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Peripheral T follicular helper Cells 
Make a Difference in HIV Reservoir 
Size between Elite Controllers and 
Patients on Successful cART
Marcial García1,2, Miguel Górgolas3, Alfonso Cabello3, Vicente Estrada4, José Manuel Ligos5, 
Manuel Fernández-Guerrero3, Carlos Barros6, Juan Carlos López-Bernaldo7, Francisco Javier 
De La Hera3, María Montoya5, José Miguel Benito  1,2 & Norma Rallón1,2

HIV latency is the main barrier to HIV eradication. Peripheral T follicular helper (pTfh) cells have a 
prominent role in HIV persistence. Herein, we analyzed the HIV reservoir size within memory CD4+ 
T-cell subsets in patients with HIV replication control. Twenty HIV-infected patients with suppressed 
HIV replication were included, with 10 elite controllers (EC) and 10 treated (TX) individuals. The HIV 
reservoir size was analyzed in resting memory CD4+ T-cells (Trm), pTfh, and non-pTfh cells using an 
ultrasensitive digital-droplet-PCR assay. Inter-group and intra-group differences were tested using 
non-parametric tests. Compared with the TX patients, the EC patients had smaller HIV reservoir not 
only in Trm but also in pTfh and non-pTfh subsets of memory CD4+ T-cells. The largest differences were 
observed in pTfh cells (p = 0.025). The pTfh and non-pTfh cells harbored similar levels of HIV-DNA in the 
EC (p = 0.60) and TX patients (p = 0.17); however, the contribution to HIV-DNA levels in memory CD4+ 
T-cells varied among the pTfh and non-pTfh subsets in both groups of patients. The EC patients showed 
smaller HIV reservoir in memory CD4+ cells, especially in the pTfh subset, a population of cells with a 
pivotal role in the antiviral immune response, suggesting a potential link between low levels of infection 
in pTfh cells and the ability of the EC patients to spontaneously control HIV replication.

The HIV latent reservoir is the main barrier to HIV eradication. Although combination antiretroviral therapy 
(cART) can effectively block viral replication in the host and reduce the circulating virus to undetectable levels1, 
antiviral therapy cannot completely eliminate the virus from the human body. As a result, the viral load rapidly 
rebounds within 2 to 8 weeks after cART discontinuation2–4. The rebound occurs due to the presence of anatomic 
reservoirs that drugs cannot easily access5. Additionally, there are reservoirs containing cells with HIV integrated 
into the cell genome. However, the viral genome is transcriptionally silent, and the virus is refractory to both 
cART and the immune system6–8.

The cellular reservoir may include several cell subpopulations, and the latent and long-term persistent virus 
has been described in resting memory CD4+ T-cells (Trm cells)9. This CD4+ T-cell subset with memory pheno-
type (CD45RO+) and low expression of activation markers such as HLA-DR, CD25 or CD699 allow the estab-
lishment of latent reservoir extremely stable with a mean half-life of around 44 months10,11. There is another 
memory CD4+ T-cell subpopulation present in germinal centers, T follicular helper (Tfh) cells. Tfh cells have a 
prominent role in regulating the HIV reservoir by supporting persistent infection, replication, and production of 
HIV in both viremic HIV-infected subjects12 and long-term cART-treated aviremic individuals13. Tfh cells are a 
memory CD4+ T-cell subset expressing CXCR5 and have B cell helper function localized within secondary lym-
phoid organs14. The counterpart in peripheral blood is called the peripheral Tfh (pTfh) cells because they display 
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functional properties similar to Tfh cells and represent approximately 20% of total memory CD4 T-cells15–17. 
Although several markers have been associated to pTfh cells (CXCR5, CXC3, CCR7, PD1)15,17–23, only the expres-
sion of CXC chemokine receptor 5 (CXCR5) has been considered as a specific marker for total pTfh cells15. Some 
differences between pTfh and Tfh cells regarding expression of surface markers have been noticed, such as the low 
expression of PD-1 in pTfh cells17 in contrast to the high expression of this marker by Tfh cells24–26, suggesting that 
pTfh cells would be in a resting state similar to Trm cells17.

