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Abstract: Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)
are diseases of unknown etiology presenting complex and often overlapping symptomatology.
Despite promising advances on the study of miRNomes of these diseases, no validated molecular
diagnostic biomarker yet exists. Since FM and ME/CFS patient treatments commonly include
polypharmacy, it is of concern that biomarker miRNAs are masked by drug interactions. Aiming
at discriminating between drug-effects and true disease-associated differential miRNA expression,
we evaluated the potential impact of commonly prescribed drugs on disease miRNomes, as reported
by the literature. By using the web search tools SM2miR, Pharmaco-miR, and repoDB, we found a
list of commonly prescribed drugs that impact FM and ME/CFS miRNomes and therefore could be
interfering in the process of biomarker discovery. On another end, disease-associated miRNomes
may incline a patient’s response to treatment and toxicity. Here, we explored treatments for
diseases in general that could be affected by FM and ME/CFS miRNomes, finding a long list
of them, including treatments for lymphoma, a type of cancer affecting ME/CFS patients at a
higher rate than healthy population. We conclude that FM and ME/CFS miRNomes could help
refine pharmacogenomic/pharmacoepigenomic analysis to elevate future personalized medicine and
precision medicine programs in the clinic.

Keywords: fibromyalgia (FM); myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS);
microRNA; miRNome; pharmacogenomics; pharmacoepigenomics; SM2miR; Pharmaco-miR;
repoDB; ME/CFS Common Data Elements (CDEs)

1. Introduction

Fibromyalgia (FM) is a debilitating disorder characterized by a low pain threshold and muscle
tenderness accompanied by bowel abnormalities, sleep disturbances, depressive episodes, cognitive
problems, and chronic pain [1–4]. Though commonly comorbid with myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS), a disease also showing a complex clinical pathophysiology [5–11],
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these syndromes have been classified by the International Classification of Diseases, Tenth Revision,
Clinical Modification (ICD-10-CM), with separate codes (M79.7 and R53.82 or G93.3 if post-viral,
for FM and ME/CFS, respectively) [12]. However, disease distinctions remain under debate [5].

Although possibly underestimated, the global prevalence for FM has been set at 2–8% and at
0.23–0.41 for ME/CFS with predominant ratios of females over males [13–17]. In addition, increasing
numbers of patients being affected at early ages [18] highlights the considerable and raising needs
for appropriate healthcare programs and the stepping demands for the alleviation of associated
economic/social burdens.

Post-exertional malaise (PEM), a clinical hallmark of ME/CFS, together with additional clinical
and biological parameters differing between these two diseases [19–24] seem to support a distinct
underlying pathophysiology and possibly etiology for FM and ME/CFS. Aimed at clarifying this
diagnostic conflict through an improved understanding of the biology of disease onset and evolution,
some research groups, ours included, have set out to identify molecular biomarkers of these
illnesses [25].

MicroRNAs or miRs constitute attractive candidates for the diagnosis of FM and ME/CFS, as they
have been found to associate with the disease state of other complex chronic diseases [26,27] and may
even be used to measure disease stage and response to treatments [28]. In their mature form (20–22 nts),
they epigenetically control gene expression by directing particular sets of mRNAs, presenting partial
complementation in their 3’UTRs, to degradation [29]. Other regulatory mechanisms have also been
linked to the activity of these small molecules [30].

In addition to their biomarker value, miRNAs could potentially be targeted by small drugs, either
directly through the binding of chemical compounds to particular grooves or pockets of their secondary
structures, in their mature or precursor forms, as isolated or complexed molecules, or indirectly by
interfering with proteins involved in their biogenesis or recycling, including regulation of transcription
factors driving miRNA synthesis [31–34]. Therefore, directional FM and ME/CFS treatments based
on miRNA targeting strategies are envisioned as potential curative therapies by themselves or as
co-adjuvants in the near future.

MiRNA capacity to sense and respond to environmental cues [35–37], however, makes the
establishment of correlations between particular disease states and miRNA profile changes
challenging. To minimize potential environmental confounding factors, healthy participants are often
population-matched by sex, age, and quite frequently BMI (body mass index) with the participating
patient group. Careful selection of participants and proper study design are key factors in identifying
miRNA disease-associated profiles (disease miRNomes), as miRNA levels also change in response to
hormone challenges, during aging and metabolic states [38–41], including the post-prandial estate [42].
In the context of FM and ME/CFS, since miRNomes change with exercise [43], inclusion of sedentary
control groups would be desirable.

Current treatments of both FM and ME/CFS diseases are symptom-palliative only [44–48].
Due to multi-symptomatology, patient prescriptions frequently involve polypharmacy, which may
significantly impact downstream molecular analysis of the disease. With this perspective, a recent
joint initiative worked out by the NINDS (National Institute of Neurological Disorders and Stroke)
at the NIH (National Institute of Health) in Bethesda, MD (USA) and other federal agencies has
made available case report forms (CRFs) and guidelines to register drug use in ME/CFS studies [49].
The ME/CFS Common Data Elements initiative or CDE Project aimed at standardizing clinical relevant
variables for the study of ME/CFS covers various areas organized by domains and sub-domains.
Information is publicly available at the NINDS Common Data Elements web page [49].

A recently observed feature of miRNAs is their role in determining drug efficacy [50,51].
The traditional field of pharmacogenomics dealing with how individual genomic features,
including SNPs (single nucleotide polymorphisms) and CNVs (copy number variants), influence
a patient’s response to drug-based treatments and sensitivity to toxic effects is becoming
complemented by individual epigenetic profiles including alternative splicing events and miRNomes
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(pharmacoepigenomics), with the aim of elevating predictions of the most effective and safest options
towards improved personalized treatments in the clinic [52–55]. In addition to epigenetic regulation of
drug targets, regulation of genes related to drug absorption, distribution, metabolism, and excretion
(ADME) may translate into significant inter-individual differences to drug response [56]. In this
context, it should be of relevance to take into account a patient’s FM or/and ME/CFS condition
when standardized treatments for diseases other than FM and ME/CFS are in need. In particular,
FM and ME/CFS associated miRNA profiles might promote drug efficacy or inhibit drug function
when compared to non-FM and non-ME/CFS patients and consequently impact or influence an FM
and ME/CFS patient’s response to pharmacological treatments or sensitivity to adverse reactions.
Interestingly, and in line with this, FM and ME/CFS patients report suffering from multiple chemical
sensitivity [57].

