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T2DM, as a typical metabolic inflammatory disease, is under the joint regulation of
environmental factors and genetics, combining with a variety of epigenetic changes.
Apart from epigenetic changes of islet b cells and glycometabolic tissues or organs, the
inflammation-related epigenetics is also the core pathomechanism leading to b-cell
dysfunction and insulin resistance. In this review, we focus on the epigenetic
modification of immune cells’ proliferation, recruitment, differentiation and function,
providing an overview of the key genes which regulated by DNA methylation, histone
modifications, and non-coding RNA in the respect of T2DM. Meanwhile, we further
summarize the present situation of T2DM epigenetic research and elucidate its prospect in
T2DM clinical diagnosis and treatment.

Keywords: type 2 diabetes mellitus (T2DM), inflammation, macrophages, DNA methylation, histone modifications,
non-coding RNA
INTRODUCTION

The global prevalence of type 2 diabetes mellitus (T2DM) is increasing rapidly (1–3). Yet, there is no
marketed therapeutic drug that indefinitely cures or prevents the occurrence and progression of
diabetes (4). Glucose-lowering agents alone have limited efficacy in preventing T2DM progression
(5). Thus, with rapidly increasing rate of diabetes, a deeper understanding of its underlying
molecular mechanisms is urgently needed to develop better therapies.

Several lines of evidence suggest that chronic activation of pro-inflammatory pathways in insulin
target tissues, such as the adipose tissue, liver, muscle, and pancreatic islets may contribute to
obesity, insulin resistance (IR), and T2DM (6). These evidence contributed to the term
immunometabolism, which highlights the potential interplay between immune functions and
metabolic defects (7). Meanwhile, persistent chronic inflammation can lead to scarring, decreased
function, and organ failure, eventually leading to a rise in diabetes-related deaths (8). The vital role
of inflammation in the occurrence and progression of diabetes has sparked great interest in
exploring immune imbalances as therapeutic targets (4, 9).
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The first trigger(s) of immune imbalance accompanying
metabolic dysfunction have not been revealed, but the
involvement of epigenetic modifications in the upstream
regulation of inflammation has been recognized (10).
Environmental factors such as altered nutritional status can
induce epigenetic changes (11). Subsequently, pre-existing
epigenetic marks in genes activate or repress gene transcription
in response to environmental stimuli. Thus, epigenetic changes
serve as key bridges in the complicated interaction between the
environment and genetics to actuate the inflammatory reaction
accompanying metabolic disorders.

In this review, we explain the relationship between
epigenetics, inflammation and T2DM, and discuss the potential
mechanisms by which epigenetic factors contribute to diabetes
by regulating inflammation remodeling. We also highlight how
the rapidly increasing knowledge base of epigenetics can open a
door of opportunities to improve the clinical management
of diabetes.
CHRONIC INFLAMMATION CAUSED BY
IMMUNE IMBALANCE IN THE
PATHOGENESIS OF T2DM

In the past, metabolism and immunity were often considered as two
separate phenomena, wherein the main function of metabolism was
to maintain the transformation of the body’s substances and energy
while that of immunity was to protect against foreign invaders and
remove hazardous substances produced by the body itself. Recently,
with a more comprehensive understanding of metabolism and
immunity, the cross-talk and interaction between the two in the
body’s physiological state and during disease development have
been recognized (12, 13).

First, immune system function is based on the proliferation
and differentiation of immune cells as well as on various types of
cytokines. Immune cells need metabolic support to provide
energy and substrates, such as glucose, amino acids,
phospholipids and fatty acids; thus, the immune system
controls metabolism to ensure its energy supply (14, 15).
Cytokines in immunometabolism not only play a role in
immune regulation but also act as agents of energy
metabolism. Some metabolites, such as glucose, can also
activate a response to pathogens as a signal medium, besides
supplying energy. Overall, immunity plays a vital role in
metabolic homeostasis, and an imbalance in immunity could
lead to metabolic diseases including T2DM.

T2DM occurrence is consistent with an alternative immune
cell profile, including changes in the mononuclear macrophage
(Mf) system, B lymphocytes, T lymphocytes, natural killer
(NK) cells, and innate lymphoid cells (ILCs). Overall, the
alteration of the immune cell profile showed a pro-
inflammatory proliferation, differentiation and phenotypes,
including the increase in M1-like Mfs, T helper (Th)1 cells,
Th17 cells, CD8+ cells, antibody-producing B-2 cells (16–18),
and downregulation of M2-like Mfs, Th2 cells, regulatory T
cells (Treg), IgM-producing B-1 cells, and ILCs subsets (such as
Frontiers in Immunology | www.frontiersin.org 2
ILC2s and ILC3s) (19–21). This immunocytic cross-talk causes
pathogenic inflammation via the release of cocktail pro-
inflammatory cytokines (such as tumor necrosis factor
(TNF)-a, TNF-b, interleukin (IL)-1b, IL-2, IL-6, IL-17,
interferon (IFN)-a, IFN-g) and IgG in circulation and
glycometabolic tissues such as adipose tissue, liver, muscle,
and pancreas, which further disturbs metabolism, ultimately
resulting in pancreatic b-cell dysfunction, glucose intolerance,
and IR (4).