Accessing the lymph nodes of HIV-infected patients is a complex and invasive procedure. Thus, the availability 
of pTfh cells in blood represents an important step for the understanding of HIV infection and persistence in this 
compartment. Several studies have focused on the role of pTfh cells in HIV infection18–20. However, only one recent 
study has focused in the role of pTfh cells in HIV persistence in patients before and after the initiation of cART22.

Elite controller (EC) patients are a model for the development of therapeutic strategies aimed at functional 
HIV cure27. There is extensive literature on the ability of these subjects to spontaneously maintain HIV repli-
cation control27,28. A few recent studies evaluated their ability to maintain better control of the HIV reservoir 
size29–31. However, these studies mostly used peripheral blood mononuclear cells (PBMCs)29,30 and resting 
CD4+ T-cell subsets31. There are no studies examining pTfh cells, which have a prominent role in HIV reservoir. 
Therefore, we have characterized the reservoir size in different memory CD4+ T-cell subpopulations. We exam-
ined the Trm cells, pTfh cells, and non-pTfh cells from EC patients and compared the results with those from 
treatment-controlled HIV-patients (TX, aviremic patients with cART).

Results
Baseline characteristics of the study population. The EC and TX patient groups were comparable 
with respect to age, gender, CD4 counts, and length of infection (Table 1). The median follow-up of EC patients 
maintaining EC status was 7 [3–12] years, and 7 of 10 subjects had more than 5 years of EC status. During the 
follow-up period, all EC patients showed high and stable CD4 counts (897 [771–1,187] at the beginning and 912 
[630–1,438] cells/µL at the end of follow-up, p = 0.86).

EC patients have a smaller HIV reservoir than do TX patients. We found lower levels of HIV-DNA in 
Trm cells in the EC group than in those in the TX group (median [IQR]: 381 [74–1,002] vs. 1197 [619–1,623] copies/
million cells respectively; p = 0.059), showing that EC maintain a lower HIV reservoir in this cell population than 
do patients with cART-mediated long-term suppression of HIV replication (Fig. 1a). Furthermore, we found the 
HIV reservoir size in pTfh cells was significantly lower in patients able to spontaneously control HIV replication (88 
[33–291] copies/million cells) than that in patients with cART-mediated viral suppression (723 [393–1,199] copies/
million cells; p = 0.025) (Fig. 1a). Interestingly, this difference between EC and TX patients was less pronounced in 
non-pTfh cells (162 [18–1,871] vs. 989 [600–1,354]) and was not significant (p = 0.172) (Fig. 1a).

HIV reservoir size is not influenced by frequency of the different analyzed CD4+ T-cell sub-
sets. We evaluated the possibility that HIV reservoir size in EC or TX patients may be influenced by the 
relative frequency of specific CD4+ T-cell populations. Therefore, we assessed the frequencies of each T-cell 
subset involved in maintaining the HIV reservoir (Trm, pTfh, and non-pTfh) for both groups of studied patients. 
The frequencies of Trm, pTfh, and non-pTfh cells were similar for both groups of studied patients (Fig. 1b). We 
next evaluated the correlation between the size of HIV reservoir in the different CD4+ T-cell subsets and their 
frequency in EC and TX subjects. There was no correlation between HIV-DNA levels in Trm and the frequency 
of Trm within the total CD4+ T-cells (Spearman’s rho = 0.02; p = 0.93). Additionally, there was no relationship 
between HIV-DNA levels in pTfh and the frequency of pTfh in the total CD4+-T-cell population (Spearman’s 
rho = −0.15; p = 0.56). Similar results were observed in non-pTfh cells (Spearman’s rho = 0.27; p = 0.30).

pTfh and non-pTfh cell subsets contribute to HIV reservoir size. We confirmed the contribution of 
the Trm cell subset to HIV reservoir size. The Trm cells represent a specific cell subset among memory CD4+ 
T-cells. We found no statistically significant differences in levels of HIV-DNA (copies/million cells) between 
pTfh and non-pTfh cells in both EC (pTfh: 88 [33–291] vs non-pTfh: 162 [18–1,871]; p = 0.600) and TX (pTfh: 
723 [393–1,199] vs non-pTfh: 989 [600–1,354]; p = 0.169) patients (Fig. 1a). This finding suggests both subsets 
contribute to HIV persistence. However, among total memory CD4+ T-cells (comprising pTfh and non-pTfh 
cell subsets) the proportion of non-pTfh was higher than the proportion of pTfh cells in both EC patients (70% 