In this paper, we have interrogated the potential impact of commonly prescribed drugs to treat
FM and ME/CFS on miRNA profiles in an effort to discern between miRNAs potentially linked to
disease from those that might be a consequence of drug intake. We have also evaluated miRNA–target
gene–drug interactions of differentially expressed (DE) miRNAs in FM and ME/CFS as an approach
to determine the ability or predisposition of these patients to respond to common clinical treatments
for diseases in general, including diseases other than FM and ME/CFS, which may appear comorbid
at some point in FM and ME/CFS patients’ lives.

2. Materials and Methods

2.1. Study Search

To locate experimental work aimed at studying miRNA profiles in FM or ME/CFS, a bibliographic
search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
criteria [58] was performed using Pubmed and Web of Science databases [59,60] up to January 2019.
The search terms used in “all fields” included: “fibromyalgia” AND “microRNA” OR “miR” on one
search, and “chronic fatigue syndrome” AND “CFS” in combination with “microRNA” OR “miR” in
another. The use of the term “myalgic encephalomyelitis” to describe the disease in other searches did
not yield any additional experimental publications in the field. The trial Pubmed Labs tool, including
article snippets and other improvements was also used in the search [61]. Manual curation to filter out
non-experimental or unrelated hits was applied.

For compounds commonly prescribed to treat symptoms in FM and ME/CFS, a search in
the Cochrane library and Pubmed databases [59,62] was performed using as search terms either
“fibromyalgia systematic review” AND “drug,” “chronic fatigue syndrome” AND “CFS systematic
review” AND “drug,” or “myalgic encephalomyelitis systematic review” AND “drug.” Most recently
updated reviews were adopted as reference manuscripts.

2.2. Identification of miRNA–Drug–Disease Interactions

Features of miRNA and drug understudies, International Union of Pure and Applied Chemistry
(IUPAC) names included, were found in miRBase and Drugbank databases, respectively [63,64].
FM and ME/CFS miRNomes were evaluated for miRNA–drug interactions using either SM2miR
or Pharmaco-miR web search tools [50,65]. To find potential miRNomes derived from patient
polypharmacy, SM2miR output was filtered using as criteria “drugs commonly prescribed to treat FM
and ME/CFS symptoms,” as described in the previous Section 2.1. Treatments to disease to which
FM and ME/CFS patients may respond differently from non-FM and non-ME/CFS populations were
spotted by searching the repoDB database [66] with the Pharmaco-miR drug hits obtained with FM or
ME/CFS miRNome searches.
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3. Results

3.1. miRNomes Associating with the Studied Diseases

3.1.1. miRNomes of FM

By reviewing the literature, as described in Methods, we found five studies reporting differential
expression (DE) of particular miRNAs in FM patients with respect to healthy populations using
multiplex approaches, either microarrays or RT-qPCR panels (Table 1 and Table S1). One of them
measured miRNA levels in cerebrospinal fluid (CSF) [67], while the rest evaluated them in blood
fractions [68–71]—two used white blood cells [69,71] and two analyzed serum [68,70].

According to these reports, a total of 85 FM patients and 86 healthy participants were screened for
differential miRNA expression, and little coincidence was found (only 9 miRNAs reported by more than
one study) (Table 1, miRNAs in bold) even within the same blood fraction type and in spite of using
common diagnostic criteria (ACR 1990). Gene Ontology (GO) analysis, however, more commonly
showed metabolic and neural pathways associating to DE miRNAs, indicating common cellular
pathways affected by different FM miRNomes.

3.1.2. miRNomes of ME/CFS

A similar bibliographic search to the one performed in FM (Section 3.1.1 of this manuscript)
yielded, after filtering out unrelated, gene-focused studies, only three studies showing DE of miRNAs
in ME/CFS at basal levels, yet, they included a similar total number of patients and controls (83 and 47,
respectively) (Table 2) [72–74]. It should be noted that an additional multiplex miRNA study evaluating
the DE of miRNAs in ME/CFS upon an exercise challenge was excluded on the basis of reporting no
basal disease miRNomes [75]. Again, as in FM studies, little overlap of DE miRNAs could be found
across ME/CFS studies (only 4 miRNAs were reported by more than one ME/CFS study, bold miRNAs
in Table 2). In this case, this could be somehow expected as blood fractions and diagnostic criteria
varied across studies. In fact, only the most recent study by Petty et al. included the more restrictive
Canadian criteria for patient selection [74]. Nevertheless, once more, a coincidence of mainly affected
GO terms was found, indicating major immune defects in ME/CFS through different miRNomes.



Pharmaceutics 2019, 11, 126 5 of 21

Table 1. Summary of studies evaluating fibromyalgia (FM) miRNomes by multiplex approaches.

Source of RNA

Diagnostic
Criteria
/Clinical

Parameters

Cohorts Technical Approach Over-Expressed microRNAs Under-Expressed
microRNAs

RT-qPCR
Validated
miRNAs

GO Terms Mainly Affected References

Cerebrospinal
fluid (CSF)

ACR 1990, FIQ
& MFI-20 *

10 FM
8 HC

microRNA Ready-to-Use
PCR microchip (Exiqon,

Denmark Cat No 203608)

miR-21-5p, miR-145-5p,
miR-29a-3p, miR-99b-5p,

miR-125b-5p,
miR-23a-3p, miR-23b-3p,
miR-195-5p, miR-223-3p

N/A

Glial and neuronal response,
insulin-like growth factor pathway,

Alzheimer’s and Parkinson’s,
autoimmunity and energy

metabolism

Bjersing et al.,
2013 [67]

Serum ACR 1990, FIQ
& MFI-20 *

20 FM
20 HC

microRNA Ready-to-Use
PCR microchip

(Exiqon, Denmark Cat No
203608)

miR-320a

miR-103a-3p, miR-107,
let-7a-5p, mir-30b-5p,

miR-151a-5p,
miR-142-3p,

miR-374b-5p.

