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Excessive fat deposition can cause chicken health problem, and affect production
efficiency by causing great economic losses to the industry. However, the molecular
underpinnings of the complex adiposity trait remain elusive. In the current study, we
constructed and compared the gene co-expression networks on four transcriptome
profiling datasets, from two chicken lines under divergent selection for abdominal fat
contents, in an attempt to dissect network compositions underlying adipose tissue
growth and development. After functional enrichment analysis, nine network modules
important to adipogenesis were discovered to be involved in lipid metabolism, PPAR and
insulin signaling pathways, and contained hub genes related to adipogenesis, cell cycle,
inflammation, and protein synthesis. Moreover, after additional functional annotation
and network module comparisons, common sub-modules of similar functionality for
chicken fat deposition were identified for different chicken lines, apart from modules
specific to each chicken line. We further validated the lysosome pathway, and found
TFEB and its downstream target genes showed similar expression patterns along
with chicken preadipocyte differentiation. Our findings could provide novel insights into
the genetic basis of complex adiposity traits, as well as human obesity and related
metabolic diseases.

Keywords: chicken, WGCNA, gene network, modules, fat deposition

INTRODUCTION

The global obesity pandemic and related metabolic syndromes are currently devastating the human
society, by threatening human health and decreasing life expectancy (Blüher, 2019). To find
effective therapy for metabolic diseases, current research efforts employ large-scale genomics and
systems biology methods, to understand better the biology and physiology of adipose tissues (Dyar
et al., 2018; Guan et al., 2018; Pellegrinelli et al., 2018; Zhao et al., 2018; Brial et al., 2019; Justice et al.,
2019; van der Klaauw et al., 2019). However, adipose tissues are of complex and heterogeneous
origins, such as depot-specific (subcutaneous, abdominal, inguinal, etc.), different tissue-types
(white, brown, and beige), and composition of different cell types (immune cells, preadipocytes,
stromal cells, neurons, etc.) (Lee et al., 2014; Jeffery et al., 2016; Ghaben and Scherer, 2019; Luong
et al., 2019; Sebo and Rodeheffer, 2019). It’s rather difficult to disentangle the molecular circuits
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driving the growth and development of adipose tissue (Tang and
Lane, 2012; Ahrends et al., 2014; Cohen and Spiegelman, 2016).

Gene network approach, as one method of integrative analysis
on high-throughput transcriptome profiling and a variety of
other omics data, helps discover successfully the structural and
functional gene modules and molecular signaling pathways for
human diseases (Barabási and Oltvai, 2004). Different statistical
and machine learning methods were developed and refined for
the construction of gene networks, e.g., the gene coexpression
network (Langfelder and Horvath, 2008; Ranola et al., 2013), and
the Bayesian network (Chen et al., 2008; Yang et al., 2009). Later,
integrative genomics methods are effective in combining different
omics data (e.g., transcripomics, proteomics, metabolomics), to
pinpoint key biochemical and molecular biomarkers (Lee et al.,
2016; Emilsson et al., 2018; Ghaemi et al., 2019). In farm animals,
the gene-coexpression network were recently used to study cattle
reproduction, feed intake, meat quality, immune response, and
functional annotation of gene functions (Fortes et al., 2010; Beiki
et al., 2016, 2018; Buchanan et al., 2016; Mateescu et al., 2017;
de Oliveira et al., 2018; Gonçalves et al., 2018; Alexander et al.,
2019). In chickens, network methods were also employed on the
investigation of growth and reproduction traits (Zhang et al.,
2017; Wang et al., 2018).

Intensive selection on growth rate and feed efficiency traits
in the past several decades makes the broiler industry one of
the most efficient animal production systems. However, fast
growth could bring along excessive fat deposition, and cause
economic loss and processing burden to the broiler industry. To
breed broiler lines with less fat, recent efforts are focused on
understanding the molecular genetics of adipose tissue growth
and development in the chicken (Siegel, 2014). Broiler lines were
divergently selected for abdominal fat content (Guo et al., 2011;
Baéza and Le Bihan-Duval, 2013), and a systematic approach
integrating genetic, genomic, cellular, and molecular studies were
performed, to discover important genes and molecular pathways
involved in adipogenesis (Wang et al., 2007; Zhang et al., 2017;
Cui et al., 2018; Na et al., 2018; Wang et al., 2019). Similarly,
other chicken lines continuously under divergent selection for
abdominal fat content (French lines) or body weights (Virginia
lines) were also constructed, to study the molecular genetics
of fat deposition or growth rate (Baéza and Le Bihan-Duval,
2013; Siegel, 2014). However, to our knowledge, analysis on gene
network construction and functional comparison on chicken
adipogenesis is very limited.

