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Abstract: In autosomal dominant polycystic kidney disease (ADPKD), kidney cyst growth requires
the recruitment of CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel
that is defective in cystic fibrosis. We have been studying cyst inflation using the zebrafish Kupffer’s
vesicle (KV) as model system because we previously demonstrated that knocking down polycystin 2
(PC2) induced a CFTR-mediated enlargement of the organ. We have now quantified the PC2 knock-
down by showing that it causes a 73% reduction in the number of KV cilia expressing PC2. According
to the literature, this is an essential event in kidney cystogenesis in ADPKD mice. Additionally, we
demonstrated that the PC2 knockdown leads to a significant accumulation of CFTR-GFP at the apical
region of the KV cells. Furthermore, we determined that KV enlargement is rescued by the injection of
Xenopus pkd2 mRNA and by 100 uM tolvaptan treatment, the unique and approved pharmacologic
approach for ADPKD management. We expected vasopressin V2 receptor antagonist to lower the
cAMP levels of KV-lining cells and, thus, to inactivate CFTR. These findings further support the use
of the KV as an in vivo model for screening compounds that may prevent cyst enlargement in this
ciliopathy, through CFTR inhibition.

Keywords: autosomal dominant polycystic kidney disease (ADPKD); cystic fibrosis transmembrane
conductance regulator (CFTR); Kupffer’s vesicle (KV); polycystin-2 (PC2)

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is a leading cause of end-
stage kidney disease (ESKD). In 1957, Dalgaard et al. estimated 1 in 400-1000 newborns
worldwide to be at risk of being affected with ADPKD over an 80-year lifetime [1]. Sup-
porting this rate, recent population-based whole-genome sequencing data showed that
protein-truncating and clinically confirmed mutations provide a lifetime risk of ADPKD of
at least 9 cases per 10,000 individuals [2].

ADPKD is a ciliopathy induced by mutations in the PKD1 (OMIM-601313) or PKD2
(OMIM-613095) genes, in 72-75% and 15-18% of families, respectively [3]. These two genes
encode the mechanosensor polycystin-1 (PC1) and the calcium-permeable non-selective
cation channel polycystin-2 (PC2), respectively [4,5]. These two transmembrane proteins
are crucial in regulating intracellular calcium homeostasis in the kidney epithelium [4,5].
Indeed, the loss or dysfunction of either PC1 or PC2 leads to a reduction in basal intracellu-
lar calcium levels, which is thought to trigger cystogenesis [4,5]. Whether this regulation
starts with a ciliary calcium wave mediated by the PC1-PC2 complex is under debate [6].
Nevertheless, as recently demonstrated, the ciliary expression of PC2 is essential to prevent
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kidney cystogenesis in an ADPKD mouse model [7]. Mutant mice carrying a non-ciliary
localized but fully functional PC2 still develop embryonic kidney cysts that appear in-
distinguishable from those of mice completely lacking PC2 [7]. PC2 is also thought to
work together with IP3 receptors in order to regulate intracellular calcium release from the
endoplasmic reticulum pool [8].

Inflation and continuous expansion of the cysts is assured by an transepithelial fluid
secretion into the lumen [9]. The countless fluid-filled cysts destroy kidney function.
About half of the patients develop ESKD, requiring dialysis and kidney transplantation by
age 60. The cystic fibrosis transmembrane conductance regulator (CFTR, OMIM 602421)
is a key player in the cyst inflation process, being expressed and activated in ADPKD
cyst-lining cells [10-14]. CFIR is essential in the regulation of ion and fluid transport
in epithelia and its dysfunction causes cystic fibrosis [15]. Supporting the involvement
of CFTR in ADPKD cyst inflation, it was shown that fluid accumulation within cysts
involves CFTR-like chloride currents [14] and it is slowed down either through inhibition
or knockdown of CFTR [10-14]. Interestingly, besides the pseudo-Bartter syndrome, a
transient hyponatremic, hypochloremic metabolic alkalosis observed in some cystic fibrosis
infants, that has been mainly attributed to the excessive loss of NaCl in the sweat [16], no
other functional/structural kidney phenotype has been reported in cystic fibrosis patients.
And, in fact, a milder kidney phenotype was observed in patients affected by both ADPKD
and cystic fibrosis [9]. The in vivo mechanisms involved in the activation of CFTR during
kidney cyst inflation are still emerging.