N/A

Neuronal regeneration, opioid
tolerance, dopamine

neurotransmitter receptor activity,
cell division, stress response,

energy metabolism, lipid
metabolism, Alzheimer’s

Bjersing et al.,
2014 [68]

PBMCs ACR 1990, FIQ
& MFI-20 *

11 FM
10 HC

3D-Gene Human miRNA
Oligo chips (version 16.0;

Toray Industries)

miR-223-3p, miR-451a,
miR-338-3p, miR-143-3p,
miR-145-5p, miR-21-5p

miR-223-3p,
miR-451a,

miR-338-3p,
miR-143-3p,
miR-145-5p

Nervous system, inflammation,
diabetes, major depressive

disorder

Cerdá-Olmedo
et al., 2015 [69]

Serum
ACR 1990/2010,
FIQ, FAS, HAQ
& ZSAS/ZSDS *

14 FM
14 HC

Serum/Plasma Focus
miRNA PCR Panel I+II

(96-wells Exiqon)
Pooled Sera: miR-10a-5p, miR-320b, miR-424-5p

Pooled Sera: miR-20a-3p,
miR-139-5p

Individual Sera:
miR-23a-3p, miR-1,
miR-133a, miR-346,

miR-139-5p, miR-320b

N/A

Brain development, immune
response, osteogenesis, myoblast
differentiation, autism, epilepsy,

cellular proliferation and
differentiation, muscular atrophy,
complex regional pain syndrome,

among others

Masotti et al.,
2016 [70]

White blood cell
(WBC)

ACR 1990, FIQ,
NPSI-G,

GCPS & ADS *

30 FM
34 HC

miRCURY LNA miRNA
array (Exiqon, Vedbaek,
version 19.0, with 2042
analyzed microRNAs)

miR-136-5p, miR-4306, miR-744-5p, miR-4301,
miR-151a-3p, miR-584-5p, miR-4288, miR-221-3p,

miR-151a-5p, miR-199a-5p, miR-126-3p, miR-126-5p,
miR-130a-3p, miR-146a-5p, miR-125a-5p, miR-4429,

miR-320b, miR-320a, miR-320c, miR-17-3p,
miR-423-3p, miR-425-5p, miR-4291, miR-652-3p,

miR-103b-3p, miR-199a-3p, miR-335-5p, miR-331-3p,
miR-339-5p, miR-92a-3p, let-7b-5p, miR-222-3p,

miR-33a, let-7i-5p, miR-185-5p, miR-22-3p,
miR-148b-3p, miR-103a-3p, let-7d-5p, miR-4289,

miR-107, miR-30d-5p, miR-301a-3p, miR-374c-5p,
miR-17-5p, miR-18b-5p, miR-1

miR-4639-3p, miR-3685,
miR-943, miR-877-3p

miR-199a,
miR-151,

miR-103, Let-7d,
miR-146a

Cell proliferation, differentiation,
brain development, opioid

tolerance

Leinders et al.,
2016 [71]

* ACR: American College of Rheumatology 1990/2010 criteria; FIQ; Fibromyalgia Impact Questionnaire; MFI-20: Multidimensional Fatigue Inventory; FAS: Fibromyalgia Assessment
Status; HAQ: Health Assessment Questionnaire; ZSAS, ZSDS: Zung Self-Rating Anxiety and Zung Self-Rating Depression Scale; NPSI-G: Neuropathic Pain Symptom Inventory; GCPS:
Graded Chronic Pain Scale; ADS: Allgemeine Depressions-Skala. Bolded miRs correspond to miRs differentially expressed (DE) according to more than one FM study. Underlined miRs
correspond to miRs DE in FM and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) studies.
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Table 2. Summary of studies evaluating ME/CFS miRNomes by multiplex approaches.

Source of
RNA

Diagnostic
Criteria Cohorts Technical Approach Over-Expressed microRNAs Under-Expressed

microRNAs
RT-qPCR Validated

microRNAs GO Terms Mainly Affected References

NK &
CD8+ cells Fukuda 28 ME/CFS

28 HC

Analyzed by RT-qPCR 19
microRNAs: miR-10a miR-16,
miR-15b, miR-107, miR-128b,
miR-146a, miR-191, miR-21,

miR-223, miR-17-5p, miR-150,
miR-103, miR-106b, miR-126,

miR-142-3p, miR-146-5p, miR-152,
miR-181, let-7a.

NK: miR-10a, miR-146a,
miR-191, miR-223,
miR-17-5p, miR-21,

miR-106, miR-152, miR-103
CD8+: miR-21

N/A

Cytotoxicity of NK and CD8+ cells,
cytokine expression, cell proliferation,

apoptosis, development and
differentiation of effector CD8+

Brenu et al.,
2012 [72]

Plasma Fukuda 20 ME/CFS
20 HC

MicroRNA profiling by HiSeq2000
sequencing (Illumina HiSeq2000)

miR-548j, miR-548ax, miR-127-3p,
miR-381-3p, miR-331-3p,
miR-136-3p, miR-142-5p,

miR-493-5p, miR-143-3p, miR-370,
miR-4532

miR-126, miR-450b-5p,
miR-641, miR-26a-1-3p,

miR-3065-3p, miR-5187-3p,
miR-16-2-3p, let-7g-3p

miR-127-3p, miR-142-5p,
miR-143-3p

Autoimmunity, T cell development,
cytokine production, inflammatory

responses, apoptosis

Brenu et al.,
2014 [73]