In the present study, we constructed gene co-expression
networks for four different transcriptome profiling datasets
collected on abdominal fat tissues or isolated preadipocytes
from chicken lines under divergent selection for adiposity,
and compared the structural characteristics of the obtained
network modules, to see if common molecular programs
exist for adipogenesis. We identified important gene modules
for adipogenesis, and interestingly, discovered common gene
modules shared by different chicken lines, too. Our results
provide evidences that even though genetic underpinnings of
adiposity in chickens are complex, common molecular features
could still exist, which renders novel insights on animal breeding
practices, and also genetic investigation on human obesity.

MATERIALS AND METHODS

Ethics Statement
All animal work was conducted in compliance with the
recommended guidelines described in the Guide for the Care
and Use of Laboratory Animals, and was approved by the
Animal Care and Use Committee of Hubei Province, China
(YZU-2018-0031).

Animals
Two chicken lines under divergent selection for abdominal
fat content were used in the present study. One chicken line
was from the Northeast Agricultural University broiler lines
divergently selected for abdominal fat contents (NEAUHLF)
since 1996, using abdominal fat percentage (AFP) and plasma
very low-density lipoprotein (VLDL) concentration as selection
criteria (Guo et al., 2011). These lines were developed from
a common base grandsire line, Arbor Acres. Birds were
bi-directionally selected for abdominal fat content, whereas
bodyweights were kept the same for both lines. Abdominal fat
percentages of the fat and lean broiler lines were significantly
different from each other since the 4th generation, and detailed
description on the selection procedure and housing conditions
could be found in the previous report (Guo et al., 2011). The
other French chicken line was from fat and lean chickens bred
and raised at INRA UE1295 Pôle d’Expérimentation Avicolede
Tours, F–37380 Nouzilly, France, as described previously (Resnyk
et al., 2013, 2017).

Transcriptome Datasets
In order to explore the genes and molecular pathways affecting
adipose tissue growth and development, we analyzed four sets
of transcriptome data in the present study: one from the cellular
perspective (in vitro preadipocyte differentiation), and the other
three from adipose tissue perspectives (datasets downloaded from
the public database). At the cellular level, microarray data on
the differentiation of abdominal preadipocytes of NEAUHLF
were collected. We briefly described the whole procedure as
follows. Male birds at 10 days of age from the lean and
fat lines at the 13th generation were selected, which were
offsprings of the families with the highest and lowest AFP
according to their slaughtered sib information, respectively. For
each line, abdominal adipose tissues of 15 male birds were
excised and pooled together. All pooled abdominal adipose
tissues were then digested, filtrated, centrifuged, thus allowed
the separation of floating adipocytes from the preadipocytes.
The stage when the primary preadipocytes were collected was
defined as the 0001 time point. And preadipocytes were passaged
once, and harvested when 50% confluent (termed as -12 h)
and 95% confluent (termed as 0 h). From the time point 0
h onward, preadipocytes were divided into two groups, the
control group, and the group treated with 160 µM oleate.
Cultured preadipocytes were divided into four groups, including
preadipocytes from the lean and fat lines cultured without
oleate treatment (LC and FC), or with oleate (LO and FO),
respectively. Then preadipocytes in both groups were cultured
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continuously for 120 h, and samples were collected at four
time points (12, 24, 72, and 120 h). Preadipocytes at each
time point were collected, and total RNA was prepared from
preadipocytes using Trizol reagent (Invitrogen) following the
manufacturer’s instructions. Then, cDNA was prepared by
oligo(dT)-primed reverse transcription. Labeled cRNA probes
were prepared using an IVT Labeling Kit (Affymetrix, Inc.)
according to the manufacturer’s protocol. The cRNA were
fragmented, heated, loaded onto the Affymetrix probe array
cartridge (Affymetrix, Inc.), and then hybridized, washed, and
scanned at 560 nm using a confocal scanner. Raw data sets
were normalized with Microarray Suite 5.0 (MAS5) and limma
package in the R statistical environment (Ritchie et al., 2015;
R Core Team, 2019). The raw microarray data of chicken
preadipocyte differentiation were deposited into the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus, and could be accessed through GEO Series (accession
number: GSE51330).

