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Abstract: Pharmacogenetics and biomarkers are becoming normalised as important technologies
to improve drug efficacy rates, reduce the incidence of adverse drug reactions, and make informed
choices for targeted therapies. However, their wider clinical implementation has been limited by a
lack of robust evidence. Suitable evidence is required before a biomarker’s clinical use, and also before
its use in a clinical trial. We have undertaken a review of five pharmacogenetic biomarker-guided
randomised controlled trials (RCTs) and evaluated the evidence used by these trials to justify
biomarker inclusion. We assessed and quantified the evidence cited in published rationale papers,
or where these were not available, obtained protocols from trial authors. Very different levels of
evidence were provided by the trials. We used these observations to write recommendations for future
justifications of biomarker use in RCTs and encourage regulatory authorities to write clear guidelines.
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1. Introduction

The growing field of pharmacogenetics, which studies the effect of genetic biomarkers on the
likelihood of treatment response or adverse drug reactions (ADRs) [1], offers an important opportunity
to increase the chances of drug benefit and/or reduce the risk of harm [2–5]. A biomarker is defined as
“a characteristic that is objectively measured and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses to a therapeutic intervention” [6]. Both germline and
somatic genetic biomarkers are being used increasingly to personalise treatments across a wide range
of disease areas, including cancer [7,8], thromboembolic disease [9], and autoimmune disease [10],
as well as to diagnose disease and provide patient prognosis.

Many drugs are withdrawn from the market due to lack of efficacy and/or ADRs [11–13], and the
latter are a major cause of hospital admissions, morbidity, and mortality [14,15]. ADRs are associated
with high cost in terms of both time and resources, as well as the negative effects on patient health.
There is therefore great potential for genetic biomarker testing to improve the efficacy, safety and
cost-effectiveness of medicines. Reviews of economic evaluations of medicines with actionable
pharmacogenetic information found the majority of tests to be cost-effective or even cost-saving [16,17].
For example, screening for the HLA-B*57:01 allele has significantly reduced the incidence of severe
ADRs associated with abacavir [18], and has been recommended as a cost-effective intervention [19].
Although it should not be assumed that all pharmacogenetic testing will be cost-effective [20],
reductions in the cost of testing and efficiency improvements may see the implementation of more
pharmacogenetic tests into clinical practice.
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While the US Food and Drug Administration (FDA) lists over 200 drugs with pharmacogenetic
information included in their labels [21], their wider clinical implementation has been limited [22–26].
There are many reasons for this, including the lack of robust evidence of clinical utility [27,28]. Prior to
the approval and implementation of biomarker tests in clinical practice, evidence is required of the
test’s clinical utility [29–32] and the gold-standard approach to do this according to guidelines is
the randomised controlled trial (RCT) [33–35]. A lack of well-designed trials has been cited as one
of the main obstacles contributing to the delay in translation of pharmacogenetic discoveries into
clinic [28,30,36,37]. Several biomarker-guided trial (‘BM trial’) designs have been proposed for this
purpose [38–40], and our previously developed online tool, www.bigted.org, provides information
about each to guide those designing such a trial [39]. However, before embarking on a BM trial, it is
important that robust evidence of the biomarker’s utility and validity is available to justify its inclusion
in the trial’s design [41]—without this, there is a risk of wasting money and time on an inappropriate
biomarker. Nonetheless, the nature and extent of evidence required, and how it should be compiled,
is unclear. More guidance exists on the evidence required for interventions to be included in a trial
than for biomarker inclusion, although an integral biomarker assay is just as important a component of
the trial [41,42].

With this in mind, we undertook a literature review with the aim of reviewing sources of evidence
used to justify five previously published pharmacogenetic BM trials. These were chosen to represent
different pharmacogenetic biomarker applications. We explored the nature and extent of previous
evidence on the association of the included biomarkers with treatment response that had been used to
justify their inclusion. We were not concerned with the findings of the trials, instead focusing purely on
the evidence cited to justify the inclusion of biomarker(s) within their design. Indeed, we acknowledge
that other trials will have been conducted since the publication of the trials included in our review
which will have added to the evidence base on the use of the drugs under study. In light of our findings,
we also reflected on and provided recommendations on how such evidence should be compiled by
those planning future BM trials.

