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Abstract

Objective. Offspring born to mothers with asthma in pregnancy
are known to have lower lung function which tracks with age.
Human group 2 innate lymphoid cells (ILC2) accumulate in foetal
lungs, at 10-fold higher levels compared to adult lungs. However,
there are no data on foetal ILC2 numbers and the association with
respiratory health outcomes such as lung function in early life. We
aimed to investigate cord blood immune cell populations from
babies born to mothers with asthma in pregnancy. Methods. Cord
blood from babies born to asthmatic mothers was collected, and
cells were stained in whole cord blood. Analyses were done using
traditional gating approaches and computational methodologies
(t-distributed stochastic neighbour embedding and PhenoGraph
algorithms). At 6 weeks of age, the time to peak tidal expiratory
flow as a percentage of total expiratory flow time (tPTEF/tE%) was
determined as well as Lung Clearance Index (LCI), during quiet
natural sleep. Results. Of 110 eligible infants (March 2017 to
November 2019), 91 were successfully immunophenotyped
(82.7%). Lung function was attempted in 61 infants (67.0%), and
43 of those infants (70.5% of attempted) had technically
acceptable tPTEF/tE% measurements. Thirty-four infants (55.7% of
attempted) had acceptable LCI measurements. Foetal ILC2 numbers
with increased expression of chemoattractant receptor-
homologous molecule (CRTh2), characterised by two distinct
analysis methodologies, were associated with poorer infant lung
function at 6 weeks of age.” Conclusion. Foetal immune responses
may be a surrogate variable for or directly influence lung function
outcomes in early life.
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INTRODUCTION

During pregnancy, the maternal immune response
is shifted towards a type 2 (T2) dominant response
that promotes immunological tolerance towards
the foetus. In pregnant women with asthma, the
T2 response is further exaggerated, and interferon
(IFN) production is lower, resulting in increased
inflammatory responses and reduced antiviral
immunity.1,2 The foetal immune system is thought
to be under the direct influence of the maternal
T2 immune response mounted at the foetus–
maternal interface. Infants who fail to develop a
mature immune response in the first 6 months of
life with a shift from T2 dominance towards
immunological tolerance have the highest risk to
develop allergic diseases in later life.3,4

Innate lymphoid cells (ILCs) are a subset of
immune cells with lymphoid morphology that lack
antigen receptors and typical lineage markers.5

Group 2 ILCs (ILC2) denote the population of ILCs
that produce T2 cell-associated cytokines6 and are
elevated in asthmatic patients in the lung, sputum
and blood.7-10 It is well established that ILC2 is a
major cellular source of interleukin (IL)-5 and IL-
13, during the initiation and maintenance of
allergic lung disease,11 and is the primary source
of IL-5 within the lung.12 Employing IL-5
transgenic mice, Lebold et al.13 showed that
maternal IL-5 crosses the placenta and causes
eosinophilia in the foetus and stimulates foetal IL-
5 production that promoted vagally mediated
airway constriction. It is plausible that the in utero
promotion of lung eosinophilia induced by IL-5-
producing ILC2 may increase sensory innervation
of the airways, wiring them for the development
of subsequent airway hyperreactivity.14

Lung function is an objective parameter to assess
respiratory outcomes very early in life, at a time
when respiratory symptoms are yet to develop. Lung
function parameters are sensitive to conditions and
exposures adversely affecting the foetus, such as
premature birth, in utero tobacco smoke exposure
and maternal asthma in pregnancy.15-17

Environmental exposure to air pollution in
childhood can increase the risk of developing
asthma even in individuals with high lung function
in infancy.18 While several studies have shown that
infants with poor lung function at birth are at

increased risk of the subsequent development of
asthma, this has not been universally reported19-23

and further work is required to understand the
nuanced relationship between lung function and
asthma through childhood.24

The measurement of flow-volume parameters
during naturally occurring sleep in young infants’
tidal breathing has been extensively used and
validated.25-27 Time to peak tidal expiratory flow
divided by the total time of tidal expiratory flow
(tPTEF/tE%) is recognised as an integrated output
of the entire respiratory system, including airflow
limitation and control of breathing in young
infants, and these values are reduced in the
presence of airway obstruction.26 The multiple
breath washout (MBW) technique is used as a
sensitive marker to measure the efficiency of
ventilation distribution in the lungs quantified as
Lung Clearance Index (LCI).28 LCI represents the
number of the functional residual capacity (FRC)
volume turnovers required to wash out the tracer
gas during testing with higher values indicative of
lung ventilation inhomogeneities because of small
airway constriction. Both tPTEF/tE% and LCI have
been reported as being altered in infants and
children with a range of respiratory conditions29-31

and are predictive of later respiratory health.32,33

Considering the direct influence of maternal T2
immune response at the foetus–maternal interface
that ILC2 is the primary innate source of T2 cell-
associated cytokines,6 which are elevated in
asthmatic patients’ blood,7 the relationship
between ILC2 and lung function in early life was
here explored. Cord blood was immunophenotyped
as a representative snapshot of the in utero
immune environment34 in conjunction with
quantitative measurement of infant lung function.
Since ILC2 has been reported to cluster in the
vicinity of the airway epithelium and alveolar
space,35,36 tPTEF/tE% as well as LCI were measured
to investigate multiple aspects of lung function in
6-week-old babies born to asthmatic mothers.