At the tissue level, three datasets for abdominal fat tissue
were accessed from the public domain, one microarray dataset
from NEAUHLF, and one RNA-seq and one microarray dataset
from the French chicken line, respectively. For the NEAUHLF
dataset, 10 birds of the 8th generation were chosen based on
the AFP values (five had the highest AFP and the other five
had the lowest), and were slaughtered at 7 weeks. Abdominal fat
tissues were collected for RNA extraction, and submitted for the
GeneChip Chicken Genome Array (Wang et al., 2007). Data were
downloaded through GEO (accession number: GSE8010). For the
French lines, RNA-Seq and microarray datasets were collected
from abdominal adipose tissues isolated from 7-week-old fat and
lean chickens, as described previously (Resnyk et al., 2013, 2017),
and were downloaded from the public GEO database (accession
numbers: GSE42980 and GSE37585), respectively.

Construction of Weighted Gene
Co-expression Network and
Identification of Significant Modules
To identify gene co-expression network modules associated
with preadipocyte differentiation and adipose tissue growth
and development in chickens, the weighted gene co-expression
network analysis (WGCNA) was conducted by the WGCNA
package in the R statistical environment based on the expression
profile data for each gene (Langfelder and Horvath, 2008). We
did not perform merging the RNA-seq and microarray data,
since the four transcriptome profiling datasets were collected
from different broiler lines based on different selection criteria,
and of different tissue origins (abdominal fat and preadipocytes).
Instead, we constructed the network separately for each of
the four data sets, and then compared the network modules
obtained, to identify the common and line-specific modules
associated with the adipogenesis trait, following the methods as
described previously (Langfelder and Horvath, 2008). First, the
raw gene expression data were pre-processed. We normalized
and formatted the gene expression data into a data frame in
the R statistical environment and filter out the null values
of gene expression data. We performed sample clustering and

gene expression analyses, respectively, and outliers (sample-
wise or gene-/probe-wise) were detected and discarded. Second,
soft threshold powers (β) were set first to fulfill the scale-
free network assumption. In addition, we selected 5,000 genes
with the highest connectivity for subsequent analysis based
on the kRank, and calculated the weighted correlation values
between genes to build the adjacency matrix. Third, the adjacency
matrix was converted to a topological overlap matrix (TOM)
to reduce noise and false correlation. Afterward, 1-TOM was
calculated and treated as a biological important measure for
network interconnectedness, and used as the distance measure
for hierarchically clustered genes. Then, the dynamic tree cut
algorithm was used to identify modules of co-expressed genes,
and the module eigengenes (ME) were computed. Modules were
merged based on the MEs, and labeled with different colors.
Lastly, the specific modules were identified based on the module-
trait relationship (pairwise Pearson’s correlation between ME and
phenotypic trait values, and correlation coefficients >0.80). For
abdominal fat tissue samples from the French lines, phenotypic
traits were defined according to the bodyweights of the samples.
As for the NEAUHLF tissue microarray samples, phenotypic
traits included the bodyweights, the weights and percentages of
abdominal fat tissues. For the preadipocyte microarray samples,
we used directly their group properties, i.e., 1 and 0 for fat and
lean chicken lines, respectively.

Functional Analysis of Modules
We next performed the functional analysis of important hub
genes and network modules. The hub genes were identified
in each module based on the module membership (MM)
values and the positional importance of genes in the co-
expression network (Langfelder and Horvath, 2008). The
detected hub genes of specific modules and their relationship
were visualized in Cytoscape (version 3.6.1). Modules for each
constructed co-expression network were compared, based on
their molecular function and pathway importance. Furthermore,
functional enrichment analysis was performed for the specific
modules based on Gene ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses via DAVID (Database for Annotation Visualization and
Integrated Discovery)1 (Huang et al., 2009). We then manually
curated the identified significant pathways (P < 0.05). Based on
the functional analysis results, we searched first common genes,
and then common network sub-modules, to understand their
relationship with adipogenesis.