2. Details of Included Trials

To allow us to explore in detail the evidence compiled for each trial, we limited our review to five
recently published BM trials. These were chosen carefully to ensure that they were representative of
the available trials and spanned a range of different biomarker applications. We felt it important to
not only include trials using biomarkers in a way that has been well-characterised (e.g., for targeted
therapies), but also those incorporating biomarkers for less well-characterised purposes (e.g., improving
medication adherence). The five chosen trials used biomarkers for prevention of ADRs [10], improving
efficacy [9], choosing targeted therapies [43], improving medication adherence [44,45], and improving
quality of life [46]. Summary details of each trial are provided in Table 1 and full details of data extracted
are located in the Supplementary Materials. The first trial (TPMT: AZA Response to Genotyping and
Enzyme Testing, TARGET, 2011) explored whether TPMT genotyping helped prevent ADRs associated
with azathioprine [10,47]. A second trial (European Pharmacogenetics of Anticoagulant Therapy,
EU-PACT, 2013) tested whether a genotype-guided approach to calculating therapeutic dose of the
anticoagulant, warfarin, led to improved efficacy and reduced the incidence of ADRs [9]. The third
trial (SHIVA, 2015) explored the utility of an approach that used genotyping to match patients to
molecularly targeted therapies [43]. A fourth trial (Genotype-guided statin therapy, GGST statin trial,
2018) explored whether using genotype testing improved medication adherence and subsequently
statin efficacy [44,45,48]. The final trial (NCT02664350) investigated the use of genotyping to reduce
pain associated with cancer [46].

www.bigted.org
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Table 1. Details of selected trials. Start year denotes year the first patient was recruited. BM trial (biomarker-guided trial) design is the design as selected by using the
BiGTeD online resource [39].

Registration
Number

Trial
Name

Start
Year

Year of
Results

Publication

Paper References
Taken from BM Trial Design Biomarker Drug of

Interest
Sample Size

(n Randomised)
Age of

Participants
Sex of

Participants Ethnicity of Participants Study
Location

ISRCTN30748308
TARGET
(protocol)

[10,47]
2005 2011 2005 protocol

obtained from authors

Biomarker strategy
design (without

biomarker assessment
in control arm)

TPMT Azathioprine 333

Mean 43.2
(control)

50.6%/49.4% F/M
(control)

92.2% white, 4.8% South
Asian, 0.6% Black, 2.4%
mixed/other (control)

UK
Mean 41.0
(genotyped)

50.3%/49.7% F/M
(genotyped)

89.8% white, 7.2% South
Asian, 3.0% Black, 0%

mixed/other (genotyped)

NCT01119300
EU-PACT

[49] 2011 2013
2009 paper

10.2217/pgs.09.125

Biomarker strategy
design (without

biomarker assessment
in control arm)

CYP2C9*2

Warfarin 455

Mean 66.9
(control)

42.1%/57.9% F/M
(control)

98.7% white, 0.9% Black,
0.4% Asian (control)

UK,
SwedenCYP2C9*3 Mean 67.8

(genotyped)
35.8%/64.2% F/M

(genotyped)
98.2% white, 1.3% Black,
0.4% Asian (genotyped)VKORC1

NCT01771458
SHIVA

[43]
(protocol)

2012 2015 2014 protocol
obtained from authors

Enrichment design

Hormone receptors
pathway

Targeted
chemotherapy

agent,
based on

genotyping

195

Median 63
(control)

72%/28% F/M
(control)

Not reported FrancePI3K/AKT/mTOR
pathway Median 61

(genotyped)
61%/39% F/M
(genotyped)

RAF/MEK pathway

NCT01894230
GGST

statin trial
[44]

2013 2018
2016 paper

10.2217/pgs-2016-0065

Biomarker strategy
design (with biomarker

assessment in
control arm)

SLCO1B1*5 Any statin 159

Mean 62.5
(control)

65.8%/34.2% F/M
(control)

80.3% white, 14.5% Black,
5.3% other (control)

USA
Mean 62.7
(genotyped)

49.4%/50.6% F/M
(genotyped)

79.5% white, 16.9% Black,
3.6% other (genotyped)

