" blasts were existing in
some samples before treatment in patients with
CD19" ALL. They hypothesized that these preexist-
ing cells might be the trigger of CD19" relapse which
developed as the dominant clone under the selective
pressure of CART19 therapy and eventually resulted
in CD19 relapse.

The loss or down-regulation of CD19
expression and the intervention

CD19 is not an essential condition of survival and
proliferation of B-cell precursor acute lymphoblastic
leukemia (BCP-ALL) cells [36]. It was found as a
common phenomenon of CD19  relapse after
CART19 therapy. As CD19 is located on chromo-
some 16p11.2, experiments conducted by Sotillo
et al. [37] found that entire chromosome 16 loss
or alternative RNA splicing on exon 2, which was
induced by serine and arginine-rich splicing factor 3
(SRSE3) occurred on CD19" xenograft tumor mice
models. In their experiments, the CD19 gene was
tested with the methods of whole exome sequenc-
ing (WES) and RNA-sequencing, finding de novo
frameshift and missense mutations in exon 2 of
CD19. The mutations did not result in the silencing
of CD19 expression, but expressed the truncated
protein with the presence of alternative exon 2
splicing of CD19, thus it could escape from the
tumor killing effect as the CD19 epitope could
not be recognized by CART19 cells. As the result,
future CARs and other antibody based therapeutics
should be designed to target essential exons, as a
way to prevent escape [38].

Importantly, another mechanism of rapidly
relapsing leukemia, especially in MLL gene rear-
ranged pediatric leukemia, is lineage-switch from
lymphoid to myeloid that results from reprogram-
ming by down-regulating the B-cell transcript fac-
tors— PAXS and EBF1 [39,40]. CD19 ™ relapse was not
only found to have occurred through lineage switch
of B-precursor cells from the lymphoid lineage to a
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Table 2. Controlling split, universal and programmable chimeric antigen receptor activity in vivo through zipFv

zipFv dosage zipFv affinity Competitive zipFv

Low High Low High Low High
Antitumor effect - - Low High - -
Cytokine release Low High Low High High Low

CD14" myeloid lineage in 4% of B-precursor ALL
[39,41] but also reported that CD22 expression
was maintained in the CD19™ phenotype relapses
[40], reminding us that dual/sequential CART cell
infusion may play a role in preventing CD19™
relapse.

CD22: Jacoby et al. [40] suggested that simulta-
neous pressure on CD19 and CD22 might be an
avenue to reduce the possibility of lineage switch-
ing, but anti-CD22 CART cells seemed to have
only limited activity when B-cell malignancies
was CD19™ relapse.

CD123: CD123 is the IL-3 receptor expressing on
hematopoietic progenitor cells. The studies [11,42]
proved that combining CART19/123 cells could
effectively prevent relapse caused by the loss of
CD19 phenotype and the patients who developed
CD19 relapse could be treated by CART123 cells.

FUTURE PERSPECTIVES: SPLIT,
UNIVERSAL AND PROGRAMMABLE
CHIMERIC ANTIGEN RECEPTOR

Toalleviate the various limitations of CART cells, Cho
et al. [43™] presented a split, universal, and program-
mable (SUPRA) CAR system, which has the ability
to switch targets without reinfusing other antigen-
specific T cells, and can logically respond to multiple
antigens by tuning T-cell activation precisely.

Conventional CART has a fixed structure of
invariable antigen-specific scFv and intracellular
signaling domains. This SUPRA CAR is composed
of a universal receptor on T cell (zipCAR) and tumor
targeting scFv adaptor molecule (zipFv). The zipCAR
universal receptor is generated from the fusion
of intracellular signaling domains and a leucine
zipper as the extracellular domain. The zipFv adap-
tor molecule is generated from the fusion of a
cognate leucine zipper and a scFv. The scFv of the
zipFv binds to the tumor antigen and the leucine
zipper binds and activates the zipCAR on the T cells
[43™].

When one of the controllable region is over
activated and causes severe cytokine release syn-
drome (CRS), we can mitigate these toxicities by
controlling other variable regions to regulate T-cell
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activation level. In order to reduce the extent of
CRS, a competitive zipFv, which can prevent zipCAR
from being activated by binding to the rest of zipFv
has been developed (Table 2).

This SUPRA CAR system can also combat the
antigen escape and achieve the antitumor effect
equal to conventional Dual CART cell therapy.
Of note, different antigens can easily be targeted
without re-manipulation because of the SUPRA CAR
platform.

In addition, SUPRA components have been
proven to be effective in reducing immunogenicity
while being humanized. Furthermore, the experi-
ment also used orthogonal SUPRA CARs to regulate
different T-cell signaling domains and T-cell sub-
types independently to increase the range of the
immune responses.

CONCLUSION

The SUPRA CAR system is a prospective product
with inducible and logical control capabilities that
can improve the safety and efficacy of current
immunotherapy. However, further research is inten-
sively needed to explore the toxicity and side-
effects, the interaction of which with novel agents
and the immune system affects the persistence and
expansion of these SUPRA CART cells.
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