PBMCs Fukuda &
Canadian

35 ME/CFS
50 HC

Ambion Bioarray microarrays
(version 1 targeting 385 miRNA

sequences)

let-7b, miR-103, miR-126,
miR-145, miR-151, miR-181a,
miR-185, miR-191, miR-197,
miR-199a, miR-19b, miR-210,
miR-22-5p, miR-24, miR-27a,
miR-27b, miR-30c, miR-30d,

miR-320, miR-324-3p, miR-324-5p,
miR-326, miR-330, miR-331-3p,

miR-339, miR-422b,
miR-423, miR-92, miR-99b

miR-99b, miR-30c, miR-126,
miR-330-3p

Angiogenesis, invasion, migration and
proliferation in dendritic cells,

proliferative, cytotoxic and cytokine
effector function in NK cells

Petty, et al.,
2016 [74]

Bolded miRs correspond to miRs DE according to more than one ME/CFS study. Underlined miRs correspond to miRs DE in FM and ME/CFS studies. This table has been adapted from
Almenar-Perez, E.; Ovejero, T.; Sánchez-Fito, T.; Espejo, J.A.; Nathanson, L.; Oltra, E. Epigenetic components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) uncover
potential transposable element activation (Clin Ther, accepted, special issue: “Immunology Specialty Update on CFS/ME.”, Elsevier 2019).
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Surprisingly as many as 19 miRNAs were found to be commonly reported as DE by FM and
ME/CFS studies, the significance of which is unknown at present (miRNAs underlined in Tables 1
and 2).

3.2. Polypharmacy Potentially Impacting miRNA Profiles

As mentioned above, our general aims included determining drug–miRNA and drug–disease
interactions in the context of FM, or ME/CFS miRNomes, for the purpose of identifying potential
interference of drugs in miRNA profiling, which could bias research outcomes on one hand and, on the
other, determine whether disease miRNA profiles could influence drug response in these patients.
This section focuses on selecting drugs commonly prescribed to FM and ME/CFS patients to evaluate
the effect that polypharmacy might have on miRNomes of these diseases.

3.2.1. Polypharmacy in FM

Based on the recent Cochrane report by Häuser et al. [44], drugs that have been commonly used to
treat FM in the clinical practice can be classified into the following six classes: antidepressants,
antiepileptics, antipsychotics, cannabinoids, nonsteroidal anti-inflammatory drugs (NSAIDs),
and opioids. Rather than analyzing the quality of evidence of clinical trials using these substances,
we were interested in assigning the active principle and IUPAC names to the reported compounds,
to facilitate our downstream analysis (Table 3). Additional literature supporting the use of compounds
for each of the six classes described by Häuser et al. to treat FM patients is provided in Table 3 [76–93].

3.2.2. Polypharmacy in ME/CFS

Opposite to FM, no drug-based Cochrane review for the treatment of ME/CFS could be found.
The three hits obtained by using the MeSH search terms “chronic fatigue syndrome” were reviews on
exercise, CBT (cognitive behaviour therapy) and Chinese herbs [94–96]. Therefore, we decided to use
the recent reviews by Collatz et al. and Smith et al. as reference papers to evaluate common drug-based
ME/CFS therapies [46,47]. Additional bibliography supporting the use of polypharmacy in ME/CFS
was also included [46,48,97–105]. Similar to what has been described in Section 3.2.1, a documented
summary of drugs commonly prescribed to ME/CFS patients that could impact miRNA screenings is
shown in Table 4 together with active principles and IUPAC names.

Although possibly not complete, Tables 3 and 4 include the most representative compounds
to treat FM and ME/CFS according to the consulted authors [44,48,76–93,97–105]. Unexpectedly,
a single IUPAC overlap, corresponding to the selective serotonin reuptake inhibitor (SSRI) fluoxetine,
was found for drugs commonly prescribed for FM and ME/CFS (in bold in Tables 3 and 4), indicating
little prescription overlap at the IUPAC name level despite both groups of patients presenting common
symptomatology. Special attention should be placed to common prescriptions as they may more
readily allow for identifying the effects of drugs on miRNA levels over disease-related changes.
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Table 3. Classification of drugs commonly prescribed to FM patients.

Family Subfamily Active Principle IUPAC Name Reference

Antidepressants

Serotonin-Norepinephrine
reuptake inhibitors (SNRIs)

Milnacipran (±)-(1R,2S)-rel-2-(Aminomethyl)-N,N-diethyl-1-phenylcyclopropane-1-carboxamide Cording M et al., 2015 [76]

Duloxetine (+)-(S)-N-Methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amina Lunn MP et al., 2014 [77]

Selective serotonin reuptake
inhibitors (SSRIs)

Citalopram (RS)-1-[3-(dimethylamino) propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile

Walitt B et al., 2015 [78]
Fluoxetine (RS)-N-Methyl-3-phenyl-3-(4-trifluoromethylphenoxy) propylamine

Paroxetine (3S, 4R)-3-[(1,3-Benzodioxol-5-yl oxy) methyl]-4-(4-fluorophenyl) piperidine

Tryptophan 2-amino-3-(1H-indol-3-yl) propanoic acid

Escitalopram (S)-1-[3-(Dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile
Riera R, 2015 [79]

Sertraline (1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine

Tricyclic antidepressants Amitriptyline 8-methyl-2,3,3a,4,5,6-hexahydro-1H-pyrazino[3,2,1-jk]carbazole Moore RA et al.,2015 [80]

Monoamine oxidase inhibitors
(MAOIs)

Pirlindole 8-methyl-2,3,3a,4,5,6-hexahydro-1H-pyrazino[3,2,1-jk]carbazole
Tort S et al., 2012 [81]

Moclobemide 4-chloro-N-(2-morpholin-4-ylethyl) benzamide

Mirtazapine (RS)-1,2,3,4,10,14b-Hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benzazepine Welsch P et al., 2018 [82]

Antiepileptics

1st Generation Phenytoin 5,5-diphenylimidazolidine-2,4-dione Birse F et al., 2012 [83]