RESULTS

Study population

To explore associations between profiles of
subsets of immune cells in the cord blood and
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lung function in early infancy, we enrolled babies
born to asthmatic women, who had asthma in
pregnancy and participated in the Breathing for
Life Trial (BLT).37 A characteristic table of the
subjects enrolled is presented in Table 1. All
participants gave written informed consent (ref
no. 12/10/17/3.04). Between March 2017 and
November 2019, 110 eligible infants were born to
mothers participating in BLT at John Hunter
Hospital, Newcastle site. From those infants, 91
(82.7%) had cord blood collected immediately
after birth and had cells stained in whole blood
and subsets predefined based on specific surface
markers (Supplementary table 1) within 6 h. Lung
function was attempted in 61 infants (67.0%), and
43 of those infants (70.5% of attempted) had
acceptable and successful tidal breathing flow
volume loop (TBFVL) measurements while 34
infants (55.7% of attempted) had acceptable and
successful sulphur-hexafluoride (SF6) MBW tests at
the same age (Figure 1). The percentage of cord
blood cells stained were maintained between all
groups analysed (Supplementary table 2).

ILC2 and CRTh2high ILC2 correlate with
tPTEF/tE% and LCI

Considering ILC2 analysed by the standard biaxial
gating strategy (Figure 2a), correlation analyses
were applied. tPTEF/tE% negatively correlated

with total ILC2 (Figure 2b) as well as with
CRTh2high ILC2 (Figure 2c). Spearman analysis
showed a positive correlation between LCI and
total ILC2 (Figure 2d) and also between LCI and
CRTh2high ILC2 (Figure 2e). However, there was no
correlation between normalised tPTEF/tE% and
LCI (r = �0.237, P = 0.178). Thus, total ILC2 and
CRTh2high ILC2 numbers in cord blood were
associated with impaired lung function and
increased lung ventilation inhomogeneities.

CRTh2high ILC2 are predictors of tPTEF/tE%
and LCI in a multivariable and univariable
regression

Linear regression analyses were performed to
determine the association between ILC2 numbers
in cord blood and infant lung function. tPTEF/tE%
was significantly associated with CRTh2high ILC2
numbers [Table 2, beta-parameter estimate
�11.790, 95% confidence interval (CI) �20.695 to
�2.885 and P = 0.011] in the multivariable
regression analysis. Eosinophils (beta-parameter
estimate �0.001, CI �0.087 to 0.084 and
P = 0.972), neutrophils (beta-parameter estimate
0.020, CI �0.024 to 0.064 and P = 0.368), active
CD4 T cells (beta-parameter estimate 0.002, CI
�0.028 to 0.031 and P = 0.897), active CD8 T cells
(beta-parameter estimate �0.007, CI �0.077 to
0.062 and P = 0.831), Treg (beta-parameter

Table 1. Characteristic table of subjects with cord blood collected and valid tPTEF/tE% and LCI tests at 6 weeks of age (results are shown as

average)

CB samples – FACS

analysisn = 91

CB samples – FACS

and tPTEF/tE%n = 43

CB samples – FACS

and LCIn = 34

Gravidity (min–max) 2.6 (1–9) 2.6 (1–9) 2.6 (1–9)

Caesarean section (%) 33 (36.3) 13 (30.2) 8 (23.5)

Maternal age (min–max) 30.0 (19.0–41.5) 31.0 (20.0–40.8) 31.4 (20.2–40.8)

Male (%) 49 (53.8) 25 (58.1) 19 (55.9)

Maternal smoking (%) 11 (12.1) 3 (7.0) 2 (5.9)

Gestational age at delivery (min–max) 39.0 (34.0–41.0) 39.0 (37.0–41.0) 39.0 (37.0–41.0)

Birthweight (kg) (min–max) 3.5 (2.1–4.9) 3.6 (2.2–4.9) 3.6 (2.2–4.9)

Birth length (cm) (min–max) 51.6 (30.7–58.0) 52.4 (47.0–57.2) 52.2 (47.0–57.2)

Age at test (days) (min–max) 48.1 (33.0–73.0) 48.5 (33.0–73.0)