CFTR activation requires its prior cAMP-dependent phosphorylation by PKA [17-20].
Therefore, as the lack of calcium homeostasis raises the intracellular levels of cAMP
in ADPKD cells, CFTR has been pointed to as a downstream effector of cAMP in cyst
growth [9]. This has led to several studies testing drugs targeting kidney cAMP production,
tolvaptan being the most promising. Acting as a vasopressin V2 receptor (V2R) antag-
onist, tolvaptan lowers the intracellular cAMP levels of cyst-lining cells. It is effective
in slowing down the CFTR-mediated enlargement of the cysts and in decelerating the
disease progression. Therefore, tolvaptan was recently approved in Japan, Canada, EU,
and USA for the management of ADPKD (TEMPO 3:4 clinical trial) [21]. However, it leads
to heavy aquaretic side effects which are relevant when considering tolvaptan as a life-long
treatment [21]. This limits the number of patients who are eligible for treatment [22],
highlighting the need for other therapeutic targets. In this context, we consider that CFTR
trafficking towards the apical membrane of the cell, and its stability once there, must
be investigated in ADPKD tissues. Indeed, it is well established that these are relevant
features in controlling the number of active CFTR molecules at the membrane and thus
the overall chloride transport [15]. Although few, there are relevant reports indicating
that overexpression of PC1 decreases apical expression of CFTR [23] and showing that
cyst-lining cells from ADPKD patients do express CFIR apically [14].

Several human and mouse kidney-derived cellular models have been used for drug
screening for ADPKD [10,11,24,25]. Despite their undoubted importance, they lack the
organ-to-organ communication and the cellular and molecular environments offered by
an animal model. Some authors have used magnetic resonance imaging to follow the
in vivo effect of pharmacological approaches on cyst growth in ADPKD mouse models [26]
However, a simpler and less expensive model is needed in high throughput screening
assays. Therefore, although it is not a kidney-related organ, we have proposed in the past
the zebrafish Kupffer’s vesicle (KV) as a model organ for the cyst inflation process [27].
This organ is present in the early embryonic development of zebrafish, in a time window of
seven hours that runs from the somite stages (ss) 1 to 14. KV is a fluid-filled vesicle whose
inflation depends on CFTR activity [27,28]. The epithelial cells lining the KV each have
one cilium and 80% of KV cilia become motile by 10 ss [29]. Cilium motility is essential
for the generation of a characteristic fluid flow required for the early establishment of the
left-right laterality of the internal organs of the fish [29-33]. Relevant to this study is that,
mirroring the ADPKD cyst inflation process, pkd2 knockdown causes a significant increase
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in CFTR-mediated fluid secretion into the KV lumen [27]. We demonstrated that such
KV enlargement can be rescued by the injection of Xenopus pkd2-mRNA. Moreover, we
explored whether such KV enlargement is accompanied by changes in CFTR expression.
We concluded that PC2 knockdown led to an accumulation of CFTR, namely at the apical
region of the KV cells. Finally, knowing that KV epithelial cells express vasopressin receptor
2-like gene, we tested the ability of tolvaptan to rescue the KV enlargement of the PC2-
knockdown embryos. Our positive results reinforce the utility of this ADPKD-cyst-model
organ to test the potential of other molecules interfering with CFIR trafficking, stability
and activity in preventing ADPKD cyst growth.

2. Results and Discussion
2.1. PC2 Knockdown

As previously demonstrated, the one-cell stage injection of the anti-pkd2 mRNA
translational blocking morpholino (pkd2-augMO) used in our studies is efficient in knocking
down the PC2 in the KV time window [27]. To quantify this efficiency, we compared the
percentage of cilia showing ciliary staining of PC2 between wild type (WT) and pkd2-
augMO embryos. Ciliary staining of PC2 was detected in about 79 & 13% and 76 + 17%
of the KV cilia of WT and mismatch-MO- (pkd2 control morpholino) injected embryos,
respectively (Figure 1). In contrast, a faint PC2 signal was detected along the ciliary
membrane in only 21 & 10% of the KV cilia of pkd2-augMO embryos (Figure 1). Thus,
the one-cell stage injection of the pkd2-augMO caused a 73% reduction (p < 0.0001) of
the KV cilia expressing PC2. These findings further support our recently published data
showing that PC2 knockdown resulted in shorter KV cilia length and abnormal KV flow
dynamics [34]. Framing these results with the recent findings of Walker et al. who showed
that the ciliary exclusion of PC2 is an essential event for kidney cystogenesis in ADPKD
mice [7], the results strengthen the use of the pkd2-augMO to study the impact of the lack of
PC2 on the KV. This same pkd2-augMO has been used and validated by other groups [35,36].
On the other hand, the zebrafish mutant for the orthologous gene of human PKD?2, the
curly-up (cup~/~) mutant, is inadequate to accurately study the impact of knocking down
pkd2 in the KV. Indeed, cup~/~ mutant embryos have a maternal contribution of pkd2
mRNA from their heterozygotic mother. PC2 protein is, therefore, present in the KV time
window in the cup ™/~ mutant embryos, being still detected in pronephric cilia, much later
in their development (at 36 h post fertilization, hpf) [27,36].