Functional Validation of Network
Modules
Genes of important roles in modules related to chicken fat
development were selected and studied by Real-time Quantitative
PCR Detecting System (qPCR). The immortalized broiler cell
lines ICP1 (Wang et al., 2017) were cultured and differentiated by
oleic acid treatment in vitro. Total RNAs from cells undergoing
differentiation were collected and extracted by the TRIZOL
method. Genomic DNA was removed by the PrimeScript RT

1https://david-d.ncifcrf.gov/tools.jsp
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FIGURE 1 | Clustering of co-expression modules. Upper panel: genes were clustered into different groups, and assigned to network modules after dynamic tree cut
and merging analyses (Lower panel). (A) NEAUHLF: preadipocyte microarray. (B) NEAUHLF: adipose tissue microarray. (C) French: adipose tissue RNA-seq.
(D) French: adipose tissue microarray.

reagent Kit with gDNA Eraser. Using the SYBR Green method,
the qPCR experiment system was set up on ABI7500 as
follows: the total volume was 10 µL, including the forward
and reverse primers (0.2 µL each), the cDNA template (1 µL),
Fast Start Universal SYBR Green Master (ROX, 2×) (5 µL),
and ddH2O (3.6 µL). The reaction conditions were as follows:
40 cycles of pre-denaturation at 95◦C for 10 min, then
denaturation at 95◦C for 15 s, and lastly, extension at 60◦C for
60 s. The TATA-box binding protein (TBP) was used as the
reference gene, and data were analyzed by the 2−1Ct method
(Livak and Schmittgen, 2001).

RESULTS

Gene Co-expression Network
Construction
To utilize effectively and accurately the public gene expression
datasets, we began with standardized data preprocessing for
each datasets. For one of the two datasets from the NEAUHLF
chicken lines (the preadipocyte differentiation dataset), no
outliers were detected, i.e., all 66 samples and 38,536 probes
were kept (Supplementary Figure S1A); for the tissue expression

dataset, two samples and probes were discarded (8 samples
and 18,914 probes remained), respectively (Supplementary
Figure S1B). As for the French datasets, none of the samples,
but 2,649 probes, were discarded for the tissue RNA-seq dataset
(24 samples and 15,286 transcripts remained) (Supplementary
Figure S1C). And one sample, but no probe, was discarded
for the tissue microarray (23 samples and 17,435 probes kept)
(Supplementary Figure S1D).

After the model comparison (the scale free topology model
vs. the fitted model) and by considering R2 >0.8, we found
soft thresholds (β = 9, 12, 12, 10) for the preadipocyte and
tissue microarrays of NEAUHLFF, and the RNA-seq and tissue
microarray datasets of French lines, respectively (Supplementary
Figure S2). Then, for the construction of co-expression networks,
we selected 5,000 genes with the most expression variation, and
transformed the adjacency matrix into topology matrix. Dynamic
tree cut algorithm was used to merge all modules (correlation
coefficients >0.75, and lowest number of genes in the module
set at 30) (Figure 1). For the four datasets (the preadipocyte
and tissue microarrays of NEAUHLF lines, and the tissue RNA-
seq and microarray datasets of French lines), 13, 6, 12, and
17 modules were detected, respectively (Figures 1A–D). And
specifically, modules containing the largest and least number of
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FIGURE 2 | Module-trait heatmaps. Gene modules and trait relationships established by correlation analyses. (A) NEAUHLF: preadipocyte microarray.
(B) NEAUHLF: adipose tissue microarray. (C) French: adipose tissue RNA-seq. (D) French: adipose tissue microarray.

genes were Turquoise (1,173) and Darkgray (42) (Figure 1A),
Blue (3,457) and Purple (163) (Figure 1B), Turquoise (1,173) and
Tan (33) (Figure 1C), Lightgreen (838) and Mediumorchid (31)
(Figure 1D), respectively.

Identification of Modules of Interests
We obtained the module-trait heatmaps by calculating the
correlation coefficients between modules and traits for the
four datasets, respectively (Figure 2). First, for the NEAUHLF
preadipocyte dataset, the Turquoise module was highly positively
correlated with the preadipocyte differentiation group after
oleate treatment for both fat and lean lines, but negatively
correlated with the control groups (Figure 2A). Moreover,
the Turquoise module was significantly positively correlated
with the induced differentiation group of the fat line, but the
early differentiation group showed stronger correlation than
the late stage group. As for the lean line, the Turquoise
group was significantly negatively correlated with the control
group, but showing stronger correlation for the late stage
than the early stage. So, genes in the Turquoise module
could promote the differentiation, but inhibit the proliferation
of preadipocytes. The Lightgreen module, in contrast, was
positively correlated with both the induced differentiation

and the control groups for the lean chicken line, but
negatively correlated with all treatment and control groups
of the fat line, indicating that the Lightgreen module could

TABLE 1 | Hub genes in modules identified to be related to chicken fat
development.