Length at test (cm) (min–max) 56.0 (50.0–62.0) 56.0 (50.0–62.0)

Weight at test (kg) (min–max) 5.0 (3.6–6.7) 4.9 (3.6–6.7)

Weight gain until test day (kg) (min–max) 1.35 (0.03–2.60) 1.33 (0.03–2.60)

Weight gain by day until test day (kg) (min–max) 0.03 (0.00–0.05) 0.03 (0.00–0.05)

Exclusive breastfeeding at test (%) 22 (51.2) 18 (51.4)

Mixed breastmilk and formula since birth (%) 15 (34.8) 12 (34.3)

Never breastfed (%) 6 (14.0) 4 (11.4)

CB, cord blood; FACS, fluorescence-activated cell sorting; LCI, Lung Clearance Index; tPTEF/tE, ratio of time to reach peak tidal expiratory flow to

total expiratory time.
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estimate �0.167, CI �0.439 to 0.105 and
P = 0.220), B cells (beta-parameter estimate 0.002,
CI �0.005 to 0.008 and P = 0.581), NK cells (beta-
parameter estimate 0.002, CI �0.006 to 0.009 and
P = 0.664), ILC1 (beta-parameter estimate 15.504,
CI �1.560 to 32.568 and P = 0.074), ILC2 total
(beta-parameter estimate �4.734, CI �10.133 to
0.664 and P = 0.084), CRTh2low ILC2 (beta-
parameter estimate �3.410, CI �13.018 to 6.199
and P = 0.476) and ILC3 (beta-parameter estimate
�2.748, CI �12.945 to 7.450 and P = 0.588) were
not significantly linked with normalised tPTEF/tE%
(Table 2).

In univariable regression, LCI was significantly
associated with total ILC2 (beta-parameter
estimate 0.655, CI 0.297 to 1.013 and P = 0.001),
CRTh2low ILC2 (beta-parameter estimate 0.890, CI
0.098 to 1.681 and P = 0.029) and also CRTh2high

ILC2 numbers (beta-parameter estimate 1.058, CI
0.452 to 1.663 and P = 0.001; Table 2). Confirming
that CRTh2high ILC2 numbers in cord blood are
associated with lung function at 6 weeks. Other
cell populations – eosinophils (beta-parameter
estimate 0.004, CI �0.002 to 0.011 and P = 0.204),
neutrophils (beta-parameter estimate �0.002, CI

�0.005 to 0.001 and P = 0.197), active CD4 T cells
(beta-parameter estimate �0.002, CI �0.005 to
0.002 and P = 0.375), active CD8 T cells (beta-
parameter estimate �0.003, CI �0.010 to 0.004 and
P = 0.367), Treg (beta-parameter estimate �0.007,
CI �0.032 to 0.018 and P = 0.577), B cells (beta-
parameter estimate 0.0001, CI, �0.001 to 0.001
and P = 0.784), NK cells (beta-parameter estimate
0.0003, CI �0.0004 to 0.001 and P = 0.420), ILC1
(beta-parameter estimate 0.312, CI �1.074 to 1.698
and P = 0.649) and ILC3 (beta-parameter estimate
0.482, CI �0.429 to 1.393 and P = 0.289) – were
not significantly associated with LCI (Table 2).

Computational methodologies indicate
CRTh2high ILC2 population increased in cord
blood from babies with a worse lung
function at 6 weeks

To investigate the association between CRTh2high

ILC2 in cord blood and lung function parameters
(tPTEF/tE% and LCI) in an unbiased way,
we employed computational methodologies
[t-distributed stochastic neighbour embedding
(tSNE) and PhenoGraph algorithms].

Figure 1. Flow chart. Recruitment, collection of cord blood samples and the success rate of lung function tests. FACS, fluorescence-activated cell

sorting; MBW, multiple breath washout; TBFVL, tidal breathing flow volume loop.
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Figure 2. Cord blood ILC2 and its relationship with infant lung function. Cord blood samples stained and acquired with a LSRFortessa X-20 flow

cytometer and analysed using FlowJo software. Representation of flow cytometry gating strategy (a). Pearson correlation analysis between

adjusted tPTEF/tE% at 6 weeks of age and total ILC2 [CD45+ lineage� (CD3, TCR-ab, TCR-cd, CD19, CD11c, CD94, CD14, CD1a, CD34, CD123,

CD303, FceRIa) CD127+, CD161+, CRTh2+] (b) and CRTh2high ILC2 (CD45+ lineage� CD127+, CD161+, CRTh2high) (c) in cord blood (n = 43).

