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Abstract

Seed burial in the sediment is critical for successful seedling establishment in seagrasses

because it protects from predation and dispersal into unsuitable sites, and it may enhance

germination by exposing the seeds to suitable germination stimuli. However, relatively little

is known about the fate of buried seeds and their ability to emerge from greater depths. The

goal of this study was to determine seed survival in the sediment, seedling emergence suc-

cess and initial seedling biomass of Zostera marina in relation to burial depth and to evaluate

if large seeds, having larger energy reserves, are more tolerant to burial than small seeds.

Seeds from a perennial Z. marina population were buried at 7 different sediment depths

(0.1–8 cm), and seeds sorted by size (large and small) were buried at depths of 2, 4 and 6

cm in outdoor mesocosms. Total seedling emergence after 2 months was significantly

affected by seed burial depth, with maximum values in the top 2 cm of the sediment (48.1–

56.7% of planted seeds), and a marked decline below 4 cm depth to only 5% seedling emer-

gence at the deepest burial depth of 8 cm. Moreover, seeds had shorter time to emergence

from shallow compared to deep burial depths. At all burial depths, a small fraction of seeds

(<10%) died after germination but before emerging, and 15–30% remained viable after 6

months. Seed mortality was the major limitation to seedling recruitment from the deeper

burial depths. The effect of seed size on seedling emergence success and time was not

clear, but heavier seeds displayed greater longevity and gave rise to seedlings of signifi-

cantly higher biomass, indicating that the mobilization of metabolic reserves may be impor-

tant during initial seedling development.

Introduction

Zostera marina (eelgrass) is a widespread and often dominant seagrass species in coastal and

estuarine ecosystems across the northern hemisphere, where it fulfils important roles as eco-

system engineer and service provider [1,2]. Widespread seagrass declines have led to increased
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awareness of the need for conservation and restoration of these vulnerable ecosystems and

their capacity to recover from impacts associated with environmental pressures [3–5].

As most clonal plants, Z. marina can use both asexual and sexual reproduction to recover

from disturbances. While clonal growth is the principal mode for sustaining persistent mead-

ows, sexual recruitment plays a vital role in population expansion and recovery, and is neces-

sary for the colonization of areas outside the range of vegetative growth [6–9]. In addition,

sexual recruitment influences population connectivity and contributes to increased genetic

variation, which may enhance long-term resilience to stress [10].

Sexual recruitment in plant populations is a multi-stage sequential process and is the com-

bined result of seed production and dispersal, and the prevailing environmental conditions at

the time of dormancy relief, germination and seedling emergence [11]. For seagrasses, the

period between seed deposition on the sediment surface and seedling establishment may last

several months, and is often considered a major limitation to successful recruitment [12–14].

Mature Z. marina seeds are negatively buoyant and settle to the bottom after release from the

reproductive shoots. Here some seeds may be lost due to predation, attack by pathogens or dis-

persal to unfavourable sites, while those that become entrapped in the sediment provide a seed

bank, where they may remain dormant and viable for more than 12 months [12,15]. Successful

recruitment from seed banks require specific signals to break dormancy and induce germina-

tion [16]. For Z. marina, seed germination is affected by environmental factors such as temper-

ature, oxygen concentration and salinity [17,18], but may also be strongly influenced by burial

in the sediment [19–21]. The vertical profile of Z. marina seed banks is influenced by currents

and wave- driven sediment deposition [8] and the feeding and burrowing activities of benthic

fauna [22,23]. Hence, viable eelgrass seeds have been found down to sediment depths of 8 cm

in an annual seagrass meadow [24] and as deep as 14 cm in a dieback area of a former peren-

nial meadow [25].

Seed burial can be favourable to sexual recruitment, because buried seeds become less

accessible to predation [26,27], they are less exposed to removal by water movement, and

seedlings may develop root systems with better anchoring capacity, reducing the risk of being

dislodged during events of physical stress [28]. Furthermore, anoxic conditions stimulate ger-

mination of Z. marina seeds, and moderate seed burial may enhance germination as compared

to germination at the oxygenated sediment surface [17,18]. However, burial below a certain

threshold may affect seedling emergence negatively. In deeply buried seeds, the axial hypocotyl

must elongate further in order for the cotyledon to reach the sediment surface, after which the

first true leaf can develop [29,30]. Hypocotyl elongation is supported by seed starch reserves

that are gradually depleted during the germination process [30]. Consequently, the energy

demand of germination is expected to increase with increased burial depth, and deeply buried

seeds may not have sufficient energy reserves for the seedling to reach the sediment surface.