2.2. Knockdown of PC2 Leads to the Apical Accumulation of CFTR Protein

The literature recognizes CFTR as a key player in ADPKD cyst inflation [9-14].
Whether it results from enhanced CFTR activity alone or whether it also requires higher
amounts of CFTR protein at the apical cell membrane, it is not known. Our attempts to
quantify the CFTR protein levels, either by Western-blot or by whole-mount immunostain-
ing failed as none of the tested commercially available antibodies against human CFTR
cross-reacted with the zebrafish protein. Therefore, to tackle this important question, we
evaluated the KV CFTR-GFP fused protein expression in TgBAC(cftr-GFP)pd1041 zebrafish,
upon the knockdown of pkd2. In agreement with the findings of Navis et al. [28], our
experiments at early developmental stages (from 2 to 14 ss) showed that CFTR-GFP expres-
sion was restricted to KV-lining cells (Figure 2), namely at the apical region of these cells
(Figure 3A-C).
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Figure 1. PC2 staining along the KV cilia from 10 ss embryos. (A-I) Confocal images showing immunolocalization of PC2
in KV cells at the 10-11 ss in WT (A-C), mismatch-MO (D-F), and PC2-knockown (pkd2-augMO) (G-I) embryos. White
arrowheads indicate PC2 detected along cilia and dashed arrows indicate PC2 at the cilia basal body. (J) Quantification of
the percentage of cilia having PC2 signal along their membrane (gray bars) versus those with no PC2 staining along their
membrane (white bars) in WT (n = 16), mismatch-MO (n = 8), and PC2-knockown (1 = 8) embryos, immunodetected for
acetylated «-tubulin. All samples followed a normal distribution and presented equal variances. Differences were, thus,
statistically tested by t-test, **** p < 0.0001. Scale bars: 10 um.

2ss

8 ss

10 ss

Figure 2. The zebrafish KV—a model organ to study cyst inflation. The KV localized at the tail region
of a 2-14 ss zebrafish embryo. TgBAC(cftr-GFP)pd1041 zebrafish line characterization. (A,C,E) are
bright field captured images. (B,D,F) were acquired by fluorescence stereomicroscopy. White
arrowheads indicate the KV. Scale bars: 100 um.
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Figure 3. Estimated CFTR-GFP protein level in KVs of T¢gBAC(cftr-GFP)pd1041 embryos. (A-L) Confocal live-scan analysis.
The middle plan along the xy axis and its respective orthogonal views (along xz and yz axes) and the image resulting from
the sum of all slices of the confocal live-microscopy scan of the whole KV are, respectively, shown for the most representative
non-injected control (A,D), mismatch-MO (B,E), and pkd2-knockdown (C,F) embryos. (G-I) The apical region of the KV
cells of (D,E,F) is highlighted in red. (J-L) anterior (upper) versus posterior (lower) parts of the KV are highlighted. (M) MFI
determined for the whole KV, KV cells” apical region and KV’s anterior versus posterior regions of non-injected control
(n = 15), mismatch-MO (n = 6), and pkd2-knockdown (1 = 20) embryos. Median averages =+ SD are indicated. ¢-test was
used to compare whole KV MFIs of pkd2-augMO versus non-injected embryos (samples with normal distribution and
equal variances), ** p < 0.01. Mann-Whitney test was used to compare the MFIs of KV cells’ apical region of pkd2-augMO
versus non-injected embryos (samples that did not passed normality tests), * p < 0.05. Paired t-test was used to compare the
anterior versus posterior MFIs for each situation (all samples having normal distribution), ¥ p < 0.05. Scale bars: 10 pm.

We then compared the mean fluorescence intensity (MFI) of the CFTR-GFP signal,
throughout the KV 3D structure, of 8-10 ss pkd2-knockdown embryos and non-injected
and mismatch-MO injected controls. We determined the MFI of the KV images resulting
from the sum of all slices of each KV scan of 15 WT, 6 mismatch-MO, and 20 pkd2-augMO
injected embryos (Figure 3). WT and mismatch-MO injected embryos showed no sta-
tistically significant difference in their normalized MFIs (Figure 3D,E,M). Contrastingly,
pkd2-knockdown KVs showed 1.9 times higher normalized MFIs than the non-injected
siblings (pkd2-knockdown normalized MFI = 2.8 x 10° 4 1.4 x 10° vs. non-injected control
normalized MFI = 1.5 x 10° + 1.0 x 10°, with p = 0.0024) (Figure 3D,F;M), suggesting
higher CFTR-GFP protein levels. To confirm our results by another approach, we addition-
ally compared the CFTR-GFP-MFIs of pkd2-knockdown embryos to those of non-injected
siblings by flow cytometry (BD FACS-Canto II, BD Biosciences, Franklin Lakes, NJ, USA)
(Figure 4). In comparison to the auto-fluorescence of WT embryos (AB control) (Figure 4A),
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a GFP-positive cell population was clearly detected in T¢BAC(cftr-GFP)pd1041 samples
(red arrow in Figure 4B) which corresponded to KV cells. Corroborating the results of the
confocal live-scan analysis, for an equal number of GFP-positive cells (Figure 4E), pkd2-
kockdown embryos presented on average 1.4 times higher CFTR-GFP normalized MFI
than their non-injected siblings (pkd2-knockdown normalized MFI = 10.95 + 1.35 vs. non-
injected control normalized MFI = 7.80 £ 1.94, with p = 0.0087) (Figure 4F). Interestingly,
a KV microarray analysis in our lab (unpublished data) revealed that PC2 knockdown
had no effect on cftr transcriptional levels (Figure S1). Therefore, we did not expect to
have more CFTR-GFP synthesis, leading us to hypothesize that the higher amounts of
CFTR-GFP observed in pkd2-knockdown T¢BAC(cftr-GFP)pd1041 KV cells resulted from
protein stabilization.
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10? 10°