Spearman correlation analysis between LCI at 6 weeks of age and total ILC2 (d) and CRTh2high ILC2 (e) in cord blood, analysed by standard

biaxial gating (n = 34).
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Lung function results for both parameters were
analysed separately in quartiles with the quartile
with the best lung function compared to the three
quartiles of lower lung function. We have
previously demonstrated that lung function at
6 weeks of age is reduced in babies born to
asthmatic mothers.38 Thus, in this cohort of infants
born to asthmatic mothers, the lung function in the
top quartile of infants equates with those above
the median in previous normative cohorts.25 tSNE
plots allowed the visualisation of distinct cluster
distribution between lung function groups for
tPTEF/tE% (Figure 3a) and LCI (Figure 3c). To
explore the hypothesis that cell populations are
differentially distributed between the groups
defined by lung function quartiles, a PhenoGraph
algorithm was applied.39 Clusters were individually
analysed with three specific cell groups increased
among the three lowest quartiles of tPTEF/tE%
(Figure 3b). In a separate analysis, three clusters
also had cell count increased among the three
highest quartiles of LCI (Figure 3d). The relative
expression level for each cell surface marker was
assessed for all clusters. In the tPTEF/tE% stratified
tSNE and PhenoGraph analysis, cluster 17 was
commensurate with the typical ILC2 lineage
expressing CD127, CD161 and high CRTh2
(Figure 3b and Supplementary figure 1b). Likewise,
in the LCI-stratified tSNE and PhenoGraph analysis,
cluster 14 had these same characteristics (Figure 3d
and Supplementary figure 1c). With both measures
of lung function, these cells were markedly reduced
in the quartile with the best lung function.

Computational methodologies confirm
CRTh2high ILC2 as predictors of tPTEF/tE%
and LCI in a multivariable and univariable
regression

To determine whether CRTh2high ILC2 identified by
unbiased computational methodologies present
the same characteristics previously observed by
manually gated CRTh2high ILC2, linear regression
was performed. Clusters 17 and 14 were predictors
of tPTEF/tE% and LCI, respectively (Table 3).

Correlation analysis using these clusters also
matched that of manually gated CRTh2high ILC2
cells and showed an inverse correlation between
adjusted tPTEF/tE% at 6 weeks of age and
CRTh2high ILC2 (Cluster 17; r = �0.344 P = 0.024;
Figure 3e). There was also a positive correlation
between LCI at 6 weeks of age and CRTh2high ILC2
(Cluster 14) identified by tSNE and PhenoGraph
algorithms (r = 0.370 P = 0.031; Figure 3f). These
data demonstrate that higher levels of CRTh2high

ILC2, which were characterised by two distinct
analysis methodologies, were associated with
worse lung function.

CRTh2high ILC2 positively correlates with IL-5
and IL-5/IL-10 ratio

Interleukin-5 and IL-10 cytokines were also
measured in cord blood plasma, and CRTh2high

ILC2 correlated positively with IL-5 (r = 0.281
P = 0.008) and the IL-5/IL-10 ratio (r = 0.251
P = 0.019). However, it is conceivable that the

Table 2. Linear regression analysis used to identify variables associated with tPTEF/tE% and with LCI

tPTEF/tE%

Multivariable analysisa

LCI

Univariable analysis

Coefficient SE P-value 95% CI Coefficient SE P-value 95% CI

Eosinophils �0.001 0.042 0.972 �0.087; 0.084 Eosinophils 0.004 0.003 0.204 �0.002; 0.011

Neutrophils 0.020 0.022 0.368 �0.024; 0.064 Neutrophils �0.002 0.002 0.197 �0.005; 0.001

Active CD4 T cells 0.002 0.015 0.897 �0.028; 0.031 Active CD4 T cells �0.002 0.002 0.375 �0.005; 0.002

Active CD8 T cells �0.007 0.034 0.831 �0.077; 0.062 Active CD8 T cells �0.003 0.003 0.367 �0.010; 0.004

Treg �0.167 0.134 0.220 �0.439; 0.105 Treg �0.007 0.012 0.577 �0.032; 0.018

B cells 0.002 0.003 0.581 �0.005; 0.008 B cells 0.0001 0.0003 0.784 �0.001; 0.001

NK cells 0.002 0.004 0.664 �0.006; 0.009 NK cells 0.0003 0.0003 0.420 �0.0004; 0.001

ILC1 15.504 8.406 0.074 �1.560; 32.568 ILC1 0.312 0.680 0.649 �1.074; 1.698

ILC2 �4.734 2.659 0.084 �10.133; 0.664 ILC2 0.655 0.176 0.001 0.297; 1.013

CRTh2high ILC2 �11.790 4.386 0.011 �20.695; �2.885 CRTh2high ILC2 1.058 0.297 0.001 0.452; 1.663

CRTh2low ILC2 �3.410 4.733 0.476 �13.018; 6.199 CRTh2low ILC2 0.890 0.388 0.029 0.098; 1.681

ILC3 �2.748 5.023 0.588 �12.945; 7.450 ILC3 0.482 0.447 0.289 �0.429; 1.393

Coefficients relative to cells are expressed as the change in the lung function measure per 103 of the identified cell type.
aMultivariable analysis for each cell type adjusted for male sex, birth order, exclusive breastfeeding until test day, weight gain until test day and

age at test (days).