The length of the axial hypocotyl under field conditions can reach up to 53 to 58 mm [25,31],

and laboratory experiments have confirmed that seedlings can emerge from depths of 5 to 6

cm [19,20]. A high burial depth may also lead to delayed emergence, thereby prolonging the

period during which the seed embryo is exposed to anoxic conditions and toxic end products

of anaerobic respiration [32]. This suggests that there is an optimal sediment depth for success-

ful sexual recruitment, and that the vertical distribution of the seed bank is critical for success-

ful seedling establishment. The dependency of seed germination on storage reserves suggests

that larger seeds, which contain more starch, may extend the range of burial depths from

which successful emergence is possible [33]. In addition, larger starch reserves may enable

seeds to persist longer when unfavourable conditions are encountered, as suggested by [19].

In this study, we investigate how burial depth and size of Z. marina seeds influence seed

germination and mortality, seedling emergence and subsequent seedling biomass development
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in outdoor mesocosms. We hypothesized that seedling emergence success decreases and

become delayed with increasing seed burial depth, and that heavier seeds, having larger starch

reserves, are able to germinate and emerge from greater depths. With increased seed burial

depth or reduced seed size, the relative proportion of starch reserves allocated to the germina-

tion process increases, and less energy will remain to support the formation of the first true

leaf and early seedling growth. We therefore also hypothesized that the biomass of newly

emerged seedlings decrease with increased seed burial depth and reduced seed mass.

Material and methods

Seed collection and characteristics

Reproductive shoots were collected from a Z. marina meadow (1–2 m depth) in Limfjorden,

Denmark (57.03 N, 9.41 E) in late June 2014 and placed in flow-through tanks with seawater

(salinity ~20). No specific permission was required to sample eelgrass shoots from this area. In

mid-August the mature seeds that had settled to the bottom were collected, transferred to

mesh bags, and stored in outdoor containers with aerated seawater at in-situ temperatures at

Påskehøjgård, Aarhus University (56.22 N, 10.12 E). From March 2015 and until experimental

start in late April, the seeds were stored in the laboratory at 5 ˚C to reduce germination.

To ensure seed viability, seeds that were soft when pinched with a forceps and seeds with

split seed coat were discarded from the experimental seed pool. Seed viability was tested on 30

seeds by immersion in a 0.5% tetrazolium chloride (TTC) solution for 24 hours at room tem-

perature, following procedures outlined in [34]. A portion of the seeds was then sorted by eye

into batches of large and small seeds. Seed size was measured on 100 seeds with natural size

distribution (unsorted seeds hereafter) and on 30 seeds from the batches of large and small

seeds (sorted seeds hereafter), respectively. These seeds were scanned (HP Scanjet G4050) and

the dimensions of the major (length) and minor (width at widest point) axes of each seed were

measured in ImageJ v.1.49. Seed volume was calculated assuming that eelgrass seeds conform

to the shape of a prolate ellipsoid [35]. The seeds were then oven dried at 60 ˚C for 24 h and

weighed with 0.001 mg accuracy.

Sediment characteristics

Sandy sediment was collected from a shallow unvegetated location, and sieved through a 2

mm mesh to remove pebbles and large invertebrates. To estimate sediment organic content,

samples dried at 105 ˚C until constant weight were combusted at 550 ˚C for 24 hours and

weight loss was calculated. Sediment grain size composition was determined by sequential

sieving through meshes corresponding to coarse (>0.5 mm), medium (>0.25 mm) and fine

sand (>0.063 mm), and silt/clay (<0.063 mm) [36]. The filtered sediment was dried at 105 ˚C

for 24 h and weighed. At the end of the experiment, vertical redox profiles were measured at 1

cm interval in pots containing sediment with no added seeds (see below) using a platinum

electrode. The electrode was lowered into the sediment and allowed to equilibrate until the

drift was less than 1 mV per minute before a measurement was taken.

Experimental setup

The experiment was performed in five outdoor tanks (0.9 m in diameter) with 125 L artificial

seawater (Marinemix professional, HW Wiegand GmbH) with a salinity of ~20 and continu-

ous water circulation and aeration. Salinity was measured on a weekly basis and adjusted as

needed. Water temperature was recorded every 30 min by HOBO temperature loggers (U22-

001) placed in each tank at the start of the experiment.