2nd Generation
Valproic acid

(Sodium valproate) 2-propylpentanoic acid Gill D et al., 2011 [84]

Clonazepam 5-(2-Chlorophenyl)-7-nitro-1,3-dihydro-1,4-benzodiazepin-2-one Corrigan R et al., 2012 [85]

3rd Generation
Pregabalin (S)-3-(amynomethyl)-5-methylhexanoic acid Derry S et al., 2016 [86]
Gabapentin 2-[1-(amynomethyl)cyclohexyl]ethanoic acid Wiffen PJ et al., 2017 [87]

Lacosamide N2-acetyl-N-benzyl-D-homoserinamide Hearn L et al., 2016 [88]

Topiramate 2,3: 4,5-Bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate Wiffen PJ et al., 2013 [89]

Antipsychotics Atypical Quetiapine 2-(2-(4-dibenzo [b,f] [1,4] thiazepine-11-yl-1-piperazinyl) ethoxy) ethanol Walitt B et al., 2016 (Jun) [90]

Cannabinoids Synthetic Nabilone (6aR,10aR)-rel-1-Hydroxy-6,6-dimethyl-3-(2-methyl-2-octanyl)-6,6a,7,8,10,10a-hexahydro-9H-benzo[c]chromen-9-one Walitt B et al., 2016 (Jul) [91]

Nonsteroidal
anti-inflammatory drugs

(NSAIDs)

Selective inhibitor of
Cyclooxygenase 2

(COX-2)
Etoricoxib 5-cloro-6′-metil-3-[4-(metilsulfonil)fenil]-2,3′-bipiridine

Derry S et al., 2017 [92]Inhibitor of prostaglandin
synthesis

Ibuprofen (RS)-2-(4-(2-Methylpropyl)phenyl)propanoic acid
Naproxen (+)-(S)-2-(6-Methoxynaphthalen-2-yl)propanoic acid

Inhibitor of Cicloxygenase
(COX-1 and COX-2) Tenoxicam (3E)-3-[hydroxy(pyridin-2-ylamino)methylene]-2-methyl-2,3-dihydro-4H-thieno[2,3-e] [1,2]thiazin-4-one 1,1-dioxide

Opioids Semi synthetic Oxycodone (5R,9R,13S,14S)-4,5-α-epoxy-14-hydroxy-3-methoxy-17-methyl-morphinan-6-one Gaskell H et al., 2016 [93]

Drugs commonly prescribed to both FM and ME/CFS patients are bolded.
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Table 4. Classification of drugs commonly prescribed to ME/CFS patients.

Family Subfamily Active Principle IUPAC Name Reference

Anticonvulsants 3rd Generation
Gabapentin 2-[1-(amynomethyl)cyclohexyl]ethanoic acid

Castro-Marrero J et al., 2017 [48]
Pregabalin (S)-3-(amynomethyl)-5-methylhexanoic acid

Antidepressants

Selective serotonin reuptake
inhibitors

(SSRIs)

Nafazodone 2-[3-[4-(3-chlorophenyl)piperazin-1-yl]propyl]-5-ethyl-4-(2-phenoxyethyl)-1,2,4-triazol-3-one Collatz A et al., 2016 [46]

Bupropion (RS)-2-(tert-Butylamino)-1-(3-chlorophenyl)propan-1-one

Castro-Marrero J et al., 2017 [48]

Citalopram ((RS)-1-[3-(Dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile

Escitalopram ((S)-1-[3-(Dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile

Fluoxetine (RS)-N-Methyl-3-phenyl-3-(4-trifluoromethylphenoxy) propylamine

Sertraline (1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine

Paroxetine (3S, 4R)-3-[(1,3-Benzodioxol-5-yl oxy) methyl]-4-(4-fluorophenyl) piperidine

Serotonin–norepinephrine
reuptake inhibitors (SNRIs)

Methylphenidate Methyl phenyl(piperidin-2-yl)acetate
Blockmans D and Persoons P,

2016 [97]; Castro-Marrero J et al.,
2017 [48]

Duloxetine (+)-(S)-N-Methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine
Castro-Marrero J et al., 2017 [48]

Venlafaxine (RS)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]cyclohexanol

Tricyclic antidepressants

Amitriptyline 3-(10,11-dihydro-5H-dibenzo [a,d] cycloheptene-5-ylidene)-N, N-dimethyl-1-propanamine

Castro-Marrero J et al., 2017 [48]

Clomipramine 3-(2-chloro-5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N,N-dimethylpropan-1-amine

Desipramine 3-(5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N-methylpropan-1-amine

Doxepin (3E)-3-(6H-benzo[c][1]benzoxepin-11-ylidene)-N,N-dimethylpropan-1-amine

Imipramine 3-(5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N,N-dimethylpropan-1-amine

Nortriptyline 3-(5,6-dihydrodibenzo[2,1-b:2′,1′-f][7]annulen-11-ylidene)-N-methylpropan-1-amine

Monoamine oxidase inhibitors
(MAOIs)

Moclobemide 4-chloro-N-(2-morpholin-4-ylethyl)benzamide Collatz A et al., 2016 [46];
Castro-Marrero J et al., 2017 [48]Phenelzine 2-phenylethylhydrazine

Selegiline (R)-N-methyl-N-(1-pheny lpropan-2-yl)prop-1-yn-3-amine Castro-Marrero J et al., 2017 [48]

Noradrenergic and specific
serotonin antagonist (NaSSAs) Mirtazapine (RS)-1,2,3,4,10,14b-Hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benzazepine Castro-Marrero J et al., 2017 [48]

Monoaminergic stabilizer (–)-OSU-6162 (3S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine Nilsson MKL et al., 2017 [98]

Antihypertensive
Stimulant to α2-Receptors Clonidine hydrochloride N-(2,6-dichlorophenyl)-4,5-dihydro-1H-imidazol-2-amine;hydrochloride Collatz A et al., 2016 [46]