2021 | Vol. 10 | e1296

Page 6

ª 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

Cord blood ILC2 and infant lung function G Martins Costa Gomes et al.



Figure 3. Cord blood ILC2 analysed by computational methods. Visualised tSNE map of cord blood samples, pseudocolour plot and density plots

facilitates the visualisation of clusters between the three lowest quartiles of tPTEF/tE% and its highest quartile (a) as well as the lowest quartile of

LCI and its three highest quartiles (c). Clusters profile plots from the three lowest quartiles of tPTEF/tE% (b) and the three highest quartiles of LCI

(d). Correlation analysis between adjusted tPTEF/tE% at 6 weeks of age and CRTh2high ILC2 (cluster 17) in the cord blood identified by tSNE and

PhenoGraph algorithms (e). Correlation analysis between LCI at 6 weeks of age and ILC2 CRTh2high (cluster 14) in cord blood identified by tSNE

and PhenoGraph algorithms (f). Data are expressed as positive cells in 103 of CD45+ cells.
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correlation between foetal CRTh2high ILC2
numbers and total IL-5 in cord blood is weakened
by maternally derived IL-5 crossing the placental
barrier. Additionally, CRTh2high ILC2 correlated
with both eosinophils and other ILC subtypes in
cord blood (Table 4).

DISCUSSION

The immunological relationship between mother
and foetus has an important role in the
development of allergies and asthma in infants.
Children born to mothers with moderate-to-severe
uncontrolled asthma during pregnancy have a
higher risk of developing asthma themselves and
have more common lung function
abnormalities.40-43 Here, we had the unique
opportunity to evaluate the immunity of the
newborn prior to disease onset. Cord blood
samples from babies born to asthmatic mothers
were collected and immunophenotyped,
representing the in utero immune environment.
Further, lung function tests were performed in
infants at 6 weeks of life which was analysed in
relation to the cord blood cell populations.
Interestingly, foetal ILC2 numbers with increased
expression of CRTh2 were characterised by two
distinct analysis methodologies and were associated
with a poorer infant lung function at 6 weeks of
age measured by either tPTEF/tE% or LCI.

Previous studies have reported the presence and
importance of ILCs in cord blood44-46; however,
cord blood CRTh2high ILC2 populations and their
relationship with infant lung function had not yet
been investigated. Accumulation and activation of
ILC2 are considered a key event for many T2
inflammatory diseases.47 A recent study has shown

that lung ILC2 accumulation in mice in response
to systemic IL-33 delivery is dependent on the
CRTh2.48 CRTh2 is one of two functional
prostaglandin D2 (PGD2) receptors involved in
allergic and eosinophilic inflammation in animal
models and clinical studies.49-51 The interaction
between PGD2 and CRTh2 is implicated in allergic
inflammation52 and plays a key role in the
recruitment of ILC2 to the lung.48 The PGD2/CRTh2
axis is also involved in eosinophil recruitment
and activation and has emerged as a
potential pathophysiologic factor for allergy and
asthma.53-55 Here, cord blood CRTh2high ILC2
directly correlated with foetal eosinophil
numbers. Together this may indicate a role of
foetal ILC2 in promoting eosinophilia.

The balance of T1 and T2 cytokines in
pregnancy is thought to be crucial to maternal
tolerance of the infant.56,57 For this reason, it can
be difficult to interpret the skewing towards a T2
immune phenotype and subsequent development
of allergic diseases.58-61 However, experimental
models have demonstrated a role of maternal IL-5
in airway function by promoting foetal lung
eosinophilia.13,14 Interestingly, in the present
study we observed associations between cord
blood IL-5, CRTh2high ILC2 numbers and reduced
lung function at 6 weeks. Alternatively, higher
CRTh2high ILC2 numbers and reduced lung
function at 6 weeks may be a surrogate marker
for the strong predisposition conferred by
maternal asthma to develop asthma and wheeze
in childhood. Extensive future experimental and
clinical studies are warranted to further dissect
the potential relevance of this immune pathway
in predicting, and possibly shaping, airway
function in early life.