Mfs, an important component of innate immunity, plays a
crucial role in metabolic inflammation in T2DM. In humans,
Mfs can usually be divided into tissue-resident Mfs, such as
resident intestinal Mfs, adipose tissue macrophages (ATMs) and
liver macrophages (Kupffer cells, KCs), and recruited Mfs, which
are derived from blood monocytes through the binding of
monocyte chemoattractant protein-1 (MCP-1,also named
CCL-2) and C-C chemokine receptor 2 (CCR2) (22).
Primarily, gut microbial composition and metabolic function
could be disturbed by a high-fat diet (HFD), and the subsequent
upregulation of lipopolysaccharide (LPS) could directly stimulate
resident intestinal Mfs to transfer into M1-like Mfs, and
promote the secretion of pro-inflammatory cytokines such as
IL-1b, IL-6, TNF-a, and chemokines CCL-2. Meanwhile,
intestinal epithelial cells can also produce CCL2 and
cooperatively recruit blood monocytes into gut lumen. The
monocytes gradually differentiate towards into resident mature
M1-like Mfs with loss of Ly6C/CCR2 and gain of CD64/MHII
expression, and also show high levels of IL-1b, IL-6, or TNF-a
and hyper-responsiveness to inflammatory stimuli (23). Through
a similar mechanism, because of increased fatty acids, a hypoxic
environment and local stimulation of TNF-a, IL-1b, IL-6, and
other pro-inflammatory cytokines, resident tissue Mfs transform
to M1-like Mfs in the adipose, liver, muscle tissue, and
pancreatic islets. Furthermore, it contributes to blood
monocyte recruitment into these tissues and converts them
into M1-like Mfs to promote an inflammatory environment. It
inhibits the insulin pathway, causes IR, and impairs insulin
production (24, 25). In the intestine, a HFD induces a pro-
inflammatory shift in T cells, characterized by an increase in
INF-g+ Th1 and CD8+T cells, and a subsequent decrease in IL-
10+ Tregs and IL17+ Th17 cells (26). In addition, there is a
decrease in IgA+ antibody-secreting B cells and ILC3s in HFD-
fed mice, and the reduced levels of colonic secretory IgA+ and
IL-22 derived from ILC3s may be associated with IR (26, 27). In
adipose tissue, CD8+ T cells are more abundant and can promote
monocyte recruitment and differentiation into M1-like ATMs
(16). Pro-inflammatory Th1 cells are also increased in obese
adipose tissue leading to pro-inflammatory cell infiltration by the
production of IFN-g (28). ILC2s and eosinophils regulate adipose
immune homeostasis by inhibiting M1 polarization of Mfs based
on the secretion of IL-13 (derived from ILC2s) and IL-4 (derived
from eosinophils) and alleviate adipose inflammation (29). The
aggregation of free fatty acids released by the liver and adipose
tissue can simultaneously lead to an increase in neutrophils and
CD8+ T cells, thereby inducing liver inflammation (30).
Neutrophil elastase can be released and taken up by
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ding et al. Inflammation-Related Epigenetic Modifications of T2DM
hepatocytes (31), promoting the intracellular degradation of
insulin receptor substrate 2 (IRS-2), thereby enhancing IR in
hepatocytes.Overall, in T2DM, the cross-talk between
metabolism and immunity has been recognized by researchers,
and the immune mechanism of T2DM has been partially
revealed. However, in the context of T2DM, the internal
homeostasis of immunity and its interaction mechanism with
glycolipid metabolism need to be further explored.
EPIGENETIC CHANGES: NEW INSIGHTS
INTO THE DEVELOPMENT OF T2DM AND
DIABETES-RELATED INFLAMMATORY
STATUS

The Diabetes Control and Complications Trial (DCCT) (32)
showed that intensive glycemic control could better delay
theprogression of microvascular complications, compared to
conventional therapy in patients with T1DM. During the
following observationalEpidemiology of Diabetes Intervention
and Complications (EDIC) study (33), patients who had been in
the conventional therapy group were also switched to receive
intensive glycemic control, and both groups successfully
achieved similar mean hemoglobin A1c (HbA1c) levels of
approximately 8%. Nevertheless, the risk of macrovascular and
microvascular complications in patients with early intensive
glycemic control in DCCT was significantly higher than that in
patients without early intensive treatment (34–37). This has been
explained by a phenomenon called “metabolic memory”, which
suggests that a ‘memory’ of previous glucose exposures in target
cells causes its deleterious effects to persist long after glycaemic
control has been established. Growing evidence suggests that
epigenetic alterations in target cells are an important cause of
high-glucose ‘memory’. Thus, epigenetics, as a link between
metabolic memory and the occurrence and development of
diabetes, has attracted considerable attention.

Epigenetics refers to the heritable modifications in gene
expression without changes in the DNA sequence that regulates
cell differentiation, cell-specific gene expression, parental
imprinting, X chromosome inactivation, and genomic stability
and structure. Epigenome encompasses genome-wide DNA
methylation, histone modifications, and the expression of small
non-coding RNAs, primarily microRNAs (miRNAs), and also
chromatin accessibility (10). As a mechanisms linking
environmental factors to altered gene activity, epigenetic processes
could be dynamically altered under the influence of short-term and/
or long-term environmental exposures, such as drugs, diet,
sedentary lifestyle, obesity, elevated blood glucose levels, and
aging. Researchers have found hundreds of epigenetic alterations
in relation to inflammation, obesity, and T2DM in human tissues
that are relevant to metabolism. Of these, epigenetic alterations
directly involved in IR and impaired insulin secretion have been
reviewed elsewhere (38–40) and will not be covered in the present
review. In this review, we focus on epigenetic alterations associated
with immune inflammation in the context of T2DM (Figure 1).
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As the most extensively studied epigenetic mechanism, DNA
methylation regulates gene expression and maintains
chromosomal stability. DNA methylation mainly refers to the
covalent bonding of a methyl group, namely, 5-methylcytosine
(5mC) at the CG context or the so-called CpG sites on cytosine,
under the control of specific enzymes known as DNA
methyltransferases (DNMTs) including DNMT1, DNMT3A,
and DNMT3B (41). Methylation of DNA at gene promoter
regions is typically associated with gene suppression through
different mechanisms, including the recruitment of
transcriptional repressors and interference with transcription
factor binding. DNA methylation can be reversed by ten-
eleven translocation proteins that convert 5mC to 5-
hydroxymethylcytosine. A growing body of research suggests a
link between DNA methylation and diabetes (42). Identified by
epigenome-wide association studies, differentially methylated
CpG sites annotated to several candidate genes for T2D, such
as ABCG1, SREBF1, TXNIP, and LGALS3BP, have been found in
the bloodc (43). Increased methylation in the ABCG1 and
SREBF1 genes, and the subsequent downregulation of their
expression, are thought to be associated with T2DM. Both
ABCG1 and SREBF1 are transcriptional activators that are
required for lipid homeostasis. ABCG1 mediates cholesterol
efflux to mature HDL (44). Studies have shown that ABCG1
deficiency in myeloid cells promotes activation of the NLRP3-
inflammasome and atherogenesis (45). In addition, decreased
methylation of the TXNIP gene is also robustly associated with
prevalent T2DM. TXNIP is a key regulator of oxidative stress
and has been linked to inflammation; its upregulation can also
facilitate the activation of the NLRP3-inflammasome and the
release of inflammatory mediators (46). LGALS3BP encodes a
secretory glycoprotein regulated by the NF-kB pathway. Previous
studies have observed an upregulation of LGALS3BP in TNFa-
treated adipocytes, promoting macrophage recruitment,
suggesting a potential pro-inflammatory action of LGALS3BP
(47, 48). In addition, in a study that focused on the methylation
of genes involved in inflammation in the peripheral blood of
obese and lean individuals, 28 significantly hypomethylated
proinflammatory genes were found in obese individuals.
Fifteen of these genes, including CXCL6, TLR5, IL6ST, EGR1,
IL15RA, and histone deacetylase (HDAC) 4, showed significantly
high mRNA levels. The degree of methylation was negatively
correlated with fasting plasma insulin, serum IL6, C-reactive
protein, and arteriolar reactive oxygen species (49). Since
epigenetic patterns are cell-specific, other insulin target tissues
such as adipose tissues (AT) are also of concern. Combining the
transcriptomes and methylomes of subcutaneous adipose tissue
(SAT) and visceral adipose tissue (VAT) samples from obese
T2DM individuals and using tissue-specific regulatory networks,
Jing et al. identified epigenetically dysregulated gene modules in
adipose tissues. Two SAT modules were predicted to be involved
in regulating adipocyte differentiation and promoting obesity-
related inflammatory responses to impair insulin signaling (50).