Characteristic

Study Groups

 p-valueEC TX

n 10 10

Age (Years) 46 [40–54] 48 [45–52] 0.43

Male (%) 50 90 0.07

Viral load (copies/mL) 50 50 NA

CD4 counts (cells/μL) 1.235 [629–1474] 820 [626–1.253] 0.63

Length of infection (Years) 13 [10–16] 14 [12–17] 0.66

Length of treatment (Years) NA 13 [10–17] —

Table 1. Study group characteristics. Data are expressed as Median [IQR], except sex, expressed as %; p-value: 
comparison between EC and TX group (U-Mann-Whitney test); NA: not apply.
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[66–78] vs 30% [22–35] respectively; p = 0.018) and TX patients (76% [68–78] vs 24% [22–32] respectively; 
p = 0.005) (Fig. 1b). Therefore, the relative contribution to the HIV reservoir size in total memory CD4+ T-cells 
was higher for the non-pTfh cells than the pTfh cells in both EC and TX patients (Fig. 2).

Discussion
To our knowledge, this is the first study analyzing the levels and relative contribution of HIV-DNA from Trm, 
pTfh, and non-pTfh subsets of memory CD4+ T-cells to the HIV reservoir size in both patients with long-term 
spontaneous control of HIV replication (EC) and in patients with cART-mediated long-term suppression of HIV 
replication (TX). In this study, compared with TX patients, EC patients showed a smaller HIV reservoir. This 
finding is in agreement with a previous report analyzing levels of HIV-DNA in resting central memory CD4+ 
T-cells from elite controller patients31.

Tfh cells and their counterpart in peripheral blood (pTfh cells) have recently become a key aspect of HIV infec-
tion18–21,32,33 and the persistent reservoir12,13,22. Compared with other subsets of memory CD4+ cells, the Tfh cells 
located in the lymph nodes of progressing HIV-infected patients harbored higher levels of replication-competent 
HIV-DNA12,13. A recent study found similar results using pTfh cells from progressor patients before and after 
cART22. Interestingly, we found that the HIV reservoir size in pTfh was smaller in patients able to spontane-
ously control HIV replication than that in patients with cART-mediated viral suppression. This result suggests 
that host-mediated containment of HIV replication observed in EC patients might reduce the HIV reservoir, 
especially in the pTfh cell population compared with other memory CD4+ T-cell populations such as non-pTfh 
cells. Moreover, pTfh cells can support the HIV-specific cellular response16 and HIV-specific broadly neutralizing 
antibody production in HIV-infected typical progressing patients17 and in EC subjects23. Thus, the low level of 
HIV infection in pTfh cells from EC patients could help to preserve their functionality and impacts the ability of 
EC patients to maintain control of HIV replication.

Figure 1. Box-plot graphs showing: (a) HIV reservoir size (HIV-DNA copies per million of cells) in Trm, 
pTfh and non-pTfh cells of the HIV-infected groups with suppressed HIV replication (EC and TX patients). 
(b) Percentage of Trm, pTfh and non-pTfh cells over the total CD4+ T-cells in HIV-infected groups with 
suppressed HIV replication (EC and TX patients). P-values of comparisons between the EC and TX groups of 
patients by Mann-Whitney U-test, and between pTfh and non-pTfh cell subsets by Wilcoxon signed- rank test 
are shown.

Figure 2. Box-plots graphs showing the relative contribution (percentage) of pTfh and non-pTfh cells to HIV-
DNA content in memory CD4+ T-cells in the EC and TX groups of patients. P-values of comparisons between 
pTfh and non-pTfh by Wilcoxon signed-rank test are shown.
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It is also important to note that the study by Perreau et al. found that Tfh cells are expanded in HIV-infected 
subjects and decreased after cART12. Therefore, the lower total HIV-DNA that we observed in pTfh of EC patients 
could be due to a “dilution effect” as a consequence of a higher frequency of pTfh cells in EC. However, our results 
show that was not the case since frequency of pTfh cells was similar for both EC and TX patients, and there was 
no correlation between reservoir size in the pTfh cell subset and their relative frequency within CD4+ T-cells.