NCT02664350 n/a [46] 2016
Results
not yet

published

2018 paper
10.1016/j.cct.2018.03.001

Biomarker strategy
design (without

biomarker assessment
in control arm)

CYP2D6 Opioids 200 (forecast) Not
available

Not available Not available USA
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For each trial, we identified each piece of evidence referenced in the introduction section
of a protocol or design paper associated with the trial, and extracted details of the publication
year (Figure 1), study design, drug of interest, biomarker used, sample size, country of origin,
and the age, sex and ethnicity of participants for each trial. For trials that did not have a published
protocol or design paper, we used protocols obtained from contacting the authors (TARGET), or from
the results paper Supplementary Information (SHIVA). Full details of data extracted are found in
Table 1. Figures were made using RStudio (version 1.1.453, RStudio Team, Boston, MA, USA) [50],
particularly the ‘formattable’ package [51], and LucidChart [52].
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3. TARGET

TARGET (ISRCTN30748308) began recruitment in 2005 and investigated the use of TPMT
genotyping to prevent adverse reactions to azathioprine in patients with inflammatory disease [10,53].
The trial randomised inflammatory disease patients (in gastroenterology and rheumatology) 1:1 to
genotyping or non-genotyping arms. In the genotyping arm, clinicians were made aware of each
patient’s TPMT status and the implications of this on dosing prior to commencing azathioprine treatment.
Patients in the non-genotyping arm received standard azathioprine dosing.

TARGET used a biomarker strategy design without biomarker assessment in the control arm [39],
Evidence used to justify use of the genotype test spanned the longest time frame of all trials, from 1980
to 2003 (Figure 2). The oldest evidence cited by the trial was a 1980 observational cohort study that
proposed a monogenic inheritance pattern for the activity of the TPMT enzyme [54]. Also cited was a
1989 case-control study that compared TPMT enzyme activity in patients who had adverse reactions to
thiopurines to a control group that had suffered no reaction [55]. The study showed that patients who
had the adverse reaction had extremely low TPMT activity. In total, 11 observational studies were
cited, consisting of 9 cohort studies [54,56–63], 1 case control study [55], and 1 study of enzymatic
assay use in the UK [64]. A 2001 systematic review of pharmacogenetics in reducing ADRs was cited,
although this review was not specific to azathioprine or TPMT.
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Figure 2. Evidence cited by the TARGET trial to justify inclusion of the TPMT biomarker, relative to
the publication of the 2005 protocol [47].

The most recent evidence was an expert opinion by Seidman, 2003 [65]. A 2002 Canadian
cost-effectiveness analysis [66], a 2000 case study [67], and a 1997 questionnaire of UK clinicians were
also cited [68]. The authors also cited a 2000 guideline from the British Society of Rheumatology,
which could not be located online.

4. EU-PACT

The EU-PACT study (NCT01119300) was a large, single-blind, randomised European trial of
genotype-guided dosing of warfarin [9,49,69–71]. Patients in this trial were randomised 1:1 to
genotype-guided or control groups, stratified by centre and treatment indication. Those in the
genotype-guided group were genotyped for CYP2C9 and VKORC1 and dosed according to an
algorithm that included both genetic and clinical factors. The control group received a standard dosing
regimen guided by clinical factors only.

This trial also used a biomarker strategy design without biomarker assessment in the control
arm [39]. The published protocol cited mostly observational studies as evidence (Figure 3). These
ranged from a 1992 retrospective cohort study [72] to several 2009 studies [73–75]. This includes
a 2009 genome-wide association study (GWAS) that showed the implications of specific CYP2C9,
VKORC1, and CYP4F2 genes on warfarin dosing. Also cited were editorials [76,77], cost-effectiveness
analyses [78,79], and a literature review of economic evaluations [80]. No previous RCTs were cited.
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5. SHIVA

The SHIVA trial (NCT01771458) was a French proof-of-concept histology-agnostic phase II trial
using an enrichment design [39] that recruited patients with any metastatic solid cancer to receive
treatment with targeted agents [43,81,82]. After analysis of their tumour, patients with mutations
that matched an available drug were randomised 1:1 to receive targeted treatment or to physician’s
choice treatment.