Seed size, burial depth affect seagrass recruitment success
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To examine the effect of seed size and burial depth on seed germination, seed mortality,

seedling emergence, and seedling biomass unsorted seeds were placed at seven different sedi-

ment depths (0.1, 1.0, 2.0, 3.0, 4.0, 6.0, and 8.0 cm), and small and large seeds, respectively,

were placed at three different depths (2.0, 4.0, and 6.0 cm). We prepared two depth-series of

unsorted seeds to be able to an analyse the fate of seeds remaining in the sediment and the bio-

mass of seedlings, just after the period of maximum seedling emergence (sampled after 2

months) and at the end of the growing season (sampled after 6 months). Pots (11 x 11 x 11 cm)

were filled with sediment to target planting depths and placed in seawater at 5 ˚C for 24 hours,

where after additional sediment was added to adjust for compression. Fifteen seeds were dis-

tributed evenly in each pot and sediment was added to one cm below the rim of the pots. In

addition, ten pots containing sediment with no seeds, were included for analysis of redox pro-

files. The pots were then transferred to the outdoor tanks with one replicate pot in each of the

5 tanks, yielding a total of 70 pots with unsorted seeds (7 depths, 2 sampling times) and 30 pots

(3 depths) with small and large seeds, respectively.

Seedling emergence, seedling biomass and fate of remaining seeds

Seedling emergence, defined by the emergence of the cotyledon at the sediment surface, was

followed from 23 April and until the pots were destructively sampled on 26 June and 15 Octo-

ber for the two series of pots with unsorted seeds, respectively, and on 5 July for pots with large

and small seeds. At 3–7 days interval, with decreasing frequency as new seedlings ceased to

emerge, new seedling were recorded and marked with identification numbers to follow their

fate over time. Following termination of the experiment, all seedlings were carefully removed

from the pots, separated into above- and belowground tissue at the point where the first pair of

roots protruded, and dried at 60 ˚C for 24 h. Unemerged seeds were recovered by sieving the

sediment through a 0.6 mm mesh and separated into 1) viable seed, which were intact, hard

seeds tested for viability with TTC staining, as described above 2) unsuccessfully emerged

seeds defined as seed coats split open and with missing embryo, and 3) dead seeds, which were

either soft or failed the TTC staining test.

Statistical analysis

Seed size metrics were analysed with Kruskal-Wallis test, since the data did not satisfy assump-

tions of homoscedasticity as determined by Levene’s test. Post hoc analyses of the data was per-

formed with Dunn´s test.

The temporal patterns of seedling emergence were analyzed using survival/time-to-event

analysis methods. The data consisted of observations of the number of seeds that had emerged

at some specified time points, and therefore the exact time at which a seed emerged was

unknown, but instead, it was known to have emerged between two consecutive observation

times, i.e. the emergence times were interval censored. The survival functions (i.e., the function

that associates a given time with the probability of emergence after that time) for the distribu-

tion of the emergence times were estimated using a non-parametric estimate specially designed

for interval censored times as described in [37] and [38]. The log-rank test was used to test

for significant differences between groups [39] using the R-package “interval”. The survival

function was integrated using a trapezoidal approximation to obtain estimates of the mean/

expected times for emergence, and confidence intervals (with 95% coverage) were obtained

using non-parametric bootstrap with 10,000 bootstrap samples.

Total seedling emergence was quantified as the cumulated percentage of emerged seedlings

at the end of the experiment. Because seedling emergence ceased after approximately 2

months, we included total seedling emergence from the two depth-series of unsorted seeds

Seed size, burial depth affect seagrass recruitment success
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sampled in July and October, respectively. Statistical inference for the total seeding emergence

from unsorted seeds was made using binomial quasi-likelihood methods (i.e. generalized lin-

ear mixed models with the quasi-binomial distribution), since the data presented clear signs of

over-dispersion (a large ratio between the deviance and the number of degrees of freedom).

The importance of individual model terms and interactions was assessed via a likelihood ratio

test. Post hoc comparisons between treatments were performed with pairwise comparisons.

Generalized linear models with the quasi-binomial distribution were used to test for the effect

of burial depth and sampling time (June and October) and their interaction on fate of une-

merged seeds (viable, dead and unsuccessfully emerged seeds, respectively), and for the effect

of seed size (large and small seeds) and burial depth and their interaction on seedling emer-

gence and fate of unemerged seeds.