Moreover, HIV infection is controlled early in EC patients34,35. This finding may provide insight into the mech-
anism explaining the lower HIV reservoir size observed in EC patients compared with that in TX patients in 
whom cART-induced HIV replication control occurs later since they usually start therapy at least one year after 
infection. Moreover, since pTfh cells are more supportive for HIV replication22 the lower levels of HIV-DNA that 
we also found in the Trm cells of EC patients could be the consequence of the lower amount of pTfh cells harbor-
ing HIV-DNA observed in these patients.

There are several controversial issues in our study. First, the definition of the pTfh cell subset is variable in the litera-
ture and this is problematic because it is difficult to compare and interpret results from different studies. Several markers 
(CXCR5, CXC3, CCR7, PD1) have been associated with pTfh cells15,17–23. However, the majority of the markers are not 
pTfh cell-specific and CXCR3, CCR7 or PD1 have been used in studies to distinguish different pTfh functional states 
and have found controversial results17,22,23. Currently, the most definitive/unambiguous marker available to identify 
both Tfh36,37 and circulating Tfh (pTfh)15,18,21,22,38 cells is the expression of CXC chemokine receptor 5 (CXCR5), which 
includes the distinct pTfh subsets with different capacities to regulate B cell responses. Second, a previous study suggests 
that EC patients have an excess of unintegrated HIV DNA30; thus, the measurement of total HIV-DNA and the absence 
of virus growth assays to evaluate replication-competent virus in our study could interfere with our data analysis; how-
ever, several authors recently noted the relevance of measuring total HIV-DNA as a marker of viral reservoir dynamics 
with clinical implications39,40. The authors suggested that both integrated and total HIV-DNA provides an inducible 
and functional reservoir and predicts ex vivo viral outgrowth40,41. Additionally, it has been highlighted that the estab-
lishment of HIV latency and virus production from unintegrated genomes follows direct infection of resting CD4+ 
T-cells42. Third, given the relevance of Tfh and pTfh cells in HIV reservoir maintenance12,13,22, our finding regarding no 
appreciable intragroup difference between pTfh cells and non-pTfh cells in HIV-DNA content could sounds controver-
sial. However, since we could not measure replication-competent provirus we cannot rule out the possibility that pTfh 
may represent a major reservoir as compared to non-pTfh cells in HAART-treated patients, as it has been suggested 
by Pallikuth et al.22, and even in EC patients. Finally, a recent study reported that CD32a (the type II receptor for Fc 
fragment of IgG) is a cell surface marker specific for resting CD4+ T-cells carrying replication-competent HIV43. Thus, 
it will be essential to analyze the expression levels of this marker on the different CD4+ T-cell subsets contributing to 
HIV reservoir in future studies. It will also be valuable to determine the relationship between CD32a expression and 
HIV-DNA content in these cell subsets.

In summary, our study results show that elite controller patients maintain low levels of HIV-DNA in the pTfh 
cell subset, which is a population of memory CD4+ T-cells with special relevance in the maintenance of HIV per-
sistence and in the generation of a robust virus-specific immune response. Our results also highlight the impor-
tance of monitoring HIV-DNA in different subsets of memory CD4+ T-cells, given their differential relevance 
in the phenomenon of viral persistence and their differential contribution to the extent of the HIV reservoir in 
peripheral blood. These findings may also have clinical relevance in future clinical trials aimed at purging the HIV 
reservoir, and studies with a larger cohort of patients could support our results.