Table 3. Linear regression analysis used to identify differences between clusters defined by tSNE and PhenoGraph algorithms and its association

with tPTEF/tE% and LCI

tPTEF/tE%
Multivariable analysisa

LCI
Univariable analysis

Three lowest quartiles Coefficient SE P-value 95% CI

Three highest

quartiles Coefficient SE P-value 95% CI

Cluster 9 0.228 0.187 0.231 �0.152; 0.607 Cluster 14

(CRTh2high ILC2)

1.978 0.584 0.002 0.787; 3.168

Cluster 10 0.612 0.407 0.141 �0.214; 1.438 Cluster 16 0.010 0.012 0.418 �0.015; 0.035

Cluster 17

(CRTh2high ILC2)

�11.237 4.911 0.028 �21.207; �1.266 Cluster 21 �0.015 0.034 0.668 �0.084; 0.054

aMultivariable analysis for each cell type adjusted for male sex, birth order, exclusive breastfeeding until test day, weight gain until test day, and

age at test (days).
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Notwithstanding a lack of mechanistic insights,
our findings are of potential clinical significance
as asthma in childhood has previously been
associated with below-median tPTEF/tE% as early
as the first 3 days of life.19 Others have shown
lung function in early life tracks throughout
life23,62,63,64 and can be a risk factor for
subsequent development of chronic diseases such
as asthma and chronic obstructive pulmonary
disease (COPD) and asthma/COPD overlap
syndrome.21,23,65

A common limitation of studies utilising cord
blood is the restricted sample size, and this study
is no exception. However, the advantages of
being able to access a suitable quantity of blood
so early in life have allowed cord blood studies
with relatively small sample sizes to make
significant contributions to our understanding
of early life immune and respiratory
development.66-71 Here, the lowest quartile was
used to identify those with lower lung function as
previously described.23 However, the weakness of
this approach is the low lung function group sizes
of 8–10 individuals, introducing a sensitivity to
selection bias. Notwithstanding the significant
investment of time and resources in both the cord
blood immunophenotyping and the infant lung
function testing, it would be ideal to repeat this
finding in a larger cohort to confirm this report. It
will also be of interest to determine whether
these associations persist to lung function later in
life as predicted or whether the associations
regress to the mean as the children grow. The
inclusion of infants born to asthmatic mothers at
high risk to develop impaired lung function in
infancy, and wheeze and asthma in later life, may
have enabled us to identify associations with
smaller case numbers. As there are very few
studies to date reporting ILC2 cells in cord blood,
it is difficult to appreciate how variable they are
across the population but given the magnitude of
changes in lung function parameters for every 103

CRTh2high ILC2 of 11 and 1.98 for tPTEF/tE% and
LCI, respectively (Table 3), it is highly likely that
these levels are physiologically relevant.

In summary, this is the first study to link cord
blood CRTh2high ILC2 populations to lower infant
lung function. We propose that further
mechanistic studies are now required to elucidate
the role of foetal ILC2 in shaping the immune
response, and how this pathway may be
associated with lung function and respiratory
outcomes in later life.T
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METHODS

Study design and participants

Pregnant asthmatic women, 18 years or older, with asthma
diagnosed by a physician and symptoms of asthma or use of
asthma therapy (b2-agonist, ICS) in the past 12 months were
enrolled in the BLT.37 The BLT is a multicentre [Brisbane
(QLD), Canberra (ACT), Newcastle (NSW) and Sydney (NSW)]
randomised controlled trial of asthma with prospective
infant follow-up. Drug or alcohol dependence, chronic oral
corticosteroid use, chronic lung disease other than asthma,
concomitant chronic illness were considered as exclusion
criteria. Eligible mothers from the BLT cohort at Newcastle
who consented to participate in the infant follow-up had
cord blood collected after the baby’s birth (n = 91) and had
lung function performed at approximately 6 weeks of age
between March 2017 and November 2019. Sulphur-
hexafluoride MBW (SF6-MBW) and tidal breathing flow-
volume loop (TBFVL) were performed and LCI (n = 34) and
tPTEF/tE% (n = 43) were assessed, respectively (Figure 1).

Ethics statement

This research was approved by the Hunter New England
Human Research Ethics Committee of the Hunter New
England Local Health District (ref no 12/10/17/3.04), and all
women provided written informed consent before
participation.

Cord blood collection

Cord blood samples from BLT participants were collected at
John Hunter Hospital (New South Wales, Australia)
immediately after birth by needle puncture of the umbilical
vein after the umbilical cord was detached from the infant.
All samples were transferred into EDTA tubes to be
processed by a trained staff within 6 h during day and
night.