Dataset Module
(threshold)

Hub genes

NEAUHLF
preadipocyte

C-Turquoise (0.96) BRD1, DST, CCDC88A, SBNO1,
VCPIP1, ROCK2

Lightgreen (0.88) ASCC1, ZDHHC20, CCNG2, RRM2B,
C10H15ORF40, ORAOV1

Darkgreen (0.88) PTN, CMTM4, CORO2A, IGF2BP2

NEAUHLF
tissue

T-Blue (0.987) WDR1, METAP2, XPOT, PREX2

French tissue
RNA-seq

F-Blue (0.92) SH3GLB1, FABP5, PIK3R2, AGRN,
ADAMTS7, RPTPF

French tissue
microarray

T-Turquoise (0.95) PLCL2, NT5M, TJP1, ACTR1A

Orange (0.87) PGRMC1, FADS2, CAV2

Darkseagreen4
(0.9)

KCNV1, PIK3CD, PAH, FARSB,
SH3BP4

Darkorange (0.9) CCNL2, THSD7B, PTCD3
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inhibit preadipocyte proliferation, and enhance lipid catabolism.
Moreover, we found that the Darkgreen module was positively
correlated with the induced differentiation group of the
fat line, but negatively correlated with the control group
of the lean line. The degree of correlation appeared in a
progressively increasing or decreasing manner for the fat
and lean lines, respectively. Thus, genes in the Darkgreen
module could enhance the preadipocyte differentiation, and
promote adipogenesis.

As for the NEAUHLF tissue microarray dataset, we didn’t find
any strong correlation with the traits for most of the modules
(Figure 2B). Only the Blue module correlated strongly with the
bodyweights, and relatively strongly with both the abdominal
fat rate and weight, too. Whereas for the French tissue RNA-
seq dataset, the Blue module correlated positively with the lean
line, but negatively with the fat line (all most significantly),
respectively. Genes with negative effects on fat deposition might
be contained in the Blue module (Figure 2C).

For the French tissue microarray dataset (Figure 2D), the
Turquoise and Orange modules were positively correlated with
the bodyweight at 1 week of age, but negatively correlated with
those at 11 and 9 weeks of age, respectively. In contrast, the
Darkseagreen4 and Darkorange modules showed the opposite
trend, correlated negatively with the bodyweight at 1 week of
age, but positively with bodyweights at 9 and 11 weeks of ages
(all most significantly), respectively. Genes in these modules
could have potential effects on fat deposition. Thus, our module-
trait correlation analyses pinpoint network modules potentially
underlying adipogenesis or the growth and development of
chicken adipose tissue.

Hub Genes in Important Sub-Modules
Hub gene occupies central position, and is of vital function in
the gene network, which is determined by their connectedness
with other genes in the network. Our previous analyses helped
find nine functional modules of importance to adipose tissue
growth and development, after we built the network based on the
threshold of correlation coefficients (>0.85) (Table 1). Then, we
selected 3–6 hub genes from each module. Functional exploration
revealed that these genes were related to adipogenesis, cell cycle,
inflammation and protein synthesis. In addition, we extracted
and plotted the gene expression values of hub genes, which
showed that different hub genes in the same module were of
similar expression patterns (Supplementary Figure S3).

Common Modules Identified by Network
Comparison
We continued to build the gene co-expression sub-networks
around the discovered hub genes, in an attempt to show the
importance and implication of these genes on adipogenesis.
For the four datasets, 3, 1, 1, and 4 sub-networks were found,
respectively (Figure 3). After functional enrichment analyses
and literature retrieval on central hub genes (such as ROCK2,
RRM2B, PTN, CAV2, FARSB, SH3GLB1, FABP5, and FADS2),
interestingly, we found great similarity for biological processes
and molecular pathways (Supplementary Table S1). For many

modules constructed, development and regulation of adipose
tissue and metabolic pathways were found to be enriched,
such as lipid storage, lipid modification, negative regulation
of lipid synthesis, fatty acid metabolism, PPAR and insulin
signaling pathways. In addition, after GO analysis, modules
were found to be enriched in a variety of pathways, such
as protein hydrolysis, transport and localization, cytoskeleton,
apoptosis and programmed cell death. KEGG pathway analysis
also identified two pathways, focal adhesion and proteasome
metabolism (Supplementary Table S1).