The effect of seed size and burial depth on seedling above- and belowground biomass was

analysed with one-way ANOVA for unsorted seeds and two-way ANOVA for sorted seeds.

Normality and homoscedasticity of the data were tested with Shapiro-Wilk’s and Levene’s test.

All of the statistical analysis were computed in in RStudio [40].

Results

Seed material

Initial seed viability, tested with TTC staining, was high (98.4% ± 1.6 (SE)). The mean size of

unsorted, small, and large seed size classes differed significantly with regards to width, volume

and dry weight, while the length of seeds from the unsorted and small seed size classes were

similar (Table 1). The median seed mass was 3.6 mg DW for unsorted seeds and 2.9 and 4.9

mg DW for the small-sized and large-sized seed classes, respectively. There was a slight overlap

in seed weight distribution between the small and large seeds, ranging from 1.4–3.9 and 3.2–

7.0 mg DW, respectively, while the weight distribution of unsorted seeds ranged from 1.4–6.6

mg DW, spanning the entire range of seed weights in the two seed size classes.

Sediment characteristics and water temperature

The sediment had a low organic content (0.29% DW ± 0.003), and was composed primarily of

coarse sand (68.5% DW ± 0.1) and only a small fraction of silt and clay (0.3% DW ± 0.1).

The sediment redox potential was significantly affected by depth (ANOVA; p< 0.001), and

decreased to anoxic levels (Eh < 0) at depths below 3 cm, where it remained at a constant level

of around -50 mV down to 8 cm depth. Water temperature increased from 16 ˚C to 19 ˚C dur-

ing the first three weeks of the experiment, when most of seedlings emerged. This was followed

by a short cooling period until mid-May, where after temperature gradually increased from

13˚C to 21˚C until mid-august, and then decreased again to 12˚C in mid-October when the

experiment was finalized.

Seedling emergence

Seedlings emerged from all seed burial depths from 0.1 to 8 cm and with a nearly synchro-

nously appearance across all depths during the third week of the experiment (not shown).

Table 1. Size metrics of the three Z. marina seed size classes used in the experiment. Values are median with 95% confidence intervals. Letters indicate significant dif-

ference (P<0.05) between the seed size classes.

Length (mm) Diameter (mm) Volume (mm3) Weight (mg DW)

Unsorted seeds 3.45 (3.42–3.54)a 1.61 (1.59–1.67)b 4.72 (4.52–5.03)b 3.55 (3.15–3.75)b

Large seeds 3.70 (3.64–0.80)b 1.88 (1.82–1.94)c 6.70 (6.47–7.29)c 4.91 (4.54–5.12)c

Small seeds 3.43 (3.39–3.48)a 1.53 (1.51–1.58)a 4.32 (3.98–4.46)a 2.92 (2.54–3.22)a

https://doi.org/10.1371/journal.pone.0215157.t001
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Hence, a large proportion of the total seedling emergence (82.7%) occurred in one week, and

gradually ceased during the following five weeks. In spite of this synchronicity, significant dif-

ferences between burial depths were detected, with delayed emergence time for unsorted seeds

buried deeper than 4 cm (Table 2). Hence, the expected day of emergence increased from

39.6–42.2 days for seeds buried at 0.1 to 3 cm to 55.3 days at 6 cm (Table 2). Due to small sam-

ple size, the emergence time of seeds from 8 cm was excluded from the analysis. For sorted

seeds, the emergence time was not significantly affected by seed size or by seed burial depth

although the expected day of emergence tended to increase with increasing seed burial depth

(Table 2).

Total seedling emergence was significantly affected by seed burial depth for both sorted and

unsorted seeds (Fig 1A and 1B, Table 3). For unsorted seeds, the total seedling emergence was

greatest for seeds buried at 0.1–2 cm (48.1–56.7%) and decreased significantly to 12 and 6.2%

for seeds buried at depths of 6 and 8 cm, respectively (Fig 1A). Likewise, burial depth affected

the total seedling emergence of sorted seeds, but there was no significant difference between

large and small seeds (Fig 1B, Table 3). Overall, total seedling emergence was lowest from 6 cm

sediment depth for both large (29.3%) and small seeds (20.0%), but large seeds showed highest

emergence from 2 cm depth (53.3%) and small seeds from 4 cm (49.3%), as indicated by the

significant interaction between burial depth and seed size (Fig 1B, Table 3).