Histones are highly conserved proteins in eukaryotic cells and
nucleosomes and DNA are the basic units of chromatin structure.
Histone modifications, including acetylation, methylation, and
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phosphorylation, which occur on the N-terminal tails of histones
H3 and H4, are important for gene regulation. It can regulate gene
expression by altering the affinity of histones to DNA, thereby
enabling the transformation of chromatin between loose and dense
states. Histone methylation and acetylation have been found to play
Frontiers in Immunology | www.frontiersin.org 4
important roles in the regulation of several key genes associated with
diabetes. Histone acetylation states is catalyzed by histone
acetyltransferases (HATs) and HDACs. Generally, histone lysine
acetylation is associated with transcriptional activation, whereas
acetylation removal is associated with transcriptional repression
FIGURE 1 | Environmental factors could affect the epigenetics of immune cells to generate tissue inflammatory states and induce metabolic disorders. Adverse
environmental factors could induce or aggravate the pro-inflammatory immune cell profile through the epigenetics, including the increase in M1-like Mfs, Th1 cells,
Th17 cells, CD8+ cells, ILC1s, B-2 cells, and the downregulation of M2-like Mfs, Th2 cells, Treg, ILC2s, ILC3s and B-1 cells. This immunocytic cross-talk causes
pathogenic inflammation via the release of cocktail pro-inflammatory cytokines (TNF-a, TNF-b, interleukin (IL)-1b, IL-2, IL-6, IL-17, IFN-a, IFN-g) in intestine and
glycol-metabolic tissues such as adipose tissue, liver, muscle, and pancreas, which further disturbs metabolism, ultimately resulting in pancreatic b-cell dysfunction
and IR. ↑: up-regulated expression, ↓: down-regulated expression.
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(51). The sirtuin (SIRT) family of deacetylases, specifically SIRT1,
regulates several factors involved in metabolism, including
adiponectin secretion, inflammatory responses, and levels of
reactive oxygen species, which together contribute to the
development of IR (52). Histone methylation, in contrast to
acetylation, is more constant and long-standing and is associated
with both active and silent genes depending on the specific location
and degree of modification. Despite being relatively stable, histone
methylation can be dynamically modified through the concerted
actions of histone methyltransferases and histone demethylases
(53). Together with the increased histone methyltransferase Set7
expression in peripheral blood mononuclear cells, the Set7-
dependent monomethylation of lysine 4 of histone 3 on NF-kB
p65 promoter was also found in patients with T2DM. This
epigenetic changes were related to vascular dysfunction via
upregulation of NF-kB subsequent transcription of oxidant-
inflammatory genes, and increased plasma levels of intercellular
cell adhesion molecule-1 and monocyte chemoattractant protein-1
(54). Animal experiments revealed that a series of genes, mainly
those enriched in the MAPK signaling pathway, in adipose tissue
from HFD-fed mice were activated by histone 3 lysine 9
methylation (H3K9me)2, H3K9me3, H3K4me1, and histone H3
K27 acetylation (H3K27ac). Of these, MAP3K5, MET, and VEGFA
may be involved in inflammation-related energy metabolism via
activation of the MAPK signaling cascades (55). miRNAs are short
non-coding RNAs that can silence the expression of target genes by
binding to the 3′-untranslated region of target mRNAs, leading to
translational repression and/or mRNA degradation (56). They
provide a rapid but reversible means of gene regulation, as a
response to environmental stimuli at both the tissue and systemic
levels without changing the DNA sequence itself (57).Over 2,500
mature human miRNAs have been identified, and they are thought
to regulate up to 60% of human protein-coding genes (58). Some
miRNAs are associated with chronic inflammation in T2DM; for
example, miR-146a is downregulated in the serum of T2DM
patients (59). Another miRNA associated with inflammation in
T2DM is miR-147, which is overexpressed in the serum of diabetic
and obese rats with periodontitis; miR-147 overexpression is
believed to activate macrophages and increase the expression of
pro-inflammatory markers such as TNF-a and IL-12 (60). In
addition, chronic and transient hyperglycemia was also found to
change the levels of miRNAs (miR-26a-5p, miR-26b-5p, let-7d-5p,
let-7e-5p, miR-365a-3p, and miR-146a-5p) in adipocytes, which
mostly converged to alter IL-6 transcription and can be
instrumental in the development of inflammation and metabolic
dysregulation of VAT (61).
EPIGENETIC REMODELING OF THE
IMMUNE SYSTEM IN THE PROGRESSION
OF T2DM

A growing body of literature links epigenetic modifications to
crucial pathways in the pathogenesis of diabetes. As described
above, besides altered metabolic processes, DNA methylation,
covalent modification of histones, and the expression of non-
Frontiers in Immunology | www.frontiersin.org 5
coding RNA, in particular miRNAs, are also involved in the
occurrence and development of chronic inflammation in
diabetes. The epigenetic regulation of immune cell recruitment,
proliferation, differentiation, and functional phenotypes plays a
key role in promoting IR and impairing b-cell insulin
production (Table 1).