Furthermore, based on the functional consistency between
identified important modules, common gene modules were
found (e.g., Turquoise, Blue, Blue, and Turquoise modules
for the four datasets, the NEAUHLF preadipocyte and tissue
microarrays, and the French tissue RNA-seq and microarray
datasets, respectively, even though labeled with different color
codes) (Figure 4). These common modules were enriched in the
establishment of cytoskeleton, and protein metabolic transport
and localization. Additional analyses found many modules
with similar functional enrichment, such as cell apoptosis
and programmed cell death (Supplementary Table S2). In
contrast, modules specific to chicken lines and having their
specific functionality to chicken adipogenesis were also found.
Thus, in chicken lines divergently selected for abdominal fat
contents, though of different genetic backgrounds, common gene
modules with similar functionality were detected, and could
potentially play conserved roles in the growth and development
of adipose tissues.

Validation of the Lysosome Module
After functional enrichment analysis, the lysosome pathway
was among those pathways discovered to be potentially
important for chicken adipose tissue growth and development.
Lysosome has a vital role in lipid metabolism, and we and
others showed previously that the lysosome pathway is
fundamental to chicken adipogenesis (Thelen and Zoncu,
2017; Data not shown). Here we selected TFEB (the master
regulator of lysosome biogenesis and also involved in lipid
metabolism), and also its downstream genes (LAMP1,
CTSA, CTSB), to examine their expression patterns during
preadipocyte differentiation in the preadipocyte cell line (ICP1)
(Supplementary Figure S4). The expression dynamics of TFEB
and its downstream genes exhibited a similar pattern, and
highly correlated with each other. Furthermore, obvious changes
along with the differentiation of preadipocytes in broilers could
be seen, since significant differences existed between these
genes at different time points (Figure 5). Thus, the lysosome
pathway may play a regulatory role in the differentiation of
chicken preadipocytes.

DISCUSSION

In the current study, gene co-expression networks were built
for two different chicken lines both under divergent selection
for abdominal fat content, and common network modules
with similar functionality were discovered to be of potential
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FIGURE 3 | Subnetworks constructed for hub genes. Direct gene neighbors of the hub genes were extracted for building subnetworks. Four subnetworks were
built. (A) NEAUHLF: preadipocyte microarray. (B) NEAUHLF: adipose tissue microarray. (C) French: adipose tissue RNA-seq. (D) French: adipose tissue microarray.

importance for adiposity. Our findings could provide novel
insights into the genetic basis of complex traits, and help
understand the outcomes of intensive breeding practices in
modern animal production systems.

The recently developed high-throughput RNA-seq technology
propels the study on the detection of differentially expressed
genes by statistical modeling and analysis on transcriptome
profiling data. However, the co-linearity and confounding factors
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FIGURE 4 | Common gene modules discovered for different chicken lines.

FIGURE 5 | The expression and significance test of TFEB and its downstream genes during induced differentiation of ICP1 preadipocyte line. (A) TFEB. (B) LAMP1.
(C) CTSA. (D) CTSB. Mean significance at *P < 0.05 and **P < 0.01 levels.
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embedded within the gene expression data (usually small number
of samples, but large number of parameters, i.e., the n << p
problem) could not be discerned by these normal statistical
methods (Barabási and Oltvai, 2004; Ghaemi et al., 2019). To
cope with the high-dimensional data analysis question induced
by large number of genes, methods for the construction of
gene networks were developed, such as the gene co-expression
network (Langfelder and Horvath, 2008; Banf and Rhee, 2017;
Mangul et al., 2019), and have been effectively used in identifying
the topological relatedness and interaction of genes in the
biological systems of interests (Lee et al., 2016; Emilsson et al.,
2018). Nevertheless, the spatio-temporal and heterogeneous
characteristics of the transcriptome data require the deployment
of novel statistical methods (e.g., machine learning), to effectively
solve the statistical and modeling issues related to network
dynamics and heterogeneity (Camacho et al., 2018).