Infant lung function testing

All children from the BLT cohort whose parents consented
to participate in the infant follow-up were seen at
approximately 6 weeks for lung function tests. Lung
function was performed on unsedated infants during quiet
natural sleep72,73 with Exhalyzer D (Eco Medics AG,
Durnten, Switzerland). Recordings were based on the
operators’ experience plus observation of the displayed
signals in order to ascertain that (1) the breathing pattern
is regular, stable and representative for that infant; (2)
there is no trend in instantaneous respiratory frequency
(fR); and (3) the signals are technically acceptable (no leaks,
artefacts or excessive volume drift). Once the infant has
adapted to the mask and is sleeping quietly and breathing
regularly, tidal breathing was recorded in epochs of
30 � 60 s.26 All lung function tests on the infants were safe
and non-invasive and performed at the Paediatric
Respiratory Laboratory based at John Hunter Children’s
Hospital (New South Wales, Australia).

Tidal breathing flow-volume loop

Tidal breathing flow-volume loop (TBFVL) was performed,
and respiratory rate, tidal volume, minute ventilation and
mean tidal inspiratory and expiratory flow were assessed.
Tidal breathing recordings started at least 30 s after the
initial mask placement. Tests were analysed using WBreath
software (v 3.28.0 – Medizintechnik AG, Zurich,
Switzerland) and were considered acceptable if more than
30 consecutive breaths (free of sighs, respiratory pauses,
irregular volume breaths or air leak) according to
international guidelines26 and previous studies.74,75 The
main parameter taken from TBFVL was the time to peak
tidal expiratory flow divided by the total time of tidal
expiratory flow (tPTEF/tE%). According to the normative
data created by the Bern infant lung development cohort,
chosen because of similarities in methodology and
characteristics of the sample, babies born from non-
asthmatic mothers had the mean tPTEF/tE% of 34.9.17,76

Sulphur-hexafluoride multiple breath
washout

Multiple breath washout testing was performed supine,
using an infant mask (size 0, 0/1 and 1; Homedica AG,
Huenenberg, Switzerland), according to the ERS/ATS
standards of lung function testing of infants,26,77 and mask
size dead space was corrected during analysis. The flow was
measured using an ultrasonic flow meter (Spiroson�;
EcoMedics AG, Durnten, Switzerland). A gas mixture
containing 4% inert sulphur-hexafluoride (SF6) gas
combined with 21% oxygen with the balance being
nitrogen78 was the one used following recent
recommendation for the measurement of MBW.28 The
washout period began after a 10-breath equilibrium period
obtained at the end of the tracer gas wash in. The
recordings were defined as acceptable for analysis if they
occurred during quiet sleep with no apparent volume drift,
defined as a change of < 3 mL�s�1, no sighs [defined as a
marked increase (at least double) in tidal volume with no
other artefacts present], within 10 breaths of the wash-in
plateau or 10 breaths after the SF6 concentration has
returned to baseline, or 1/40th of the concentration at the
start of washout. Tests were analysed using the Wbreath
software (v3.28.0. Ndd Medizintechnik, AG, Zurich,
Switzerland). Flow and volume were corrected to body
temperature, ambient temperature and pressure during
data analysis.75 From the 34 participants who attended
infant lung function appointment at 6 weeks old, four of
them had one validMBWmeasurement, and 30 of them
had two or more validMBWmeasurements.

Flow cytometry staining

Cord blood cells were stained in whole blood, and subsets
were predefined based on specific surface markers as
follows: eosinophils (CD45+, CD193+, CD16�), neutrophils
(CD45+, CD193�, CD16+), B cells (CD14�, CD3�, CD19+),
natural killer (NK) cells (CD14�, CD3�, CD56+, CD16+),
lymphocytes TCD4 cells (CD3+, abT-cell receptor (TCR)+,
CD4+, CD25+, CD127+), lymphocytes TCD8 cells (CD3+,
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abTCR+, CD8+, CD25+, CD127+), regulatory T (Treg) cells
(CD3+, abTCR+, CD4+, CD25+, CD127�), ILC type 1 (ILC1 -
CD45+, lineage-negative cells (Lin�; CD3, TCR-ab, TCR-cd,
CD19, CD11c, CD94, CD14, CD1a, CD34, CD123, CD303,
FceRIa), CD127+, CD161+, CD117�, CRTh2�, NKp44�), ILC
type 2 (ILC2; CD45+, Lin�, CD127+, CD161+, CRTh2+, CD117�)
and ILC type 3 (ILC3; CD45+, Lin�, CD127+, CD161+, CRTh2�,
CD117+, NKp44�/+; Supplementary table 1). After 30 min of
incubation, red blood cells were lysed using BD FACSTM

Lysing Solution and washed. Samples were stored at 4°C
and acquired on LSRFortessa X-20 flow cytometer (BD
Biosciences, San Diego, CA, USA). For the eosinophil and
neutrophil panel, the B-cell and NK cell panel and the TCD4
and TCD8 panel, a total of 1 000 000 events were acquired
and recorded for each subject. The ILC panel had a total of
2 500 000 events recorded for each subject.