Epigenetics Remodeling of Mfs’
Recruitment and Functional Expression
(Polarization) in T2DM
Although the pro-inflammatory M1 polarization of resident
tissue macrophages is the trigger point causing chronic
inflammation of the pancreas and diabetic peripheral
glycometabolic tissue, chemotaxis and the recruitment of blood
monocytes and macrophages mediated by CCL-2 are central
factors in the subsequent inflammatory aggravation of metabolic
tissues. A study investigating serum levels of CCL-2 in patients
with DM and metabolic syndrome (MetS) found that serum
CCL-2 levels were significantly increased in the MetS group and
the DM group. Moreover, high CCL-2 levels showed a significant
positive correlation with the typical clinical phenotypic features
of DM such as high body mass index, waist-hip rate, triglyceride
levels, and HOMA-IR (83). Then, through isolation of genomic
DNA from peripheral blood mononuclear cells (PBMC) and
methylation-specific polymerase chain reaction, the methylation
status of CpG sites in the CCL-2 promoter was determined and
the CCL-2 promoter was found to be hypermethylated in non-
diabetic individuals (62). As the key players in the peripheral
sensitization that leads neuropathic pain, CCL2 may be also
associated with the diabetic peripheral neuropathy (DPN).
Studies have revealed increased levels of H3K9Ac and
H3K4me3 in the promoter regions of CCL2 genes in injured
sciatic nerves, suggesting that CCL2 may be upregulated in
injured peripheral nerves via epigenetic histone modification in
infiltrating immune cells such as Mfs (63).

After chemotaxis and recruitment into tissues, monocytes can
differentiate into Mfs gradually, and epigenetic remodeling are
also participates in the upregulation of M1 polarization and
inhibition of M2 polarization, together contributing to
inflammation in T2DM. Varying patterns of methylation in
Mf isolated from ischemic muscles were found between
controls and hyperlipidemic T2DM patients. The promoters of
Cfb, Serping1, and Tnfsf15, which are classically activated M1-
Mfs genes, were significantly hypomethylated, whereas the
promoters of alternatively activated M2-Mfs genes, including
Plxnd1, Arg1, Nrp1, Cxcr4, Fes, and Cdk18, were significantly
hypermethylated. Combined with the results of mRNA
expression and immunohistochemistry, the predominance of
proinflammatory M1-Mfs over anti-inflammatory and
proangiogenic M2-Mfs was confirmed in hyperlipidemic and
T2DM ischemic muscles (64). The polarization of Mfs is also
regulated by peroxisome proliferator-activated receptor g
(PPAR-g), and DNMT1 can upregulate the DNA methylation
status of the proximal PPAR-gpromoter and induce Mfs to
polarize into M1-Mfs. Inhibition of DNA methylation in the
PPAR-gpromoter by deleting 5-aza-2’-deoxycytidine or DNMT1
May 2022 | Volume 13 | Article 883410
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can promote selective activation of macrophages (m2-like
macrophages), confirming the critical role of DNA methylation
in PPAR-g (65).

Besides DNMT1, DNMT3B is also an important regulator of
Mfs polarization; its expression is lower in alternatively activated
M2-Mfs, whereas a complete knockdown of DNMT3B is
associated with a shift towards the M2 phenotype. Loss of
function of DNMT3B is associated with decreased expression
of inflammatory genes, including those encoding IL-1b and
TNF-a, and impaired chemotactic ability (84).

Covalent modifications of histones, including methylation,
acetylation, ubiquitination, phosphorylation and lactylation,
have been shown to influence the function of Mfs.
Hyperglycemia can promote Mfs activation via histone
methylation of NF-kB. Advanced glycation end products
(AGEs), the pathological product of hyperglycemia, can
promote M1 activation of mouse primary Mfs and increase
the expression of nitric oxide synthase (NOS)2, TNF-a, and IL-6
based on the upregulation of the RAGE/NF-kB pathway (85).
Histone methylation is involved in the regulation of M1-Mfs
mainly by modifying NF-kB expression. Thus, the transient
hyperglycemia model revealed increased activation of H3K4
methylation mediated by the SETD7 (66) and SETD9 (67) in
the promoter of the NF-kB p65 subunit. Li et al. found that
SETD7/9 promotes the recruitment of p65 in human monocytes,
thus regulating the expression of NF-kB target genes (86).
SETD7/9 knockdown can inhibit TNF-a, IL-8 and CCL2
expression in human monocytes upon stimulation with TNFs.
Hyperglycemia decreases H3K9me3 at the IL-6 promoter in
human monocytes, thereby increasing IL-6 expression (68). In
Frontiers in Immunology | www.frontiersin.org 6
addition, the differentiation of monocytes to macrophages and
the development of tolerance or trained immunity are closely
related to the acquisition of distinct epigenetic signatures, such as
H3K4me1, H3K4me3, and H3K27ac, in the promoter and
enhancer regions (87). In addition, demethylation of H3K27
and H3K4me3, respectively, are involved in the M2 polarization
and the expression of inflammatory cytokines produced by M1-
Mfs (88).

Histone acetylation was the first reported post-translational
histone modification. The key enzymes, HATs and HDACs,
which mediate the process of its modification, play an
important role in the regulation of chemotaxis, recruitment,
and polarization of Mfs. HDAC 2, 3, 6, 7, and 9 can activate
M1 polarization, and HDAC3, 4 can inhibit M2 polarization,
leading to a pro-inflammatory status. Furthermore, SIRT2
upregulation can activate M2 polarization, while SIRT1,
HDAC1, 4, 5, 7 can inhibit M1 polarization (89). Studies have
shown that the class I HDACs are primarily involved in innate
immunity and work by modulating genes regulated by Toll-like
receptors (TLRs) and IFN (90). In this process, there is a
bidirectional regulation characterized by the activation of the
IFN pathway and inhibition of the TLR-NF-kB pathway.
HDAC1 plays a vital role in STAT1- and/or STAT2-dependent
IFN signaling. The recruitment of HDAC1 and the its interaction
with STAT5 can, in turn, deacetylate CCAAT/enhancer-binding
protein-b, thereby activating the transcription of interferon-
stimulated genes (ISGs) and inducing the secretion of IFN
(91). However, HDAC1 is a negative feedback regulator of the
TLR-NF-kB pathway because it inhibits the promoter activity of
TLR-induced genes, such as cyclooxygenase 2 (Cox-2), IL-12
TABLE 1 | Inflammation-related Epigenetic modification Involved in T2DM.