Angiotensin II receptor agonist Olmesartan medoxomil (5-metil-2-oxo-2H-1,3-dioxol-4-il)metil
4-(2-hidroxipropan-2-il)-2-propil-1-({4-[2-(2H-1,2,3,4-tetrazol-5-il)fenil]fenil}metil)-1H-imidazole-5-carboxilato Proal AD et al., 2013 [99]

Antioxidant

Fatty acid oxidant L-Carnitine 3-Hydroxy-4-(trimethylazaniumyl)butanoate Plioplys AV and Plioplys S.,
1997 [100]

Ubiquinone CoQ10 [(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-
decaenyl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione Castro-Marrero J et al., 2015

[101]
Re-Dox Agent NADH Nicotine adenine dinucleotide

Omega-3 fatty acid α-lipoic acid (R)-5-(1,2-dithiolan-3-yl)pentanoic acid

Castro-Marrero J et al., 2017 [48]
Docosahexaenoic acid(DHA) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

Vitamins
Vitamin C (2R)-2-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2H-furan-5-one

Folate (Vitamin B9) (2S)-2-[[4-[(2-Amino-4-oxo-1H-pteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid
Hydroxycobalamin Vitamin B12) Coα-[α-(5,6-dimethylbenzimidazolyl)]-Coβ-hydroxocobamide
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Table 4. Cont.

Family Subfamily Active Principle IUPAC Name Reference

Antiviral

Blocking adhesion and viral
penetration Amantadine 1-amino-adamantane Plioplys AV and Plioplys S.,

1997 [100]

Acid nucleics analogs
Valganciclovir [2-[(2-amino-6-oxo-3H-purin-9-yl)methoxy]-3-hydroxypropyl] (2S)-2-amino-3-methylbutanoate Collatz A et al., 2016 [46];

Castro-Marrero J et al., 2017 [48]

Acyclovir 2-amino-9-(2-hydroxyethoxymethyl)-3H-purin-6-one
Castro-Marrero J et al., 2017 [48]

Valacyclovir 2-[(2-amino-6-oxo-3H-purin-9-yl)methoxy]ethyl (2S)-2-amino-3-methylbutanoate

Corticoids Glucocoticoid
Hydrocortisone (11β)-11,17,21-trihydroxypregn-4-ene-3,20-dione Blockmans D et al., 2003 [102];

Collatz A et al., 2016 [46]

Fludrocortisone (8S,9R,10S,11S,13S,14S,17R)-9-fluoro-11,17-dihydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-
1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Blockmans D et al., 2003 [102]

Nonsteroidal
Anti-Inflammatory

Drugs (NSAIDs)

Inhibitor of prostaglandin
synthesis

Ibuprofen (RS)-2-(4-(2-Methylpropyl)phenyl)propanoic acid
Castro-Marrero J et al., 2017 [48]

Naproxen (+)-(S)-2-(6-Methoxynaphthalen-2-yl)propanoic acid

Others

Immunomodulatory double
stranded RNA Rintatolimod 5′-Inosinic acid, homopolymer, complex with 5′-cytidylic acid polymer with 5′-uridylic acid (1:1) Strayer DR et al., 2012 [103]

Anti-neoplastic Sodium dichloroacetate Dichloroacetic acid Comhaire F., 2018 [104]

Ig gamma-1 chain C region Rituximab Lithium;4-[2-(diethylamino)ethylcarbamoyl]-2-iodobenzoate

Collatz A et al., 2016 [46]

Proliferation inductor from B
cells

Intravenous immunoglobulin
(Immunoglobulin G)

(2S)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-amino-3-
(1H-indol-3-yl)propanoyl]amino]-4-oxobutanoyl]amino]propanoyl]amino]hexanoyl]amino]-3-

hydroxybutanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid

Hormone Growth hormone (Somatotropin) 191 amino acid peptide (IUPAC name N/A)

Wakefulness-promoting Modafinil 2-[(diphenylmethyl)sulfinul]acetamide

Peripherally-selective
antihistamine Terfenadine 1-(4-tert-butylphenyl)-4-[4-[hydroxy(diphenyl)methyl]piperidin-1-yl]butan-1-ol

Precursor of Creatine Guanidinoacetic acid
(Glycocyamine) 2-(diaminomethylideneamino)acetic acid Ostojic SM et al., 2016 [105]

Pain
Opiate Codeine (5α,6α)-7,8-didehydro-4,5-epoxy-3-methoxy-17-methylmorphinan-6-ol

Castro-Marrero J et al., 2017 [48]Morphine (4R,4aR,7S,7aR,12bS)-3-Methyl-2,3,4,4a,7,7a-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-7,9-diol

Opiod Tramadol (±)-cis-2-[(dimetilamino)metil]-1-(3-metoxifenil) ciclohexanol hidrocloruro

Psycho-pharmaceutical Benzodiazepine Galantamine hidrobromide (4aS,6R,8aS)-5,6,9,10,11,12-Hexahydro-3-methoxy-11-methyl-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
Collatz A et al., 2016 [46]

Psychostimulant Dextroamphetamine (2S)-1-phenylpropan-2-amine

Drugs commonly prescribed to both FM and ME/CFS patients are bolded.
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3.3. miRNA–Drug Interactions in FM and ME/CFS

With the intention to discriminate whether the miRNomes proposed to associate with FM or
with ME/CFS are derived from drug intake differences between the patient and control groups,
we performed a screen of drugs that could alter any of the miRNAs in these miRNomes using the
SM2miR web server [65] and each of the individual DE miRNAs or disease miRNome as the input,
as previously detailed in the Methods section.