10*

Alexa Fluor 488-A

pkd2-augMO

10° 102 0w ot 10° w10 w0t 1f 102 0 ot 10°
Alexa Fluor 488-A Alexa Fluor 488-A Alexa Fluor 488-A
E % 1500 Fis
S %k
[
2 1000
‘B
(=}
o 500
L
O]
++ 0
S
(,Jb
& ..
.\(\\e’ &
&
<&

Figure 4. Flow cytometry analysis of the CFTR-GFP protein level in TgBAC(cftr-GFP)pd1041 embryos. Flow cytometry plots
representative of AB control (A) and non-injected T¢gBAC(cftr-GFP)pd1041 8-10 ss (B) embryos, for the established limiting
gates. Red arrow indicates the GFP-positive cell population. (C,D) Flow cytometry plots representative of the GFP-positive
cells of mismatch-MO (C) and pkd2-augMO (D) embryos. (E) Number of analyzed GFP-positive cells of non-injected
controls (11 replicates), mismatch-MO (3 replicates), and pkd2-knockdown embryos (5 replicates). Each replicate had about
200 embryos. (F) MFI determined for GFP-positive cells of non-injected controls, mismatch-MO, and pkd2-knockdown
embryos. Median averages + SD are indicated. As the pkd2-augMO injected embryos sample did not follow a normal
distribution, the Mann-Whitney test was used to compare pkd2-augMO versus non-injected embryos MFIs, ** p < 0.01.

As already mentioned, the T¢BAC(cftr-GFP)pd1041 whole KV live-scans clearly pre-
sented an accumulation of CFTR-GFP at the apical region of the KV cells (highlighted in
red in Figure 3G). This region should include CFTR-GFP molecules inserted in the apical
membrane as well as those located in sub-apical vesicles that control the membrane stability
of the protein. These are vesicles involved in the anterograde trafficking, endocytosis, and
recycling of the protein [37]. When focusing on these regions specifically, we concluded
that CFTR-GFP accumulated 1.4 times more at the apical region of the KV cells of pkd2-
knockdown embryos (pkd2-augMO apical-MFI = 3.9 x 10° 4 2.1 x 10° vs. non-injected
control apical-MFI = 2.7 x 10° £ 1.4 x 10°, with p = 0.0422) (Figure 3G,I,M), suggesting
enhanced membrane stability of the protein. No significant difference was observed when
comparing the apical MFI of non-injected embryos with that of mismatch-MO control
(mismatch-MO apical-MFI = 2.5 x 10° + 1.4 x 10° vs. non-injected control apical-MFI
=27 x 10° £ 1.4 x 10°) (Figure 3G,H,M). Although informative about the effect of the
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absence of PC2 over the CFTR-GFP expression, we cannot exclude that CFTR-GFP turnover
may differ from that of native CFTR. Therefore, it will be interesting to validate these
results, evaluating the native CFTR using in vitro cellular models, in the future.

As expected, the pkd2-knockdown translated into an increase of the KVs volume,
corroborating our previous findings [27]. Indeed, on average pkd2-knockdown TgBAC(cftr-
GFP)pd1041 embryos with 8-10 ss, presented KVs with 1.5 times the volume of non-injected
siblings (pkd2-knockdown KV,jyme = 133 X 10% 4 37 x 10% pum?3 vs. non-injected control
KV, olume = 88 x 10 4 34 x 10% um3, with p = 0.0061) (Figure S2).

In conclusion, our data showed that reduced levels of PC2 enhanced the CFTR api-
cal localization, probably through protein stabilization, likely contributing to the CFTR-
mediated KV enlargement of the pkd2-knockdown embryos. Given the anterior/posterior
asymmetries in cell shape and cilia clustering [27,30], we asked whether this was also
reflected in CFTR-GFP distribution. Therefore, we compared the CFTR-GFP signal of the
anterior half of the KV with that of the posterior KV region (Figure 3J,M). We observed no
significant differences in non-injected and mismatch-MO control embryos (Figure 3],K,M).
However, the knockdown of PC2 led to a significant enrichment of CFTR-GFP signal in the
anterior half of the KV (pkd2-augMO anterior-MFI = 1.4 x 10° 4- 0.6 x 10 vs. pkd2-augMO
posterior-MFI = 1.2 x 10° 4 0.7 x 10, with p = 0.0264) (Figure 3L,M). We reported several
times before that the anterior KV region is where fluid flow presents consistently higher
speed in WT embryos [29,30,34], thus perhaps flow shear stress can further induce CFTR
recruitment.