Remaining, unemerged seeds

The fraction of unsorted seeds that germinated but did not successfully emerge, as indicated

from the number of empty, split seed coats, was unaffected by seed burial depth and time after

planting (2 and 6 months), and constituted a small fraction of 8.0 ± 1.3% of total planted seeds

across all seed burial depths (Fig 1C and 1E, Table 4). The fraction of dead seeds was unaf-

fected by time of sampling, but differed significantly between burial depths and was much

higher at 6 to 8 cm depth (50.2%) than at 0.1 and 1 cm (17.1 and 23.4%, respectively) (Fig 1C

and 1E, Table 4). The fraction of seeds that remained viable in the sediment was significantly

affected by seed burial depth, sampling time and their interaction (Table 4). Hence, the frac-

tion of viable seeds decreased from June to October, particularly for seeds buried at 0.1 (from

41.2 to 15.3%) and 6 cm (from 40.7 to 22.2%) (Fig 1C and 1E). Overall, the fraction of viable

seeds tended to increase with depth and varied at the end of the six months experimental

period from 14.5% at 1 cm burial depth to 29.5% at 8 cm (Fig 1E).

Seed size had a significant effect on both the fraction of seeds that failed to emerged and

seeds that remained viable at the conclusion of the 2.5 month experiment, whereas the fraction

of dead seeds was low irrespective of seed size and burial depth (overall average: 13.2%) (Fig

1D and 1F, Table 4). The fraction of unsuccessfully emerged seeds varied significantly between

Table 2. Expected time to 50% seedling emergence of unsorted, large and small seed size classes. Letters indicate

significant difference (P<0.05) between seed sediment depths of unsorted seeds and between seed size and sediment

depth of the small and large seed size classes.

Depth (cm) Expected day of emergence (95% CI)

Unsorted seeds Large seeds Small seeds

0.1 39.6 (37.2–42.15)a - -

1 40.6 (38.7–42.4)a - -

2 40.0 (38.0–41.9)a 32.8 (30.9–34.6)a 33.30 (31.4–35.3)a

3 42.2 (39.9–44.6)ab - -

4 45.3 (42.8–47.7)b 35.1 (31.8–37.4)a 34.25 (32.3–36.0)a

6 55.3 (51.4–60.2)c 36.40 (33.9–38.7)a 37.81 (34.7–40.6)a

https://doi.org/10.1371/journal.pone.0215157.t002
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seed burial depths and with seed size, and constituted a higher proportion of small (17.9 to

39.1%) than large (2.7 to 20.1%) seeds (Fig 1D and 1F, Table 4), and showed and overall

increase with planting depth. The fraction of unemerged seeds that remained viable was signif-

icantly affected by seed size, and constituted an overall higher fraction for large (37.2 ± 1.8%)

than small (23.1 ± 2.7%) seeds (Fig 1D and 1F, Table 4).

Fig 1. Seedling emergence and remaining seeds at sediment burial depths. Mean percentage of total emerged

seedlings from unsorted (A) and sorted (B) seeds 2 months after planting at different sediment depths. Letters indicate

significant difference (P<0.05) between depths. Mean percentage of total planted seeds that were viable, dead or

unsuccessfully emerged after 2 months (C) and 6 months (E) for unsorted seeds, and after 2.5 months for large (D) and

small (F) seeds, at the different seed burial depths.

https://doi.org/10.1371/journal.pone.0215157.g001

Table 3. Likelihood ratio tests for the effect of burial depth on total seedling emergence. Generalized linear mixed model testing the effect of sediment depth on seed-

ling emergence from unsorted seeds, and generalized linear model for effect of depth and seed size on emergence from large and small seed size classes (sorted seeds).

Parameter d.f. Dev. Res. d.f. Res. Dev. P-value

Unsorted seeds Null model 8 430.85

Depth 6 164.8 2 266.05 <0.001

Sorted seeds Null model 29 51.93

Seed size (A) 1 0.17 28 51.76 0.680

Depth (B) 2 18.34 26 33.42 <0.001

A x B 2 6.69 24 26.73 0.035

https://doi.org/10.1371/journal.pone.0215157.t003
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Seedling biomass

The above- and belowground biomass of seedlings that originated from unsorted seeds

increased nearly 10-fold during the 4 months between first and second sampling (Fig 2),

whereas the above- to belowground biomass ratio only changed slightly from 2.1 ± 0.1 to

1.9 ± 0.1 (not shown). While the biomass of seedlings was unaffected by seed burial depth at

the first sampling in June, 4–5 weeks after peak seedling emergence, the aboveground biomass

was significantly higher for seedlings originating from deeply buried seeds (8 cm: 275.5 mg

DW seedling-1) compared to shallow seeds (1 cm: 87.4 mg DW seedling-1) 4 months later (Fig

2, Table 5).