Cell Type Epigenetic Marks Target Position Process(es) Refs

Monocytes DNA hypomethylation MCP-1 (CCL2) blood chemotaxis and recruitment (62)
histone H3K9Ac MCP-1 (CCL2) blood chemotaxis and recruitment (63)

H3K4me (3) MCP-1 (CCL2) blood chemotaxis and recruitment (63)
Macrophages DNA hypomethylation Cfb, Serping1,Tnfsf15 muscle activation of M1-Mfs (64)

hypermethylation Nrp1, Cxcr4, Plxnd1, Arg1, Cdk18,
Fes

muscle inhibtion of M2-Mfs (64)

hypermethylation PPAR-g vascular
endothelium

activation of M1-Mfs (65)

histone H3K4me1 NF-kB activation of M1-Mfs (66,
67)

H3K9me3 IL-6 activation of M1-Mfs (68)
HDAC3 STAT1 activation of M1-Mfs (69)
HAT p300/CBP HIF-1a adipose activation of M1-Mfs (70)
HDAC7 TLR/NF-kB pathway adipose activation of M1-Mfs (71)

microRNA miR-10a-5p (↓) adipose activation of M1-Mfs (72)
miR-34a (↑) Klf4 adipose inhibtion of M2-Mfs (73)
miR-30 (↓) Notch1 pathway adipose activation of M1-Mfs (74)

LncRNA Dnm3os (↑) NKx3-2 AP1, STAT, IRF1 activation of M1-Mfs (75)
HCG18 (↑) TRAF6/NF-kB pathway nerve activation of M2-Mfs (76)

T cells DNA hypermethylation CLSTN1 adipose up-regulation in CD4+ cells (77)
hypermethylation HGK up-regulation of IL-6 (78)

microRNA miR-125b (↑) Blimp-1, IRF-4 conversion of Tregs and Th2 cells into Th17
cells

(79)

miR-326 (↑) adipose conversion of Th1 cells into Th17 cells (80)
B cells DNA hypermethylation LY86 (81)

microRNA miR-150 (↑) adipose activation of B cells (82)
May 2022 | Volume 13 | Article
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subunit p40 (IL-12p40), and IFN-b (90), and interacts directly
with NF-kB p65 to inhibit its expression. HDAC3 also regulates
inflammatory genes in Mfs. Recent studies have shown that
HDAC3 can regulate the transcription and expression of STAT1
by interacting with the transcription factor FOXK1 and forming
a transcriptional complex that aggregates at the same position in
the Stat1 promoter while simultaneously maintaining the
stability of FOXK1, and activating the transcription of ISGs
(69). In mice, M2 polarization was inhibited by HDAC3 through
the repression of several Il4-related genes (92). In T2DM,
HDAC3 has been suggested to promote M1 polarization and
aggravate inflammation, and its activity is significantly and
positively correlated with high levels of HbA1c and insulin, as
well as that of circulating TNF-a and IL-6 (93). A hypoxic
environment induced by the hyperproliferation of adipose tissue
induces the M1 activation in T2DM patients. In addition,
acetylation of hypoxia-inducible factor (HIF)-1a is mediated
by the HAT p300/CBP (70), and upregulation of HDAC7 can
also coordinate with HIF-1a to activate the TLR-NF-kB
pathway (71).

Notably, because of hypoxic conditions, activation with pro-
inflammatory stimuli such as LPS or IFN-g, and increased ATP
demand for active proliferation and differentiation, the metabolic
reprogramming of macrophages is activated and switched from
oxidative phosphorylation to glycolysis to generate ATP. This
phenomenon is called the Warburg effect and causes the
production and enrichment of large amounts of lactic acid in
macrophages (94, 95). A recent study by Zhang et al. established
a new function of lactate, which could contribute to a novel form
of histone modification, histone lactylation, and the promotion
of M2 polarization in Mfs. Zhang et al. suggested that lactate can
generate lactyl-CoA, which provides a lactyl group to the lysine
tails of histone proteins through acetyltransferase p300, resulting
in a modification called lactyllysine, leading to an M2-like
phenotype (96). Recent studieshave identified that class I
HDACs (HDAC1-3) are also the potential histone lysine
delactylases (97). Although the exact changes in T2DM as a
new histone modification have not been revealed, it is a potential
explanation for the high lactate levels in diabetes and
macrophage-mediated metabolic inflammation.

Non-coding RNAs, particularly miRNAs, play crucial roles in
the regulation of the M1 and M2 polarization through targeting
various adaptor proteins and transcription factors. During the
process of M1 polarization, miR-9, miR-21, miR-125b, miR-127,
and miR-155 are upregulated. Of these, miR-9can suppress the
anti-inflammatory response by inhibiting PPAR-d expression. In
addition, miR-125b, miR-127, and miR-155 target Bcl6, C/EBP,
SOCS1, and IRF4 and promote the M1 phenotype via the JNK
and P13K/Akt1. For the activation of M2 polarization, miR-21,
miR-124, miR-132, and miR-125a-5p all play key roles in the
regulation of SIRPb1, STAT3, AChE, and KLF4. miR-146a and
let-7c can also inhibit activation of the NF-kB pathway through
IRAK1, TRAF6, PAK1, and C/EBP-d (98). In T2DM, miRNAs
also play an important regulatory role in the interaction of
glycometabolic tissue and Mfs. For example, miR-10a-5p is an
important negative regulator of inflammation in ATMs and a
Frontiers in Immunology | www.frontiersin.org 7
high-fat diet can reduce miR-10a-5p levels in ATMs. Treatment
of mice with the miR-10a-5p mimic inhibited pro-inflammatory
responses and enhanced glucose tolerance (72). In addition,
miR-34a secreted by adipose cells can suppress M2
polarization by repressing Krüppel-like factor 4 (Klf4)
expression. This relationship was verified in obese mice and
patients (73). miR-30, another adipocyte-derived exosomal
miRNA, is also downregulated in M1-Mfs and activates the
Notch1 pathway (74). In contrast, some miRNAs derived from
Mfs, such as miR-210 and miR-155, can also induce IR. miR-210
derived from ATMs accelerates diabetic pathogenesis in mice by
regulating glucose uptake and mitochondrial complex IV activity
by targeting NDUFA4 expression. miR-210 can also assist miR-
155 in influencing the expression of PPAR-g and GLUT-4 in
3T3-L1 cells (99).