2.3. Tolvaptan Effect

It is well established that ADPKD kidney tissues present higher vasopressin-induced
intracellular cAMP levels, which contributes to the activation of CFTR [9]. Therefore, as
we claim that KV closely mimics kidney cyst inflation, we cannot rule out that cAMP
production may also have a role in KV inflation. We detected the expression of the
vasopressin receptor 2-like gene in a KV-specific microarray analysis performed by our
group (unpublished data), which was not affected by the knockdown of PC2 (Figure S1).

As above, we took the KV volume as a live-readout of CFTR activity [27] and tested
the efficacy of tolvaptan, a specific V2R antagonist, in affecting the KV inflation process
and in rescuing the CFTR-mediated KV enlargement caused by the knockdown of pkd2.

Here, we used the Tg(sox17:GFP)s870 zebrafish line. Considering the middle focal plan
and respective orthogonal views, pkd2-knockdown embryos presented KVs with 1.5 times the
volume of their WT siblings (pkd2-knockdown KV gjume = 181 x 10° 4 69 x 103 um? vs. WT
KVyolume = 120 x 10% + 56 x 10® um3, with p < 0.0001) (Figure 5A,B,J). WT and mismatch-
MO KVs and the respective DMSO-treated controls were equivalent (Figure 5A,C,D,E]).
These new measurements confirmed our results previously obtained with ras:GFP trans-
genic embryos [27] and the results presented here with T¢BAC(cftr-GFP)pd1041 embryos
(Figure S2). Additionally, we show, for the first time, that the KV enlargement characteristic
of the pkd2-knockdown embryos is efficiently rescued by the simultaneous injection with
the pkd2-augMO and 1000 ng of full-length Xenopus pkd2-mRNA, at the one-cell stage
(pkd2-knockdown KV gjume = 181 x 10% £ 69 x 10% um?® vs. rescue KV, jume = 89 x 103
+ 45 x 103 um?, with p < 0.0001). These rescued embryos presented KV volumes even
smaller than the non-injected controls (rescue KV gjume = 89 x 103 & 45 x 10% um? vs. WT
KV yolume = 120 x 103 4 56 x 10 um3, with p = 0.0379).
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Figure 5. KV volume, a live readout of the CFIR activity. (A-I) Confocal live-microscopy scans of whole KVs from
50x17:GFP transgenic embryos, at 10-11 ss. The middle focal plane along the xy axis and its respective orthogonal views
(along xz and yz axes) are shown for the most representative embryos: WT (A), pkd2-knockdown (B), mismatch MO (C),
WT + 0.14% (v/v) DMSO (D), pkd2-knockdown + 0.14% (v/v) DMSO (E), mismatch MO + 0.14% (v/v) DMSO (F), WT +
100 uM tolvaptan (G), pkd2-knockdown + 100 uM tolvaptan (H), and rescue (pkd2-knockdown + Xenopus pkd2-mRNA)
(I). KV volume is indicated in pum?® and in picoliters. Scale bars: 10 pm. (J, K, L) Estimated KV volumes (um?), middle
focal plan area (um?) and number of slices of the z-stacks for WT (1 = 51), WT treated with 0.14% (v/v) DMSO (1 = 19),
mismatch-MO (1 = 14), mismatch MO + 0.14% (v/v) DMSO (n = 11), 100 uM tolvaptan (n = 14), pkd2-knockdown (n = 38),
pkd2-knockdown treated with 0.14% (v/v) DMSO (n = 13), 100 uM tolvaptan (n = 16), and rescue (pkd2-knockdown +
Xenopus pkd2-mRNA) (n = 18). Mean =+ S.D. All samples, except mismatch MO + 0.14% (v/v) DMSO volume and middle
focal plan area, pkd2-knockdown + 100 uM tolvaptan volume, pkd2-knockdown number of slices, and pkd2-knockdown
+ 0.14% (v/v) DMSO number of slices, had a normal distribution. The comparisons of samples that did not have normal
distribution with respective WT and pkd2-knockdown samples were analyzed with the Mann-Whitney test. ¢-test with the
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Welch correction was used to compare WT + 100 uM tolvaptan with WT volume and middle focal plan area (samples with

unequal variances). All other comparisons to WT and to pkd2-knockdown samples were made using the t-test. ¥ p < 0.05,
WP p <0.01, Y¥¥ p <0.001, and Y¥¥¥ p < 0.0001, significantly different from WT; and *** p < 0.0001, *** p < 0.001, and
** p < 0.01, significantly different from pkd2-knockdown embryos. (M) Heart position defects and curly-up tail phenotype of

WT and mismatch-MO controls and PC2 knockdown embryos, treated with 100 uM tolvaptan. n, number of scored embryos.