The biomass of seedlings derived from large and small seeds was not significantly affected

by seed burial depth at time of sampling (5–6 weeks after peak emergence), but large seeds

gave rise to significantly larger seedlings that on average weighed 1.5 times more than seedlings

formed by small seeds (Fig 3, Table 5).

Discussion

Critical depth for successful seedling emergence

In this study, seed germination leading to successful seedling emergence occurred at sediment

depths down to 8 cm, but increasing seed burial depth severely reduced the number of emerg-

ing seedlings and delayed the time of emergence from sediment depths below 3 cm. Seedling

Table 4. Likelihood ratio test for effect of burial depth on unemerged seeds remaining in the sediment. Generalized linear model (GLM) testing the 1) effect of seed

sampling time (June and October) and burial depth on the unemerged, unsorted seeds that were dead, viable or had failed to emerge and 2) the effect of seed size and burial

depth on unemerged seeds from the planted large and small seed size classes.

Parameter d.f. Dev. Res. d.f. Res. Dev. P-value

Unsorted seeds Unsuccessfully emerged Null model 69 160.18

Time (A) 1 0.19 68 160.05 0.803

Depth (B) 6 19.12 62 140.93 0.157

A x B 6 13.05 56 127.88 0.385

Dead Null model 69 170.89

Time (A) 1 0.24 68 170.66 0.708

Depth (B) 6 62.73 62 107.92 <0.001

A x B 6 7.82 56 100.10 0.592

Viable Null model 69 78.43

Time (A) 1 5.94 68 72.49 <0.001

Depth (B) 6 18.14 62 54.34 <0.001

A x B 6 10.92 56 43.43 0.020

Sorted seeds Unsuccessfully emerged Null model 29 69.58

Seed size (A) 1 15.15 28 54.43 <0.001

Depth (B) 2 20.96 26 33.48 <0.001

A x B 2 2.87 24 30.60 0.307

Dead Null model 29 55.89

Seed size (A) 1 0.54 28 55.35 0.613

Depth (B) 2 0.84 26 54.50 0.820

A x B 2 0.45 24 54.05 0.899

Viable Null model 29 41.39

Seed size (A) 1 11.24 28 30.16 0.001

Depth (B) 2 1.19 26 28.96 0.583

A x B 2 3.01 24 25.95 0.256

https://doi.org/10.1371/journal.pone.0215157.t004
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emergence tended to be greatest within the top 2 cm, which corresponds to the optimal range

of sediments depths to maximize seedling emergence previously identified for Z. marina
[20,21].

The maximum depth from which seeds can recruit probably depends on sediment proper-

ties such as grain size, which may impose physical constraints on hypocotyl elongation

[19,20,41]. However, comparable studies of burial limits for Z. marina seeds suggest threshold

Fig 2. Effect of sediment depth on biomass of Z. marina seedlings of unsorted seed origin. Mean above- (A, B) and

belowground (C, D) biomass of seedlings originating from unsorted seeds and harvested in June and October, 2 and 6

months after experimental start, respectively. Values are mean ± SE.

https://doi.org/10.1371/journal.pone.0215157.g002

Table 5. ANOVA test results for effects of burial depth on seedling biomass. One-way ANOVA testing the effect of seed burial depth on the biomass (mg DW seed-

ling-1) of seedlings emerging from unsorted seeds two (June) and six (October) months after planting, respectively, and two-way ANOVA testing the effect of seed burial

depth and seed size on seedlings emerging from small and large seed-size classes (sorted seeds).