The total evidence cited in the protocol ranged from 1998 to 2011 (Figure 4). Three RCTs were
cited [83–85]. Two of these were trials of gefinitib in lung cancer [83,84]. Another RCT cited was an
investigation of trastuzumab in HER2+ breast cancer patients, a combination that was investigated in
SHIVA [85]. Two observational studies were cited [86,87], along with a contemporaneous editorial
commenting on the validity of one of these studies [88].
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Figure 4. Evidence cited by the SHIVA trial to justify inclusion of the biomarkers, relative to the
publication of the 2014 protocol (included in Supplementary of a 2015 paper [43]). RCT = randomised
controlled trial.

The paper reporting on the results of this trial included an ‘Evidence before this study’ box [43].
This detailed a literature search performed prior to the start of the trial, which identified several
observational cohort studies [87,89–92] and RCTs [93–95].

6. GGST Statin Trial

The SLCO1B1 genotype guided statin therapy (GGST) trial (NCT01894230) investigated the
utility of using genotyping to increase adherence to statins and promote lower cholesterol in patients
with cardiovascular disease and a history of statin-induced side effects [44,45,48]. Patients were
genotyped and then randomised 1:1 to receive genotype information to guide their care, or to usual
care alone. The primary outcome in this trial was medication adherence, as assessed by a standard
questionnaire. The aim of the trial was to improve adherence by showing patients that treatment
includes an assessment of the risks (real and perceived) of statin-induced side-effects [44]. The trial
used a biomarker strategy with biomarker assessment in the control arm design [39].

This trial cited a large number of references ranging from 2002 to 2015 (Figure 5). Five sets of
guidelines from four separate bodies were cited [96–100], alongside an epidemiology report from
the American Heart Association [101]. Seven literature reviews were cited [102–108], alongside two
editorials [109,110]. This trial also cited the largest number of observational studies, a total of eleven
(consisting of 1 case control study [111], 9 cohort studies [112–120], and 1 cohort/meta-analysis
study [121]). In contrast to the large amount of observational study evidence, the trial only cited one
RCT [122]. Two further references were sub-studies of larger RCTs [123,124]. A 2013 Cochrane review
was also cited [125].
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Figure 5. Evidence cited by the GGST statin trial to justify inclusion of the SLCO1B1 biomarker,
relative to the publication of the 2016 rationale and design paper [44]. ‘Mixed’ refers to papers that
used a mixture of two or more of the other publication types. RCT = randomised controlled trial
SR/MAs = systematic reviews/meta-analyses.

The authors cited one systematic review [126] and three meta-analyses [127–129]. The systematic
review [126] assessed the quality of included studies using ISPOR guidelines [130], and one meta-
analysis [129] evaluated quality using the Newcastle-Ottawa scale [131]. The other two meta-analyses
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were published by the Cholesterol Treatment Trialists’ Collaborators (CTTC) group [127,128], a group
established in 1994 to perform meta-analyses of long-term and large-scale trials of lipid intervention
therapies [132].

The meta-analyses by the CTTC group were both done on the same large data set of n = 174,149
participants from 27 RCTs [127,128]. Each RCT had to have a recruitment target of >1000 participants,
and have a minimum 2 year treatment duration. The meta-analyses collated individual participant
data (IPD). These meta-analyses did not assess the quality of the included studies.

7. Precision Medicine Guided Treatment for Cancer Pain

This trial (NCT02664350) used a biomarker strategy design without biomarker assessment in the
control arm, and recruited patients with solid tumours and metastases to investigate CYP2D6-guided
dosing of opioids to manage pain [46]. Patients with pain scores of ≥4 (on a scale of 1–10) were
randomised 1:1 to genotype-guided or conventional pain management strategies. This trial did not
assign treatments to patients, but provided recommendations to clinicians based on CYP2D6 genotyping.
Patients with poor metabolizer, intermediate metabolizer, or ultra-rapid metabolizer phenotypes
were recommended different opioids to those with an extensive (‘normal’) metabolizer phenotype.
Those in the control group did not receive CYP2D6-guided recommendations. Pain questionnaires
were completed at baseline, 2, 4, 6, and 8 weeks. The trial is completed but results have not yet
been published.