To demonstrate how useful the KV can be as a model organ for screening compounds
that may prevent cyst enlargement through CFTR, we showed that by treating embryos
with 100 uM tolvaptan, from 4 ss until 9-10 ss, caused a significant reduction of the KV
luminal volume of WT embryos (100 uM tolvaptan-treated WT KV ojyme = 64 X 103 £+ 29
x 10% um3, i.e., 0.5 times the size of the non-treated WT KV, p < 0.0001) (Figure 5G,]). On
the other hand, it also rescued the pkd2-knockdown KV volumes to values significantly
lower than those of non-treated pkd2-knockdown embryos (100 uM tolvaptan-treated pkd2-
knockdown KV gjume = 102 x 103 £ 59 x 103 um?, i.e., 0.6 times the size of the non-treated
pkd2-knockdown, with p = 0.0002) (Figure 5H,]).

In an attempt to facilitate the use of the KV in a screening context, we verified whether
we could also assess its significant enlargement upon the pkd2-knockdown and its res-
cue by a pharmacological approach, just considering the area of the KV middle focal
plan (Figure 5K). We observed that pkd2-knockdown embryos presented KVs with 1.3
times middle focal plan area of their WT siblings (pkd2-knockdown KV nigdie focal plan area
=4.6 x 10° + 1.4 x 10° um? vs. WT KV niddie focal plan area = 3-5 X 10° & 1.2 x 10° pm?
with p = 0.0003). WT and mismatch-MO KVs and the respective DMSO-treated controls
were equivalent. Moreover, this is significantly rescued either by co-injecting the Xenopus
pkd2-mRNA or by 100 uM tolvaptan treatment. However, the observed differences were
not as accentuated as those observed by measuring the KV volume, suggesting that its
enlargement results from the sum of two factors—slices with larger areas and a higher
number of slices, i.e., deeper KVs. This was, indeed, the case—KVs were bigger in all
three dimensions. In fact, pkd2-knockdown KVs had on average 117 £ 19 slices, which
was significantly more than WT KVs (97 & 25 slices), p < 0.0001 (Figure 5L). Therefore, we
concluded that, although useful for a faster screening, some information may have been
lost if we looked only for the KV middle plan area when screening compounds that may
prevent cyst enlargement through CFTR.

Interestingly, although tolvaptan reduced the KV volume of the pkd2-knockdown
embryos compared to WT embryos, the exact same treatment, i.e., 100 uM tolvaptan from 4
to 9-10 ss, did not rescue their heart situs defects and curly-up tail phenotype (Figure 5M).
Indeed, as previously described by our group [27] and by others [36], the knockdown of
PC2 induced a curly-up tail phenotype and about 56% of right-sided or central hearts,
which were not corrected by tolvaptan treatment (Figure 5M). This observation suggests
that the laterality problems associated with the pkd2 knockdown do not depend on the KV
enlargement but rather on another mechanism downstream of PC2. And, indeed, we know,
from our previous work, that in addition to the volume, the knockdown of PC2 affects other
variables of the KV, such as cilia length, flow dynamics, and architecture [27,34]. Moreover,
although significant, the reduction in KV volume induced by 100 uM tolvaptan treatment
did not induce per se heart situs defects in WT embryos. Explaining this observation is the
fact that tolvaptan-treated WT KVs had on average 2.2 x 103 & 0.6 x 10°> um? of middle
focal plane area, which is above the size threshold (1.3 x 103 um?) defined by Gokey et al.
for robust left-right patterning of zebrafish embryo [38]. Still, it will be interesting, in the
future, to study the effect of tolvaptan over the entire KV time window (from 1 to 14 ss) to
better understand whether V2R and cAMP signalling play a role in left-right patterning.

PKD1 mutations are associated with more severe ADPKD phenotypes. It would have
been interesting to study the effect of the knockdown of pkdla or pkd1b (the zebrafish
orthologues of the human PKD1) on CFTR protein in the KV cells. However, this is not
biologically feasible. Indeed, according to the in situ hybridization experiments of England
et al., no pkdla or pkd1b mRNA expression was detected in dorsal forerunner cells (DFCs)
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or in KV cells during the zebrafish development [39]. There is evidence that instead of
pkdla/b, pkd1L1 is the relevant player in the KV. This paralogue has been demonstrated
to be expressed on both DFCs and KV cells at its transcriptional level [39] and along KV
cilia at the protein level [40]. Pkd1L1 is thus expected to be the partner of PC2 in setting
up the correct left-right laterality of the internal organs of the zebrafish [39]. Supporting
this, Pkd1L1 medaka morphants exhibit abnormal left-right patterning [41]. However,
to our knowledge, defects in pkd1L1 expression have never been linked to the formation
of kidney cysts or ADPKD. Moreover, pkd1L1 and its human orthologue PKD1L1 have
marked structural differences from their respective paralogues, pkdla/pkd1b and PKD1 [39],
suggesting potential differences in the roles played by their encoded proteins. Therefore,
although interesting for the left-right field, we do not expect the study of the impact
of Pkd1L1 knockdown in zebrafish KV to be useful in the context of the ADPKD cyst
inflation process. And, thus, the important discussion of how PC1 mutations impact on
CFTR activity and cyst inflation must be further explored using other animal or cellular
model systems.