We identified network modules significantly associated with
fat deposition in chicken lines with different genetic backgrounds,
but all under divergent selection for the same trait of interest,
abdominal fat content (Guo et al., 2011; Resnyk et al., 2013,
2017). Previously, after differential expression analyses on the
same datasets, genes involved in fatty acid metabolism and PPAR
signaling pathways were found, such as PPARG, and its direct
targets, SCD, ACSL1, and DGAT2 (Guo et al., 2011; Resnyk
et al., 2013, 2017), which potentially explained the underlying
differences of fat deposition in these chicken lines. However,
with gene co-expression network analysis, we found network
modules containing interesting genes in molecular pathways
(fatty acid metabolism, PPAR and insulin, cytoskeleton, and
protein synthesis, etc.) fundamental to adipose tissue growth
and development, such as FABP5, FADS2. The insulin pathway
was found to be vital to fatty acid content composition in cattle
(de Oliveira et al., 2019), and FABP5 and FADS2 are well-
known regulatory genes on fatty acid metabolism (Li et al., 2019;
Xing et al., 2019). Cytoskeleton has to reorganize with adipose
tissue remodeling and expansion, and recently cytoskeletal
transgelin 2 was proved to be associated with preadipocyte
proliferation and differentiation (Ortega et al., 2019). Protein
synthesis is regulated mainly by the master growth regulator
mTOR (Thoreen et al., 2012), which plays a vital role in lipid
metabolism (Caron et al., 2015). Further expression pattern
analysis showed that these genes in the same module did
have similar expression levels and dynamics, which could be
transcriptionally regulated by a common set of transcription
factors (Gachon et al., 2018; Klemm et al., 2019). These
discovered genes and signaling pathways seem to be common
and have important conserved functions for adipogenesis, which
could be partially due to that divergent selection put more forces
on gene modules of common fundamental roles in adipogenesis,
and were picked up by our network module comparison analysis.
Further detailed investigation on the transcriptional regulation
of genes in these identified network modules could render novel
insights into the underlying molecular regulatory mechanisms of
these chicken lines.

Integrated genomics and network science methods are
widely employed in systems biology, to fully utilize the
large volume of genomics and biological data (Lee et al.,

2016; Emilsson et al., 2018; Ghaemi et al., 2019). We
herein detected common molecular network and functional
pathways involved in abdominal fat deposition after network
construction and comparison between different chicken lines.
It’s a common phenomenon that similar traits of animals in
different populations could be under convergent selection, i.e.,
different genes but pathways of similar molecular functions are
selected by evolutionary forces or artificial selective pressure,
such as convergent selection signatures in sheep and goat
(Alberto et al., 2018), and the frizzle phenotype in chickens
(Dong et al., 2018; Guo et al., 2018). Here, our network
analysis also showed that, though different chicken lines were
divergently selected for abdominal fat content, network modules
of similar molecular functionality were detected. These results
could provide further insights on the genetics of complex trait,
including human diseases.

CONCLUSION

Gene co-expression networks were constructed for different
chicken lines under divergent selection for adiposity. Common
sub-modules of similar functionality for chicken fat deposition
were identified after gene functional enrichment analysis and
network comparison. Our findings indicate that even in different
chicken lines, common molecular pathways could be underlying
the growth and development of adipose tissue.
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FIGURE S1 | Cluster analyses of samples and gene expression data to detect
outliers. No outliers found for (A) (NEAUHLF: preadipocyte microarray), whereas
two samples and two genes were discarded for (B) (NEAUHLF: adipose tissue
microarray). As for the French datasets, 2,649 probes were discarded for the
adipose tissue RNA-seq dataset (C) and one sample outlier was discarded for the
adipose tissue microarray (D).

FIGURE S2 | Identification of soft thresholds. The soft thresholds β = 9, 12, 12, 10
for preadipocyte (A) and adipose tissue (B) microarrays of NEAUHLFF, and
adipose tissue RNA-seq (C) and microarray (D) of French lines.

FIGURE S3 | Gene expression profiles of hub genes in the important modules.
Consistent and highly correlated gene expression patterns were identified for hub
genes in the network sub-modules, for the four datasets, respectively.

FIGURE S4 | Culture and induced differentiation of chicken preadipocyte cell line.
Oil red oxygen staining (A) and gene expression trend of differentiation markers of
adipocytes in broilers (B).

TABLE S1 | Enrichment analysis of modules.

TABLE S2 | Summary of hub genes in modules related to fat development.
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