Apart from miRNAs, lncRNAs, such as lncRNA Dnm3os,
also regulate Mfs polarization in T2DM. A previous study
showed that decreased nucleolin and overexpression of
Dnm3os can enhance promoter H3K9ac, recruit histone
acetyltransferase, and activate histone acetylation to upregulate
the expression of inflammatory genes, such as NKx3-2, AP1,
STAT, and IRF1 (75). Further studies showed that lncRNA
HCG18 participates in the pathology of DPN and can
competitively bind miR-146a and upregulate TNF receptor
associated with factor 6 (TRAF6)/NF-kB pathway to promote
M1 polarization and the secretion of inflammatory factors (76).

As summarized above, in the context of T2DM, epigenetic
modifications regulate the recruitment and polarization of
macrophages and establish the inflammatory infiltrating status
of glyco-metabolic organs and the pancreas. Cytokines derived
from M1-like Mfs play a crucial role in contributing to IR and
impaired insulin production. The most studied cytokine TNF-a
compromises tyrosine phosphorylation in the insulin-signaling
cascade, mainly of the insulin receptor substrate (IRS) protein.
These phosphorylation inhibitory effects are regulated by TNFa-
induced kinases such as IkB kinase (IKK), c-Jun N-terminal
kinase (JNK), and atypical protein kinase C (aPKC), thereby
preventing insulin signaling (100). TNF-a also enhances
ceramide synthesis and lipolysis in adipocytes and inhibits
PPARg expression. A normal level of PPAR-g is necessary to
maintain insulin sensitivity, and the effects of ceramides on
inhibiting AKT phosphorylation and insulin action are well
known. Interestingly, IL-6 is also involved in the regulation of
insulin signaling by affecting the phosphorylation of IRS-1. In
liver tissues, IL-6 exerts its function by binding to the IL-6
receptor a chain (IL-6Ra) and GP130 signaling chain complex of
the liver cell membrane initiating Janus kinase (JAK)2/STAT-3-
dependent transcriptional activation of target genes such as
SOCS-3 (101).. SOCS-3 is not only a negative regulator of IL-6
signaling but also inhibits insulin signal transduction at the IRS
protein level and causes hepatic insulin resistance (102, 103). In
addition to inhibiting insulin signaling pathways in adipose and
liver tissues, M1 polarization of islet-resident macrophages also
leads to islet dedifferentiation and the reduction of glucose-
stimulated insulin secretion (GSIS) function. This is closely
related to the activation of IL-1b, another representative
May 2022 | Volume 13 | Article 883410

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ding et al. Inflammation-Related Epigenetic Modifications of T2DM
cytokine, and downstream JNK activation. JNK can inhibit GSIS
by inhibiting the phosphorylation activation of the IRS-1-PI3K-
AKT pathway in b cells and also reduces the phosphorylation
level of FOX1, which is responsible for maintaining the
differentiation and functional expression of pancreatic b cells.
This dysfunction leads to the dedifferentiation of islet b-cells,
further aggravating impaired islet secretion (25). In addition, IL-
1b has also been shown to promote IR in adipose tissues and the
liver based on the impairment of insulin signaling pathways.

Epigenetic Remodeling of T and B
Lymphocytes in T2DM
The role of immune cells in the development of T2DM is
notlimited to macrophages. Both T and B lymphocytes also
play a central role in the inflammatory process and the
development of IR (16, 17, 28). Like macrophages,
lymphocytes can be divided into two mutually limiting
populations with primarily pro-inflammatory functions or
primarily regulatory functions (104). CD4+T cells can further
differentiate into different subtypes, such as pro-inflammatory
Th1, Th17, and anti-inflammatory Th2 and Treg cells, under the
stimulation of different transcription factors (TFs), such as IRF-4
and Foxp3 (105). Th1 and Th17 cells secrete IFN-g, IL-6, IL-17,
TNF-a, and other inflammatory factors to promote M1
polarization of Mfs and enhance their proinflammatory
functions (106). IL-2 secreted by Th1 cells can also promote
the proliferation of CD8+ T cells, which can induce macrophage
activation and migration to adipose tissues by secreting MCP-1,
MCP-3, and RANTES (16). B cells are also critical regulators of
inflammation in T2DM and act by promoting proinflammatory
T cell function and secreting proinflammatory cytokines (107).
Several clinical studies have confirmed that the adaptive immune
milieu skews towardss a pro-inflammatory phenotype in
individuals with prediabetes or T2DM (108), and epigenetics
are thought to play a regulatory role in this phenotypic change.

In a previous study (109), global DNA hypermethylation in B
cells associated with IR was detected in the peripheral blood of
individuals with obesity and T2DM, and this altered pattern was
gene- and cytokine-specific. Another study also found cell type-
specific DNA methylation differences in CD4+ and CD8+ T cells
in women with obesity. In this study, the amount of visceral
adipose tissue (VAT) was strongly associated with the
methylation level of CD4+ cells, including those of the four CG
sites in the CLSTN1 promoter, which may regulate its expression
(77). The overexpression of DNMT3a was thought to be a
possible reason for global DNA hypermethylation in
lymphocytes from T2DM individuals as well as a possible
reason for IR development (110). Higher methylation of the
lymphocyte antigen 86 (LY86) gene and subsequent decrease in
the expression of its encoding protein MD-1, was found to be
significantly correlated with obesity, IR, and inflammatory
markers in two genome-wide DNA methylation panels (81).
MD-1, together with RP105 (a TLR family protein), as a complex
expressed on immune cells, including B cells, macrophages, and
dendritic cells, may serve as a negative regulator of TLR4
signaling in LPS response (111). It has also been found that
Frontiers in Immunology | www.frontiersin.org 8
peripheral blood T cells of T2DM show increased methylation of
the HGK promoter, which in turn regulates the decreased
expression of HGK in T cells and causes the subsequent
upregu la t ion of IL-6 (78) . Be s ide s , h i gh FOXP3
methylationand low FOXP3 expression levels were found in
AT mononuclear cells from obese individuals (80). FOXP3 is a
key transcription factor involved in the development and
function of Treg cells. These findings suggest an association
between early metabolic dysfunction and alterations in
methylation. Further studies are warranted to determine the
functional significance of such methylation changes.