The present work grants the potential of using the zebrafish KV as an organ system
to study the link between the lack of PC2, the consequent changes in Ca2* signalling,
and CFTR expression/activation. Although not being a suitable model to study the
physiopathology of ADPKD, namely the kidney dysfunction induced by the multiple
fluid filled cysts present in human ADPKD kidneys, the KV mimics an isolated cyst. It is,
therefore, a simple and low-cost model for screening molecules that prevent ADPKD cyst
growth, in a preliminary phase of drug development.

We summarize our main findings and hypotheses in Figure 6. It is well established
that the abnormal cyst inflation process in ADPKD is highly dependent on sustained CFTR
activation [9-14]. This is, in turn, granted by the abnormally high intracellular levels of
cAMP of ADPKD tissues [9]. Here we also show that, similarly to what happens in an
ADPKD cyst, KV enlargement in pkd2-knockdown fish is also dependent on vasopressin
signalling and can be prevented by tolvaptan. But, additionally, we demonstrated here
that pkd2-knockdown KV cells presented significantly higher levels of CFTR-GFP in their
apical region, compared to their respective controls. This data brings novel alternatives for
CFTR-mediated ADPKD cyst inflation, which may rely on enhanced expression levels of
CFIR at the apical membrane of the cyst-lining cells.
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Figure 6. Working model of the cross-talk between PC2 and CFIR in the KV inflation. (A) As in kidney cysts, we extrapolate
that in WT KV epithelial cells, once stimulated by the luminal fluid-flow, PC2 raises intracellular Ca?* transients. These
should maintain the basal intracellular levels of cAMP, through regulation of Ca?*-dependent adenylyl cyclases (ACs)
and phosphodiesterases (PDEs). cAMP is required for the normal rate of CFTR activity. This ensures the CFTR-mediated
transport of C1™ and subsequent movement of water into the KV lumen, allowing its inflation. Additionally, cAMP levels
are also dependent on V2R since we know that its pharmacological inhibition by 100 uM tolvaptan impairs the KV inflation.
(B) The knockdown of pkd2 changes several variables of the KV: volume enlargement [27], different cell shapes [27] and,
therefore, different architectures with the consequent loss of the anterior cilia cluster [27,34], shorter cilia [34], and weakened
and homogeneous luminal flow [34]. The lack of PC2 should lower the intracellular levels of Ca?*, which, through still
unknown mechanisms, leads to a significant increase of CFTR expression at the apical region of the cell (membrane and
subapical zone), namely in the anterior part of the KV. This justifies the CFTR-mediated KV enlargement observed upon
lack of PC2. Tt is still unknown if the resulting raise in the cAMP levels, induced by the low Ca?* levels, further potentiates
the CFTR activity. However, mimicking a kidney cyst, pharmacological inhibition of KV V2R by 100 uM tolvaptan was
enough to rescue the KV enlargement of these embryos.

3. Materials and Methods
3.1. Fish Strains

The two following zebrafish lines, both of AB background, were used for this work: a
KV reporter line Tg(sox17:GFP)s870 [42] and a CFTR-GFP transgenic line, the TgBAC(cftr-
GFP)pd1041 [28]. Zebrafish adults were maintained at 28 °C. Embryos obtained from
incrosses were incubated in E3 medium at 25 °C or 28 °C and staged as described else-
where [43].

3.2. Morpholino Microinjections

The knockdown of PC2 was induced using the previously reported pkd2-augMO [27,
35,36]. We injected 1.8 ng into one-cell stage zebrafish embryos and 1.8 ng of a mismatchMO
was used as control. Both morpholinos were purchased from Gene Tools LLC (Philomath,
OR, USA). Additionally, 1000 pg of Xenopus pkd2 mRNA was injected at the one-cell stage
in combination with pkd2-augMO, to try to rescue the KV enlargement caused by the latter.

3.3. Pharmacological Treatments

Stock solution: 10 mM tolvaptan (Sigma-Aldrich, St. Louis, MO, USA) in DMSO
(Sigma-Aldrich). Embryos were treated with 100 uM tolvaptan in E3 from 4 ss onwards
and imaged at the 9-10 ss.

3.4. Heart Laterality Scoring

The heart jogging was evaluated at 30 hpf by observing the embryos from their ventral
side, using a stereoscope (SMZ745, Nikon Corporation, Tokyo, Japan).