Flow cytometry data analysis

Analyses were done with FlowJo software (v 10.5 - Flow Jo
LLC, Ashland, OR, USA) for all cell populations. Results are
shown as positive cells in 103 of CD45+ cells (for
eosinophils, neutrophils and ILCs) and as positive cells in
103 of CD3 (for B cells, NK cells, active CD4 T cells, active
CD8 T cells, Treg). To avoid the pitfalls from manually
gating, robust computational methods were utilised. This
approach was chosen because of the interest in rare
subpopulations hard to be certainly identified by standard
biaxial gating.

t-distributed stochastic neighbour
embedding algorithm

The tSNE algorithm, defined as a nonlinear dimensionality
reduction approach that embeds the data from high-
dimensional space into a lower-dimensional map based on
similarities79 placing similar cells to nearby points, was
applied. Prior to tSNE algorithm being applied, populations
were gated on forward scatter (FSC) properties from which
doublets were excluded based on area versus height
parameters of FSC. CD45+ and lineage-negative (CD3, TCR-
ab, TCR-cd, CD19, CD11c, CD94, CD14, CD1a, CD34, CD123,
CD303, FceRIa) cells were previously selected to reduce
potential bias in the identification.80 The final gate was
randomly downsampled and the number of events in each
sample normalised to an equal number of cells in each
group of interest, allowing an unbiased analysis in the
same number of cells. All populations were combined into
one .fcs file by concatenating the downsampled
populations.

Both lung function parameters assessed were analysed
separately and added as additional parameters in the
concatenated file making it possible to pull apart individual
samples representing different conditions. Lung function
results for both parameters were analysed separately in
quartiles. The quartile with the best lung function results
was compared with the others. For this study, all tSNE
analyses were performed on the concatenated sample and
the compensated channels that were not used for gating
were assessed under tSNE settings: Interaction 1000,
Perplexity 30.

PhenoGraph algorithm

To improve the population analysis, the PhenoGraph
algorithm was exploited. PhenoGraph employs a two-step
approach that overcomes some of the limitations of tSNE. It
is an unbiased clustering algorithm that automatically
detects cell subpopulations.39,81 It constructs a k nearest-
neighbour graph capturing the phenotypic relatedness of
the high-dimensional data and then applies a graph
partition algorithm called Louvain82 to dissect the nearest-
neighbour graph into phenotypically coherent
subpopulations.39 For this purpose, PhenoGraph was also
run on the concatenated population using an input of k
nearest neighbours of 30. Each cluster generated by
PhenoGraph was individually investigated. To improve
analyses and characterisation of cell populations and to
better interpret cluster results in an unbiased way, the
ClusterExplorer plugin was used. ClusterExplorer creates
summary plots based on the computation method
previously used for clustering. In this study, the clustering
method was PhenoGraph. Clusters were excluded from
further analysis if (1) the absolute cell count was below
4500 cells; (2) clusters were classified as negative for all
surface markers; (3) clusters were classified as positive for
only one surface marker. The combined PhenoGraph
subpopulations identified were then visualised using tSNE83

to reduce the dimensional data.39 The frequency of cells
was assessed using FlowJo software.

Cytokine determination

Cord blood was added in a LeucoSep� tube with 3 mL of
Lymphoprep solution (LymphoprepTM Fresenius Kabi Norge –
Axis-Shield) to be centrifuged. Plasma was separated and
stored at �80°C until further analysis. IL-5 and IL-10 were
detected simultaneously using cytokine bead array human-
enhanced sensitivity master buffer kit (BD Bioscience), and
samples were diluted 1:3. The range of detection was 274–
200 000 fg mL�1 for each cytokine. Samples were acquired
on a FACSCantoII flow cytometer (BD Biosciences) and
analysed using FCAP arrayTM software (v 3.0 – BD
Biosciences).

Statistical analysis

Analyses were performed using Stata IC 16.1 (Stata
Corporation, College Station, TX, USA). The Spearman
correlation was used to assess relationships between cell
types. The influence of confounders was assessed by
performing uni- and multivariable regression analysis. In
multivariable analyses performed to identify variables
associated with tPTEF/tE%, the following known
confounders were included the following: (1) male sex, (2)
birth order, (3) exclusive breastfeeding until test date, (4)
weight gain from birth until test date and (5) age at lung
function test in days.38 In further analyses, tPTEF/tE% was
adjusted by these known confounders. To identify variables
associated with LCI, a univariable analysis was performed
after certifying that LCI was not affected by body size.
Pearson analyses were performed to assess correlations with
adjusted tPTEF/tE%, and Spearman analyses were
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performed to assess LCI correlations. For all analyses,
statistical significance was considered when P < 0.05.
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