The SM2miR drug output file (Table S2) was contrasted with the FM and ME/CFS polypharmacy
tables (Tables 3 and 4), and it was found that five of the commonly prescribed drugs for FM or ME/CFS
(DHA, fluoxetine, glucocorticoids, morphine, and valproate) are estimated to alter the levels of one or
more of the miRNAs found DE in FM or ME/CFS screenings (potential disease-associated miRNomes)
and therefore these drugs could constitute confounding variables of the assay (Table 5) [106–111].
Overlapping tendencies may suggest that the detected differences between studied groups associate
with treatment rather than constituting potential biomarkers of disease, while opposed tendencies
might reflect additional factors leading to differential expression other than drug intake, disease
status included. Importantly, as summarized in Table 5, the expression of miRNA-27b reported in
miRNomes of both FM and ME/CFS in more than one report [67,74] is affected by the only overlapping
compound commonly prescribed for treatment of both diseases (fluoxetine), indicating a potential
drug–interference effect. Three additional miRNAs reported as miRNomes of ME/CFS by more
than one study (miR-26a, miR-126, and miR-191) are also affected by drugs frequently prescribed to
ME/CFS patients, so special attention should be paid when interpreting miRNome results including
these miRNAs.

It must be pointed out that, in an effort to complete the search as much as possible, the list of
DE miRNAs in FM and ME/CFS used in the SM2miR search not only included the miRNAs listed in
Tables 1 and 2 but also those documented in the supplementary tables of the listed literature [67–74].

3.4. Drug–Disease Interactions Based on FM and ME/CFS miRNomes

To evaluate potential biased responses of FM and ME/CFS patients to pharmacotherapy in general,
due to their DE miRNA profiles, we searched for diseases commonly treated with small-molecule
drugs that depend on gene sets linked to FM or ME/CFS miRNomes (miRNA–gene–drug datasets).
With this purpose, individual DE miRNAs in FM or ME/CFS were used as input in the Pharmaco-miR
web search tool [50]. The output constituted a list of genes whose expression is dependent on FM and
ME/CFS DE miRNAs (Table S3) and a third column facilitating small molecule drug associations for
these gene lists. Among the 709 small molecules linked to FM miRNome, only 595 appeared registered
in the Drugbank database. Out of the 668 small molecules associating with ME/CFS miRNomes,
557 appeared registered in Drugbank [64].

Finally, Drugbank numbers of these small molecules were used as the input to search
repoDB, a database of small drugs developed by Brown and Patel to facilitate screenings for drug
repositioning [66]. The results (Table S3, miRNome–drug–disease tabs) show 1480 and 1455 diseases
treated with small molecules, respectively, associating with FM or ME/CFS miRNomes after filtering
out duplications. Out of these diseases potentially impacting individualized medicine programs
for FM and ME/CFS patients, more than 30% corresponded to cancer of some type. Within cancer,
13% corresponded to lymphoma, and 14% to lymphoma plus leukemia. This seems to indicate that
quite possibly FM and ME/CFS patients may respond differently to treatments for these diseases with
respect to non-FM and non-ME/CFS patients, so it is advised that attention be paid to individualized
medicine programs for the treatment of these cancers in the case of FM and CFS/ME patients.
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Table 5. Effect of FM and ME/CFS polypharmacy on miRNomes associated with disease.

Prescribed Drugs miR Affected Disease miR Levels in
Patients

Treatment
Effect Reference

Docosahexaenoic
acid (DHA)

miR-30c ME/CFS ↑ (PBMCs) [74] Upregulated

Gil-Zamorano J et al., 2014 [106]
miR-143-3p ME/CFS ↑ (Plasma) [73] Upregulated

miR-181a-5p ME/CFS ↑ (PBMCs) [74] Upregulated

miR-330 ME/CFS ↑ (PBMCs) [74] Upregulated

Fluoxetine miR-27b
FM ↓ (CSF) [67] Upregulated Rodrigues AC et al., 2011 [107]

ME/CFS ↑ (PBMCs) [74]

Glucocorticoid

miR-16 ME/CFS ↓ (Plasma) [73] Upregulated
Rainer J et al., 2009 [108]

miR-19b ME/CFS ↑ (PBMCs) [74] Upregulated

miR-181a ME/CFS ↑ (PBMCs) [74] Upregulated Rainer J et al., 2009 [108]; Lu S et
al., 2012 [109]miR-223 ME/CFS ↓ (NK cells) [72] Upregulated

miR-21 ME/CFS ↓ (NK cells) [72] Upregulated

Lu S et al., 2012 [109]

miR-10a ME/CFS ↓ (NK cells) [72] Upregulated

miR-27a ME/CFS ↑ (PBMCs) [74] Upregulated

miR-99b ME/CFS ↑ (PBMCs) [74] Upregulated

miR-126 ME/CFS
↓ (Plasma) [73] Upregulated
↑ (PBMCs) [74]

miR-145 ME/CFS ↑ (PBMCs) [74] Upregulated

miR-146a ME/CFS ↓ (NK cells) [72] Upregulated

miR-324-5p ME/CFS ↑ (PBMCs) [74] Upregulated

miR-339-3p ME/CFS ↑ (PBMCs) [74] Upregulated

Morphine

miR-16 ME/CFS ↓ (Plasma) [73] Upregulated

Dave R.S & Khalili K., 2010 [110]

miR-24 ME/CFS ↑ (PBMCs) [74] Upregulated

miR-30c ME/CFS ↑ (PBMCs) [74] Upregulated

miR-146a ME/CFS ↓ (NK cells) [72] Upregulated

miR-21 ME/CFS ↓ (NK cells) [72] Downregulated

miR-26a ME/CFS
↓ (NK cells) [72] Downregulated
↑ (PBMCs) [74]

miR-99b ME/CFS ↑ (PBMCs) [74] Downregulated

miR-191 ME/CFS
↓ (NK cells) [72] Downregulated
↑ (PBMCs) [74]

miR-320a ME/CFS ↑ (PBMCs) [74] Downregulated

miR-320c ME/CFS ↑ (PBMCs) [74] Downregulated

miR-423-5p ME/CFS ↑ (PBMCs) [74] Downregulated

Valproate miR-21 FM ↓ (PBMCs) [69] Upregulated Fayyad-Kazan H et al., 2010 [111]
miR-125a FM ↑ (WBC*) [71] Downregulated

* WBC: white blood cells. Bolded miRs correspond to miRs DE according to more than one ME/CFS study.
Underlined miRs correspond to mi Rs DE in FM and ME/CFS studies.