3.5. Immunofluorescence on Whole-Mount Embryos

The immunofluorescence on whole-mount embryos analysis was performed as previously
described [27]. Dechorionated 10-11 ss embryos were fixed in 80:20 (v/v) methanol:DMSO
for 1 min and rehydrated in sequential 5 min incubations in crescent dilutions of methanol in
PBS. After permeabilization and blocking, embryos were incubated overnight at 4 °C with
1:200 diluted anti-PC2 polyclonal antibody (GTX113802, GeneTex, Irvine, CA, USA) and,
subsequently, with 1:400 diluted anti-acetylated «-tubulin monoclonal antibody (T7451,
Sigma-Aldrich); 1:500 diluted Alexa Fluor 488 or 546 conjugated secondary antibodies
(Molecular Probes, Eugene, OR, USA) were used. Flat-mounted embryos were analyzed
with confocal fluorescent microscopy (Zeiss LSM710, Zeiss, Oberkochen, Germany) and
their whole KVs were scanned with z-sections of 0.5 pm. Z-stack series were analyzed
using Image] software (version 1.53a, National Institutes of Health, USA) and were used to
quantify the % of KV cilia positively stained for PC2.
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3.6. Live-Imaging and KV Volume Determination

The live-imaging and KV volume determination was performed as previously de-
scribed [27]. Tg(s0x17:GFP)s870 and TgBAC(cftr-GFP)pd1041 embryos were mounted in a
2% (w/v) agarose mold and covered with E3 medium. For volume evaluation, the whole
KVs of 9-10 ss embryos were scanned by confocal-live microscopy, with z-sections of
0.5 pm and acquisition rate lower than one frame per second. Movies were then analyzed
in Image]J for volume estimation. Using the Image] plugin Measure Stack, the KV was
delineated and its area was measured in all focal planes. The volume resulted from the
sum of the measurements of all focal planes.

3.7. Evaluation of CFTR-GFP Mean Fluorescence Intensity

CFTR-GFP MFI was evaluated using the 2D image of the whole KV T¢BAC(cftr-
GFP)pd1041 embryos. This was obtained from the sum of all slices of the KV stack obtained
by live confocal microscopy.

For CFTR-GFP MFI was evaluated in (1) the whole KV, (2) in the apical region of the
cells facing the lumen of the organ, and (3) in the anterior versus posterior halves of the
KV. For the first, the full area of the image (2.0 x 10* um?) was considered and this was
equal for all the analyzed samples. The second measurement was performed by defining a
ring-shaped area, limited by the apical membrane and the sub-apical region of KV cells.
The third was obtained by dividing the full area of the image into two halves, anterior
(upper part of the image) and posterior (the lower part). For all these measurements, the
following parameters were considered: mean gray value, i.e., the sum of the gray values of
all pixels in the selected area divided by the total number of pixels; and integrated density,
i.e., the product of the selected area and the mean gray value. The normalized MFI was
determined by normalizing the integrated density with the background MFI, using the
following equation: normalized MFI = integrated density of selected area—(selected area
x background mean gray value).

3.8. Flow Cytometry Analysis

For each replicate, about 200 T¢BAC(cftr-GFP)pd1041 embryos were dechorionated at
10 ss, with pronase (2 mg/mL) (EMD Millipore, MERK, Germany) and washed extensively
in Danieux buffer. Cells were dissociated by manual pipetting in DMEM-F12 supplemented
with 5 mM EDTA (Sigma-Aldrich). Cells were centrifuged at 700 x ¢ and re-suspended in
1 mL of the same medium (step performed three times). Once dissociated, embryonic cells
were re-suspended in only 300 uL of PBS and were acquired directly to the flow cytometer
BD FACS-Canto II (BD Biosciences). After excluding debris and medium component cell
agglomerates and auto-fluorescent cells, using AB control, we determined the MFI of
the CFTR-GFP-positive single cells. For each experiment, fluorescence intensity values
were normalized with the auto-fluorescence of the T¢BAC(cftrGFP)pd1041 embryos. Both
mean and median of the fluorescence intensity in the GFP (530/30 nm BP) channel, the
number of GFP-positive cells and the percentage of those in the entire population of cells
(after excluding debris), were calculated by the acquisition software BD FACS-DIVA™
(version 8.0.1) (BD Biosciences). The presented flow cytometry plots were generated with
the Flow]Jo® software (version 10.3) (FlowJo LLC, BD Biosciences).

3.9. Statistics

Statistical analysis was performed with Prism 6 (Graphpad, La Jolla, CA, USA).
Samples were tested for normality with the Shapiro-Wilk test or the Kolmogorov-Smirnov
test and for equal variances with the F-test. Differences between samples having a normal
distribution and equal variances were analyzed for statistical significance using the -test
(two-tailed). Normal samples having significantly different variances were statistically
compared with the t-test (two-tailed) with the Welch correction. Additionally, samples that
did not passed normality tests were analyzed using the Mann-Whitney test (two-tailed).
The paired t-test (two-tailed) was used to compare the anterior versus posterior MFIs for
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each analyzed situation. Statistically significance was considered when p < 0.05. Results
are expressed as averages & SD of n observations.

4. Conclusions

In conclusion, the CFTR-mediated KV inflation depends on the sustained activation of
CFTIR by cAMDP, levels of which are, at least partially, controlled by vasopressin-signaling.
This fact, added to the enhanced membrane stability of CFTR observed upon the reduction
of PC2, accounts for the KV enlargement observed in the pkd2-knockdown embryos. Based
on our results we consider that this zebrafish organ system offers great potential for
screening molecules that interfere with CFTR trafficking, stability and channel activity in
preventing ADPKD cyst growth.
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