Methods
Study population. This cross-sectional study was conducted in the following groups of chronically HIV-
infected patients with suppressed HIV replication: 10 EC with undetectable plasma HIV-RNA (<50 copies/mL) 
without cART and 10 TX with at least five years of cART and complete viral suppression. The groups were matched 
for age, sex, length of infection and CD4+ T-cell counts. An HIV-infected patient was considered an EC when hav-
ing at least three consecutive plasma HIV viral load determinations with no more than 50 HIV-RNA copies/mL dur-
ing at least 12 months of follow-up in absence of any combination of antiretroviral therapy (cART). The EC patients 
included in our study had long-term control of HIV replication and stable CD4 counts during the whole follow-up 
period. The patients were recruited at different HIV-reference hospitals in Madrid, Spain. The recruitment period 
was 12 months. We started with the entire HIV population of each hospital, and the patients meeting the inclusion 
criteria and willing to participate in the study were selected. The study protocol was evaluated and approved by the 
Ethical review board of Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain in accordance 
with the declaration of Helsinki. Each participating patient signed an informed consent form.

Cell samples. We collected two 300 mL EDTA-anticoagulated blood samples (6 months apart) from each 
participant to purify the different memory CD4+ T cell populations (Trm, pTfh and non-pTfh cells). One sample 
was used to isolate Trm cells and the other sample was used to isolate pTfh and non-pTfh cells. All the analyses 
were conducted using fresh peripheral blood mononuclear cells (PBMCs) isolated by density gradient centrifu-
gation with Ficoll-Hypaque (Sigma Chemical Co., USA).

Immuno-magnetic purification of Trm, pTfh and non-pTfh cells. We isolated the following differ-
ent CD4+ T-cell populations from total fresh PBMCs (without any stimulation to avoid the triggering of TCR): 
Trm (defined as CD4+CD45RO+CD25−CD69−HLADR−), pTfh (defined as CD4+CD45RO+CXCR5+), and 
non-pTfh (defined as CD4+CD45RO+CXCR5−). The cells were isolated using an immuno-magnetic separation 
technique (MACS microbeads system, Miltenyi Biotec, Madrid, Spain). The purification of each one of these 
cell subsets was preceded by a negative magnetic isolation of memory CD4+ T-cell subset (memory CD4 T-cell 
Isolation Kit) according to the manufacturer’s instructions. Trm cells were isolated through negative selection 
with a cocktail of monoclonal antibodies against CD25, CD69, and HLA-DR. pTfh cells were purified through 
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positive selection using monoclonal antibody against CXCR5 (Clon REA103, Miltenyi Biotec). The non-labeled 
cells were collected since they included the non-pTfh cells. The purity of each isolated CD4+ memory cell subset 
was assessed by flow cytometry (SP6800 Spectral Analyzer, Sony, USA) and the purity was greater than 90% in all 
samples. A flow cytometry experiment illustrating the gating strategies for Trm, pTfh and non-pTfh cell subsets, 
as well as the purity after isolation of each cell subset is shown in Fig. 3.

Cell-associated HIV-DNA quantification. Total DNA from purified Trm, pTfh, and non-pTfh cells of 
each patient was extracted using QIAamp DNA-MiniKit (Qiagen, USA) following the manufacturer’s instruc-
tions. The size of the proviral DNA reservoir of each cell subpopulation was measured as intracellular HIV-1 
DNA copies per million cells using ultrasensitive digital-droplet PCR (ddPCR) as previously described44. DdPCR 
is a technique that measures total HIV-DNA as a marker of the HIV reservoir39,40 and has greater precision and 
reproducibility in the context of a low level of detection (as is the case of EC patients) compared with techniques 
that measure integrated HIV-DNA45. The contributions of the pTfh and non-pTfh subsets to the HIV reservoir in 
total memory CD4+ T-cells were calculated by accounting for the level of HIV-DNA in each of these subsets and 
their proportion among total memory CD4+ T-cells.

Statistical analysis. The main characteristics of the study groups are expressed as median [interquartile 
range]. Non-parametric Wilcoxon signed-rank test was used to evaluate differences between cell subpopulations 
among each group of patients, and Mann-Whitney U-test was used to evaluate the differences between patient 
groups in each cell subpopulation. All statistical analyses were performed using SPSS software version 15 (SPSS 
Inc., Chicago, IL, USA). All p-values were two-tailed and were considered significant only when lower than 0.05.

Data availability statement. All data generated or analyzed during this study are included in this pub-
lished article.
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