miRNAs are also essential for IR and obesity-associated
inflammation. Recent studies have shown that miRNAs are
actively involved in T-cell recruitment and differentiation. The
expression level of miR-125b has been shown to0 be elevated in
PBMCs from patients with T2DM (112). miR-125b binds to the
3′-untranslated region of Blimp-1 and IRF-4 messenger RNAs
and attenuates the expression of Blimp-1 and IRF-4 (79), which
drives the conversion of Tregs and Th2 cells into Th17 cells
(113), thereby promoting inflammation of adipose tissues by
releasing IL-17. This indicates that the alteration of miR-125b in
patients with T2DM may be involved in the pathogenesis of
T2DM, as the newly defined inflammatory Th17 subset has
emerged as a crucial player in IR and T2DM progression
(108). A greater abundance of miR-326 in individuals with
obesity was also found to participate directly in the
polarization of Th1 cells towards Th17 cells, promoting the
inflammatory state in obesity-induced adipose tissues (80). In
addition to T-cells,B-cells miRNAs also play crucial roles in
obesity. For instance, miR-150 regulates obesity-induced
inflammation and IR by controlling the activation of B cells
and their interactions with other immune cells (82).

Because of the proposed phenomenon of immunometabolism,
increasing attention has been paid to the immune regulatory
mechanism of T2DM. As described above, the cross-talk network
centered on innate immune cells, such as the mononuclear-
macrophage system, T cells, B cells, NK cells, and ILCs, can
influence the function of islets, liver, skeletal muscle, and adipose
tissue through its proliferation, recruitment, differentiation and
functional phenotypes, such as the secretion of cytokines and
chemokines, hence aggravating T2DM. In this process, epigenetic
modifications play a key regulatory role. (Figure 2)

Epigenetic Remodeling of ILCs May Also
Participate in the Pathogenesis of T2DM
ILCs are a newly discovered class of lymphocytes that do not
express diverse antigen receptors expressed on T and B cells.
ILCs are almost tissue-resident cells, and their activation is
mainly mediated by signals or cytokines expressed by tissue-
resident cells and not antigenic stimulation. The function of ILCs
is not only limited to classical immunology but also extends to
metabolic homeostasis and tissue remodeling, among others.
ILCs are mainly divided into three subtypes, namely, ILC1s,
ILC2s, and ILC3s, which have similar functions to that of Th1,
Th2, and Th17 cells (114). Therefore, ILCs play a key regulatory
role in metabolic homeostasis, and an imbalance in their
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functions can induce T2DM. In adipose tissues, the homeostasis
of both ILC1s and ILC2s is important for energy metabolism
homeostasis. In the context of HFD-induced obesity, the
production of IL-12 in adipose tissue leads to selective
proliferation and accumulation of adipose-resident ILC1s
based on the IL-12 receptor and STAT4. It can produce IFN-g
and establish a type 1 immune environment that drives
proinflammatory M1 macrophage polarization to promote
obesity-associated insulin resistance (115, 116). However,
ILC2s showed the opposite effect. Under the stimulation of IL-
25 and IL-33, they can produce IL-5 and IL-13, and establish an
anti-inflammatory type 2 immune environment to drive
downstream M2 macrophage polarization to alleviate insulin
resistance. In addition, ILC2s could accelerate the beiging of
adipocytes by upregulating the expression of methionine-
enkephalin peptides and UCP-1, which could increase caloric
consumption (117, 118). Furthermore, in addition to their key
roles in VAT, ILC2s can induce dendritic cells to secrete retinoic
acid, which promotes the secretion of insulin from b cells in the
Frontiers in Immunology | www.frontiersin.org 9
pancreas (119). Typical intestinal lamina propria ILC3s play an
important role in resisting the imbalance of gut microbiota and
maintaining intestinal mucosal homeostasis in obesity and
T2DM, thus alleviating insulin resistance (120). Recent studies
have shown that the proliferation of ILC3s and the upregulation
of IL-22 secretion in the liver can alleviate liver inflammation
and inhibit hepatocyte apoptosis caused by fat accumulation
(121). It is worth noting that epigenetics remodeling, especially
DNA methylation, also regulates the proli feration,
differentiation, and functional phenotypes of ILCs. Previous
research has revealed that different classes of ILCs are
regulated by different TF such as T-BET (NK cells/ILC1s),
EOMES (NK cells), GATA3 (ILC2s), and RORgt (ILC3s) (122).
Based on whole-genome profiling of DNA methylation and
hydroxymethylation, Peng et al. confirmed that there is
differential promoter DNA methylation of key TFs. NK cell
hypomethylation was primarily enriched for T-box TFs such as
Tbx6, Tbx21, and Eomes, which are selectively expressed in NK
cells. In ILC2s GATA motifs (Gata3 and Trps1) are primarily
FIGURE 2 | Changes in the Epigenetic Signature of Immune Cells in T2DM. In T2DM patients, the systemic and tissue-local inflammatory states mediated by the
epigenetic regulation of monocytes and macrophages together with T cells, B cells plays a crucial role in insulin resistance. Altered global and gene-specific DNA
methylation, histone modifications, as well as the expression of several non-coding RNAs are found to synergistically regulate the macrophage M1 pro-inflammatory
phenotype, and the expression of genes encoding MCP-1/CCL-2, is up-regulated under the dual regulation of DNA methylation and histone modifications. Besides,
the pro-inflammatory phenotype of T and B cells regulated by global and gene-specific DNA methylation and several miRNAs have also been reported in obese
T2DM individuals.
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hypomethylated. Finally, hypomethylation of the ROR family
(Rorc and Rora) has been observed in ILC3s (123). However,
apart from DNA methylation, few studies have reported the
regulatory functions of the covalent modification of histones and
non-coding RNAs in ILCs and must be further studied.
Considering the relatively recent discovery of its role in
immune and metabolic homeostasis, ILC epigenetic
modifications in the context of diabetes have not been revealed
and require further exploration.
DISCUSSION AND PERSPECTIVES