4. Discussion

This paper is the first to evaluate the relationship between commonly prescribed drugs for FM
and ME/CFS and miRNA expression and compares these profiles to FM- and ME/CFS-reported
miRNomes in an effort to discern miRNAs presenting differential expression due to medication from
differences more likely related to disease. The resources used in this study are limited and therefore it
is expected that the evidence presented here will be refined as more data becomes available. The topic
is not exclusive to FM and ME/CFS, as it can be extended to any other study evaluating miRNomes
associated with disease. However, the fact that FM and ME/CFS patients are usually polymedicated to
palliate the multiple symptoms that associate with these illnesses extends this concern to higher levels,
particularly demanding careful registry of study participants’ medication, when restrictive medication
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inclusion criteria is not an option. In this sense, the ME/CFS Common Data Elements initiative [49] has
made publicly available medication guidelines and CRFs at the disposition of researchers, which may
help standardize medication registry in ME/CFS studies.

Although some researchers have expressed their concern of the impact of drug use by FM and
ME/CFS patients on the study of molecular markers and although recent work in the area is already
reporting the medication used by participants [71,112], the information of registered drugs is not yet
used to evaluate potential interference or bias of results. To elevate biomarker screenings of FM and
ME/CFS based on miRNA profiles, complex stratified analysis to filter out potential drug and other
confounding variables will be required. The complexity and limitations of this analysis is served by
the fact that miRNA expression responds to many cues, such as exercise and diet, hormones, sex,
and aging [38–43].

A commonly used approach to minimize confounding variables, although not free of certain
difficulties for sampling, is to set restrictive inclusion criteria including sex selection, narrow age
range, and BMI. This is important in miRNA screenings as these parameters are known to affect
miRNA profiles [113]. Additional sampling details such as fasting blood draw and the selection of
sedentary healthy controls may improve study outcomes. Some authors have even taken into account
time of blood collection to reduce circadian variation [71], but it may not be possible to eliminate
polypharmacy, particularly in studies including severely affected FM and ME/CFS patients.

Prescriptions for other common health problems such as diabetes or high cholesterol,
diet supplements and some recreational drugs alter the expression of some miRNAs in FM and
ME/CFS miRNomes (Table S4) [107,114–125]. Hormones and other natural compounds also impact
FM and ME/CFS miRNomes (Table S5) [106,126–136], stressing the necessity for researchers to
collect complete medical histories of participants to accurately evaluate miRNAs as biomarkers
of these diseases.

Though FM and ME/CFS miRNomes relate to disease or derive from chronic polypharmacy use,
DE miRs should represent a relevant factor to take into account when treatments for other diseases
such as cancer are due. Here, we performed an analysis of the diseases whose treatment response could
differ in the context of FM and ME/CFS miRNomes, and found a broad range of them. The major
representation of cancer (above 35%) might merely reflect the fact that more studies are registered in
the field, biasing databases. Importantly, a relevant number of hits associated with lymphoma, a type
of cancer appearing at higher incidence among ME/CFS patients [137], is possibly due to associated
immune dysfunctions of this disease.

Personalized medicine programs considering miRNome backgrounds may more adequately
select effective treatments with reduced side effects. It is therefore envisioned that future improved
therapeutic analysis, including pharmacogenomics and pharmacoepigenomics (precision medicine
programs), will rely on complex software tools fed with large datasets. Further miRNA profiling
studies including a larger number of samples are required to build on the scarce available FM and
ME/CFS miRNome data. Since technical variability in miRNA qPCR replicates has been documented,
with TaqMan overweighing qScript PCR [138], future studies should include repeated independent
measures or either use alternative enzyme-free approaches such as NanoString [139].

In general, we have evaluated the effects of polypharmacy and miRNomes at individual levels,
meaning that the information obtained here corresponds to the effects of a single drug on DE miRNAs
or the impact of an individual miRNA on drug performance, but the effects of combined therapies on
miRNA profiles or sets of DE miRNAs on drug response may not replicate or be additive of single
events, highlighting the limitation of our study. In addition, most molecular data come from analysis
of blood or other body fluid samples and more sparingly from non-cancerous solid tissues, limiting
the validity of our results, as miRNA profiles are known to be tissue-restricted [140]. Drug assays are
performed in either animal models or tumor cell lines leading to results that may not replicate in other
systems, especially since many miRNAs are primate or human-specific [63,141].
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In summary, as larger data sets become available to nurture databanks, biomarker discovery will
be facilitated and personalized medicine programs will be refined, upgrading current diagnostic tools
and clinical treatments. Drug–transcriptome interactions are key factors in either context, particularly
in diseases subject to polypharmacy such as FM and ME/CFS.

5. Conclusions

The analysis presented here seem to support a potential impact of FM and ME/CFS polypharmacy
in the discovery of miRNomes associating with these diseases. Based on this possibility, caution is
advised when designing studies aimed at determining DE miRNAs linked to these diseases, including
complete drug registry to permit stratified analysis.

FM and ME/CFS miRNomes may predispose patients to respond differently to a large variety of
drug-based treatments, including those used for a large number of cancers, highlighting the importance
of considering this epigenomic bias in refined personalized programs towards improving a patient’s
response to clinical treatments while minimizing toxicity. It is estimated that more sophisticated
informatic tools will help with these predictions, but the paucity of molecular studies in FM and
ME/CFS currently limits their development.

The results presented here are not definitive at this stage, but their observations should stimulate
additional studies to further explore miRNA–drug interactions in the context of FM and ME/CFS.
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drugs on FM and ME/CFS miRNomes and Table S5: Effect of hormones and other natural compounds on FM and
ME/CFS miRNomes.
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