The authors cited evidence ranging from 1998 to 2017 (Figure 6). The oldest evidence was a 1998
RCT [133], cited alongside 5 other RCTs [134–138]. The newest evidence was 2017 guidelines on adult
cancer pain from the National Comprehensive Cancer Network [139]. Interestingly, the trial cited three
case studies; one in a patient with the poor metabolizer phenotype [140], and two with patients with
the ultra-rapid metabolizer phenotype [141,142].
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8. Discussion

The trials in our review all used different approaches to gathering evidence for justifying biomarker
inclusion, and there does not appear to be a standard approach to doing so. Of the trials examined,
all cited evidence from within 3 years of their publication (Figure 1). The oldest evidence compared to
trial start date was cited by the TARGET trial, which cited work from 25 years prior to its 2005 start
date [54].

The evidence types used included systematic reviews/meta-analyses, RCTs, qualitative research,
guidelines, recommendations, editorials, and case studies. The traditional ‘evidence pyramid’ is often
used to rank evidence types, with meta-analyses and systematic reviews at the top, and case studies
and in vitro evidence near the base [143]. However, this has seen some modification in recent years,
notably the viewing of evidence through the ‘lens’ of systematic reviews and meta-analyses, ensuring
that the quality of included studies is evaluated [144]. In this iteration, a meta-analysis based on
weak evidence suffering from bias is not automatically seen as superior evidence to a well-conducted
observational study.

To explore the type and extent of evidence compiled to justify including biomarkers in previous
BM trials, we have referred to the references in the trial design paper or protocol. This represents
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a relatively straightforward method of assessing the evidence for a biomarker’s inclusion in a trial,
however has some inherent limitations. First, this method will not necessarily capture the entire
evidence base upon which inclusion of the biomarker was justified, since the authors may not
have provided a complete and accurate snapshot of the evidence they explored and used. Second,
journal rules on the amount of references in a paper and word count restrictions could mean that the
references included do not represent the totality of evidence used. Similar restrictions on references
and word counts may limit the representation of the literature in protocols.

Recommendations

While the ideal level of evidence is a well-conducted meta-analysis/systematic review of good
quality RCTs, including a rigorous assessment of their quality, this is not always available or feasible.
In particular, where a biomarker is very new, there may be limited previous evidence to underpin
its use. This evidence may take the form of case series or previous case studies. If this is the only
evidence available, then this may be the ‘best’ evidence to justify including the biomarker in a trial.
It would be important to consider, in such circumstances, whether the proposed RCT would be
premature and that the science should first of all be allowed to mature.

It may be that different standards of evidence may be necessary for different biomarker
types [25,145]. For example, evidence standards could be based on risk, with biomarkers for lower risk
applications requiring less evidence and regulatory oversight than those for high risk applications [145].
Recommendations could also be based on the disease being treated, similar to how orphan drugs for
rare diseases are given accelerated approvals [146,147]. Biomarkers used for more serious indications
could be allowed to proceed to trial with less or lower quality evidence than biomarkers for less serious
conditions. Novelty of the biomarker will also influence the extent of evidence available—for example
a biomarker first utilised in 1980 is likely to have accumulated much more evidence than one first
described in 2015.

Further, some conditions have existing diagnostic or treatment guidance algorithms that do not
use biomarkers but have good clinical utility. In these scenarios, adding a biomarker to the algorithm
might provide a low value of information compared to a biomarker used in a condition where a good
clinical algorithm is not available. Therefore, authors might consider prioritizing the development
of biomarkers for conditions that do not have sufficient clinical prediction methods for diagnosis or
guiding treatment.

It is also important to ensure that genetic biomarkers are not subject to higher evidentiary
requirements than other types of biomarkers. This ‘genetic exceptionalism’ and the higher burden
of evidence for genetic tests has been shown to be a barrier to implementation [4,25,30,148].
Finally, biomarkers that are integral to a trial’s conduct require more evidence than biomarkers
used on an exploratory basis [41].

With these factors in mind, our recommendations for all biomarker-guided trials consist of two
essentials (Figure 7).
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- Systematic review before embarking on a trial

We would recommend an initial systematic review is undertaken prior to the start of any trial.
The Lancet journal now requires all research papers to include a ‘Research in Context’ panel that shows
the evidence available prior to the study, and how the authors searched for this information [149].
This is an important step that should be considered by all journals and particularly any source funding
a clinical trial. The search should be supplemented with evidence from other sources such as clinical
guidelines and pilot data.