With the global pandemic of T2DM and the serious harm caused
by its complications, studies to unravel the pathogenesis of
diabetes and the development of new hypoglycemic drugs have
continued. With the help of high-throughput sequencing
methods such as genomics, transcriptomics, proteomics, and
metabolomics, rapid screening of the key targets of diabetes has
been achieved at multiple levels, from genes to downstream
functional proteins and metabolites, and has enabled a more
comprehensive and profound understanding of diabetes (124).
Although the incidence of T2DM has increased dramatically
over the past few decades (125), this short period is unlikely to
cause significant changes in the human genome, possibly because
the expression of key diabetes-related genes is regulated by
environmental factors. Epigenetic modifications can reveal the
effects of environmental factors such as diet, physical activity,
stress, and temperature on T2DM. Since the first epigenetic study
reported the changes in DNA methylation in pancreatic islets
and skeletal muscle in T2DM individuals, numerous studies have
revealed the many epigenetic modifications of islet mass and
insulin secretion function, including in PDX1, INS, ADCY5,
CDKN1A, PDE7B, PPARGC1A, among others. Besides, there
are a number of epigenetic modifications that occur in target
glycometabolic organs such as adipose tissue (in ATP10A, IRS1,
PPARG, JARID2, TCF7L2, etc.), liver (in ABCC3, GRB10,
MOGAT1, PDGFA, etc.), skeletal muscle (in PPARGC1A,
MAPK1, FADS2, etc.), and blood (in ABCG1, FAM123C,
FHL2, KLF14, etc.). Meanwhile, many studies have revealed the
relationship between diet, physical activity, aging, and T2DM
with respect to epigenetics (38).

It is worth noting that epigenetic information can also be
inherited across several generations; this phenomenon is called
intergenerational and transgenerational epigenetic inheritance
(IEI and TEI). This indicates that environmental factors can
influence not only individuals directly but also indirectly through
their parents via IEI or TEI. Retrospective and prospective
studies of human cohorts revealed that parental impact via
overnutrition or undernutrition could deteriorate the metabolic
health of their offspring (126). As shown in the Newborn
Epigenetics Study (NEST) cohort, parental obesity can cause
susceptibility to weight gain or obesity in offspring through
altered small RNA and DNA methylation in human
spermatozoa (127). In addition, DNA methylation of the
offspring’s umbilical cord blood leukocytes has been identified
Frontiers in Immunology | www.frontiersin.org 10
(128). However, research on the relevant mechanisms of IEI or
TEI is limited because of the requirement of long periods of
human studies and ethical issues. The use of rodents as model
systems enables overcoming some limitations of human studies.
Increasing evidence has confirmed that paternal or maternal
overnutrition, overweight, and T2DM could all increase
offspring’s risk for obesity and diabetes. The core mechanisms
by which IEI or TEI manifests its effects include the
programming regulation of the offspring’s pancreas and
adipose tissue by epigenetic inactivation of DNA methylation
and microRNA in germ cells during the process of development
and functional differentiation (126, 129). However, there are only
a few studies on the mechanisms of IEI and TEI from an
immunological perspective and should be studied to reveal the
mechanisms of inherited metabolic disorders to explore
prevention and treatment methods.

The inflammatory state caused by immune imbalance plays an
important role in the development of T2DM. Therefore, epigenetic
modifications of immune cells can indirectly regulate the
inflammatory state of the body and affect insulin resistance and
insulin secretion dysfunction.In our review, we focused on
summarizing the changes in immune-related epigenetic
modifications in the context of T2DM, especially the epigenetic
regulation of macrophages, T and B lymphocyte recruitment,
proliferation, differentiation, and functional phenotypes. In
addition, we also identified some possible directions for future
research, such as histone lactylation of macrophages in the
background of T2DM and epigenetic modification of ILCs, which
are widely involved in glucolipid metabolism and immune
homeostasis. These findings provide novel insights for revealing
the pathogenesis of T2DM from the perspective of epigenetic
immune modification and can provide new directions to reveal
the pathogenesis of T2DM with respect to epigenetics. However,
several issues need to be addressed. For example, as it is difficult to
obtain diabetic tissue samples, there are relatively few epigenetic
studies based on the local tissues of patients, and most studies are
carried out on the epigenetics of blood. Thus, larger cohorts must be
conducted through worldwide collaborations, and owing to the
tissue- and cell-specific nature of epigenetic modifications, more
studies on human biopsies are desirable. Meanwhile, most of the
studies at this stage are descriptive studies, and although they
provide a macroscopic understanding of glycolipid metabolic
functions and immune-related epigenetic changes in T2DM, the
lack of detailed studies leaves us with uncertainty about its targeting,
which further affects the application of research findings in clinical
diagnosis and treatment.

The application of epigenetic findings facilitates the clinical
diagnosis and treatment of T2DM. First, the prevention of
T2DM, is crucial for the diagnosis and treatment of diabetes;
therefore, the identification of epigenetic biomarkers indicative of
T2DM susceptibility is of great significance. Notably, biomarkers
need to be identified in easily accessible human samples, and blood
samples are a good choice. Although blood epigenetic biomarkers
have been used for tumor prediction, in T2DM, definitive epigenetic
biomarkers still need to undergo extensive validation (130). Clinical
translational research based on epigenetic reversibility has also been
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conducted, and some drugs that affect DNA methylation and
histone modification, such as histone deacetylase inhibitors
(valproic acid, sodium phenylbutyrate, vorinostat, and givinostat),
histone acetyltransferase inhibitors (curcumin), protein arginine
methyltransferase inhibitors (AMI-1), DNA methyltransferase
inhibitors (hydralazine, procainamide, RG108, MG98), histone
demethylating inhibitors (tranylcypromine), and sirtuin-activating
compounds (resveratrol), have been developed (131). The efficacy
and application of these drugs in alleviating metabolic diseases
included obesity, diabetes, fatty liver, and metabolic syndrome have
been preliminarily confirmed, and corresponding clinical studies,
including those involving valproic acid, sodium phenylbutyrate,
resveratrol, etc., are being carried out gradually. However, the low
specificity and global action of these medicines may lead to side
effects. Therefore, the development of highly specific epigenetic
drugs targeting specific diseases and cell functions may be a more
suitable direction for future research.
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