Variable Parameter d.f. F-value P-value

Unsorted seeds—June Aboveground biomass Depth 6 1.30 0.300

21

Belowground biomass Depth 6 0.31 0.925

21

Unsorted seeds–Oct. Aboveground biomass Depth 6 3.03 0.022

26

Belowground biomass Depth 6 1.38 0.261

26

Sorted seeds Aboveground biomass Depth (A) 2 0.56 0.577

Seed size (B) 1 7.13 0.013

A x B 2 0.28 0.762

24

Belowground biomass Depth (A) 2 0.13 0.875

Seed size (B) 1 9.67 0.005

A x B 2 0.11 0.895

24

https://doi.org/10.1371/journal.pone.0215157.t005
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sediment depths of 5–6 cm [20]. This is similar to the maximum sediment depth in natural

populations as estimated from the hypocotyl length measurements (5.3–5.8 cm) of emerged

seedlings [25,31]. Hypocotyl elongation of emerging seedlings varies directly with seed germi-

nation depth [29,32], but their length may slightly underestimate the potential seed burial

depth. Hence, measurements of subsurface seedling lengths in this study showed that hypo-

cotyl elongation from seeds buried below 2 cm depth stopped when the base of the cotyledon-

ary sheath reached a sediment depth of 1.7–2.3 cm (Jørgensen, unpublished data). This

enables subsequent formation of adventitious roots to take place at a position in the sediment

that may ensure firm anchorage during the early stage of seedling development [28].

Low seedling emergence from deeply buried seeds can be due to pre-emergence mortality

of germinated seeds or absence of germination, either because the microenvironment at depth

lacks the required cues to stimulate dormancy relief or germination, or because it affects seed

mortality. Pre-emergence seedling mortality has for terrestrial plant species been linked to

insufficient seed energy reserves to support seedling elongation until reaching the soil surface

Fig 3. Biomass of Z. marina seedlings originating from large and small seeds. Mean aboveground (A) and

belowground biomass (B) of seedlings harvested in July, 2.5 months after experimental start. Values are mean ± SE.

https://doi.org/10.1371/journal.pone.0215157.g003
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and transition to autotrophy [42]. Similar effect of seed depth on emergence failure has been

suggested in a study of Z. marina seed bank dynamics, where the proportion of empty, split

seed coats, indicating unsuccessful emergence, was 4 times higher at deep (5 cm) compared to

shallow (1 cm) sediment depths [19]. In this study, the presence of unsuccessfully emerged

seeds was generally low and unaffected by depth, although the proportions tended to be higher

at 4–8 cm depth (12–13.6%) than at 1–3 cm depth (2.7–5.3%) after 6 months in the sediment.

Instead, the low seedling emergence from greater depths was caused by increased seed mortal-

ity as well as decreased germinability, as indicated by the increase in the number of viable

seeds with depth. The major loss of seeds due to mortality occurred within the first 2 months

of the experiment, and with the fraction of dead seeds increasing more than 2-fold from 2 to 8

cm depth. Seeds below 3 cm depth experienced anoxic conditions (Eh< 0) and below 4 cm

the redox values were consistently negative (-50 mV), and it is likely that exposure to reduced

metabolites lead to increasing seed mortality with depth. While exposure to hypoxic and

anoxic conditions may stimulate Z. marina seed germination [17,18], lethal effects of organic

enriched sediments and low redox conditions have been described for Z. marina seeds [43,44]

and propagules of freshwater macrophytes [45]. However, it is not clear whether this was

caused by accumulation of reduced elements such as ammonium or sulphide or soluble

organic toxins derived from anaerobic microbial activity [46]. Ammonium and sulphide can

be toxic for aquatic macrophytes even at micromolar concentrations in the water phase

[47,48]. However, the moderate redox potentials measured in this study indicate low sulphide

concentrations, and sulphide exposure was probably of minor importance to seed mortality. It

is possible that the pre-experimental conditions of cold stratification (2 months at 5 ˚C) influ-

enced the dormancy state at the time of planting. This may have increased the germinability of

the seeds upon transfer to experimental conditions, thereby activating embryo metabolism

leading to reduced seed persistence to the chemical environment at depth. However, to fully

understand the effects seed burial depth on seed mortality, interactive effects of redox corre-

lates and the state of seed dormancy need to be further investigated.

Seed size effect on germination and seedling emergence

The rate and percentage of seedling emergence with increased seed burial depth did not strictly

reflect seed size. Hence, the proposed advantage of larger carbohydrate reserves in heavy seeds

did not result in higher seedling emergence success than for seeds with smaller energy reserves.