Regardless of the type of evidence identified in the systematic review, we recommend that the
quality of that evidence is assessed when justifying including the biomarker, and we suggest that
design-specific tools are used for this purpose (e.g., the Cochrane Collaboration’s Risk of Bias tool for
RCTs) [150]. Several study type-specific methods for doing this are available [131,150–154] and have
been reviewed by Zeng, et al. (2015) [155]. We additionally recommend the quality of pharmacogenetic
studies is assessed using the guidelines proposed by Jorgensen and Williamson (2008) [156].

When synthesising evidence already existing from previous studies, it is also important to consider
the age and ethnicities of the populations of the previous studies compared to the proposed trial’s
population to ensure that the evidence is relevant. Many studies (94% in one review [157]) imply
generalisability of results without acknowledging the differential effects of race and ethnicity. Differences
in cancer incidence, stage at discovery [158], and mortality [159] have been found to be functions of
race or ethnicity and it is imperative that trialists consider the ethnicity of the proposed trial population
and to keep this in mind when evaluating the evidence relating to biomarker validity. Notably, a 2016
review found that 81% of participants in genome-wide association studies were white [160], and several
studies have shown that non-white people are less likely to be clinical trial participants [157,161,162]
and are less likely to access genetic testing services [163]. It is important, therefore, in a drive to reduce
such inequalities, that the clinical utility of ethno-specific biomarkers are tested in trials recruiting
participants from relevant ethnic backgrounds. Similar considerations should be given to other
factors known to contribute to health inequalities, including age, gender, and socio-economic position.
These factors are summarized by the PROGRESS-Plus acronym recommended by the Cochrane Public
Health Group [164].

Further, if the systematic review reveals a sufficient number of previous RCTs or observational
studies, authors should consider conducting a meta-analysis to assess the current evidence quantitatively.
This would help ascertain whether there was sufficient uncertainty surrounding the current evidence
to justify the planned RCT. An example of where this could have been implemented is in the fifth trial
we examined [46]. Authors can also utilise funnel plots to examine any potential bias in the publication
of included studies [165], and explore any heterogeneity between studies.

- Guidelines are required

Given the lack of standardisation across BM trials in terms of how inclusion of biomarkers
are justified, we recommend that guidelines are developed to aid researchers in compiling and
presenting evidence to justify their inclusions. This will not only ensure that sufficient evidence exists
prior to embarking on a BM trial, thus avoiding waste of resources, but will also serve as a useful guide
to those planning a BM trial and provide transparency in the trial report.

The Clinical Pharmacogenetics Implementation Consortium (CPIC) provides guidelines for the
implementation of pharmacogenetics [166]. The guidelines provide a grading of the level of evidence
given in support of the biomarker’s implementation (‘high’, ‘moderate’ or ‘weak’) [167]. The CPIC
levels are based on PharmGKB criteria (Figure 8), where the evidence for a gene-drug association
is rated on a six-point scale between 1A (guidelines endorsed by a medical society or major health
system) to 4 (in vitro, case study, or nonsignificant study evidence) [29]. This scale is based on ‘clinical
annotations’ obtained from PubMed, produced by combining and summarising associations from
several publications. These clinical annotations are then given a ‘level of evidence’ score based
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on replication of the association, p-value, and odds ratio. The score is determined by PharmGKB
curators [29].J. Pers. Med. 2019, 9, x FOR PEER REVIEW 10 of 19 
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Whilst these guidelines are for implementation of biomarkers into clinical practice in a patient
who has a known genotype, a similar approach could be developed for justification of use in a RCT.
We located one paper that discussed the incorporation of biomarkers into early phase clinical trials [41],
but we recommend that this needs to contribute to the formation of formal guidelines for BM trials
similar to CPIC guidelines for biomarker implementation.

Finally, the conclusions and recommendations above are based on the assumption that a BM trial
is indeed required. It is possible that when compiling the evidence to justify inclusion of a biomarker in
a trial that it is so overwhelmingly in favour of the biomarker’s clinical utility that it may be unethical to
restrict its use to a randomised trial. This loss of clinical equipoise is something important to consider
and indeed clinical implementation may be recommended and accepted without the need for a BM
trial in such cases.
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