In general, large seeds show higher percentage seedling emergence and are more likely to

emerge from greater depths than small seeds [42,49], but the opposite has also been observed

[50]. For Z. marina, the relatively fast elongation of the hypocotyl proceeds mainly through

cell expansion and accumulation of water rather than by cell division [29], which may partly

explain the similar length growth and time of emergence for large and small seeds in this

study. However, a much higher percentage of small compared to large seeds died after germi-

nating but before emerging, as indicated from the number of split seed coats. This suggests

that smaller seeds were more receptive to environmental stimuli than larger seed, but had a

reduced ability to reach the surface from greater burial depths. Hence, earlier loss of dormancy

in small seeds of terrestrial plants species has been attributed to larger surface to volume ratio

as well as thinner seed coats, allowing for more rapid uptake of water [50]. In contrast, the

number of unemerged seeds that remained viable in the sediment throughout the study period

was much higher among large Z. marina seeds suggesting longer persistence than for small

seeds. Similar results were also reported by [15], who showed that large Z. marina seeds had

greater survival than smaller seeds during long-term storage in water cultures. The causes of

delayed germination of large seeds are unknown, but may be related to seed characteristics
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such as thicker seed coats that excludes environmental cues and protects the embryo against

adverse pore water conditions. However, the increased inhibition of germination with depth

suggests that interactive effects of sediment properties related to depth were involved. The

higher persistence of large seeds may provide an ecological advantage in broadening the period

over which seed germination and seedling emergence can occur, and by enhancing potential

seed recruitment following events of sediment movement, e.g. through erosion or bioturbation

that bring the seeds closer to the sediment surface.

Effects of seed burial depth and size on seedling biomass

Contrary to our hypotheses, the initial seedling biomass was not negatively affected by germi-

nation depth, although the emergence from deeply buried seeds (4–6 cm) was delayed by 5–15

days compared shallower seeds, and by the end of the six month experimental period, seed-

lings originating from deeply buried seeds even tended to have larger biomass.

Positive effects of burial on early seedling growth and establishment have previously been

described for Z. marina [19] and could result from a deeper positioned hypocotyl, increasing

the access to sediment nutrient reserves. However, our data on seedling biomass could also be

biased due to depth dependent selection, if the few seeds that managed to emerge from large

depth were those with larger energy reserves or higher metabolic activity.

Regardless of seed burial depth, large seeds gave rise to seedlings that in the early stages of

development produced more biomass than seedlings originating from smaller seeds. This sug-

gests that large-seeded seedlings benefit from a greater amount of metabolic reserves when

emerging from the sediment surface, because a larger fraction of the seed carbon and nutrient

reserves may be unconsumed. Other studies have shown that seedling biomass increases with

seed mass, and that this may result in higher survival and competitive ability during early seed-

ling establishment [49–51]. However, differences in seedling size are often most evident at

time of emergence and may not persist over time [42,49]. Hence, the greater biomass of large-

seeded eelgrass seedlings may be of greatest significance to their initial establishment by

improving survival under stressful conditions such as shade, sediment instability or nutrient

limitation.

Conclusions

Like most seagrass species, Z. marina is regularly found at highly disturbed sites, where sedi-

ment dynamics caused by hydrodynamic forces or activity of burrowing animals may influ-

ence adult plant performance and re-establishment from seeds [12,28,52,53]. In this study,

experimental burial of seeds indicated that seedling recruitment from Z. marina seed banks

may occur from a sediment depth of 8 cm, which is substantially deeper than observed for

seeds of other submerged angiosperm species (1–3 cm) [41,54]. However, only a small fraction

of seeds below 4 cm depth emerged successfully, and increased seed mortality suggests that a

part of the seed bank may be lost permanently due to burial. The optimum depth for successful

recruitment was within the top 2 cm, which is in accordance with previous studies [20,21].

While moderate burial generally is considered advantageous for seedling recruitment, seeds

located on the sediment surface germinate slower [17] and are more vulnerable to losses

caused by export to unfavourable sites, uprooting due to poor anchorage [28] and predation

[26,27].

Z. marina seed banks provide a means for re-establishment of degraded meadows [7,25,55],

and the vertical distribution of seeds in the sediment should be considered when predicting

potential recovery from the seed bank. In contrast to our predictions, the rate and percentage

of seedling emergence from depth was unaffected by seed size. However, a much larger
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fraction of large seeds remained viable, while more small seeds were lost from the seed bank

due to failed emergence. Moreover, large seeds produced larger seedlings than small seeds.

This suggests that the pronounced variation in seed size observed within and among eelgrass

populations [33,35] may significantly affect the probability of seed to seedling transition and

initial seedling establishment.
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