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Abstract

Pogostemon cablin (Blanco) Benth. (Patchouli) is not only an important essential oil plant,

but also a valuable medicinal plant in China. P. cablin in China can be divided into three culti-

vars (Shipai, Gaoyao, and Hainan) and two chemotypes (pogostone-type and patchoulol-

type). The pogostone-type and patchoulol-type are, respectively, used for medicinals and

perfumes. In this study, we sequenced and characterized the plastid genomes for all three

Chinese cultivars and aimed to develop a chemotype-specific barcode for future quality con-

trol. The plastid genomes of P. cablin cultivars ranged from 152,461 to 152,462 bp in length

and comprise 114 genes including 80 protein coding genes, 30 tRNA genes, and four rRNA

genes. Phylogenetic analyses suggested that P. cablin cultivars clustered with the other two

Pogostemon species with strong support. Although extremely conserved in P. cablin plastid

genomes, 58 cpSSRs were filtered out among the three cultivars. One single variable locus,

cpSSR, was discovered. The cpSSR genotypes successfully matched the chemotypes of

Chinese patchouli, which was further supported by PCR-based Sanger sequences in more

Chinese patchouli samples. The barcode developed in this study is thought to be a simple

and reliable quality control method for Chinese P. cablin on the market.

Introduction

Pogostemon cablin (Blanco) Benth. (Lamiaceae), commonly called Patchouli, is a commercially

important plant for its essential oil (patchouli oil). The species has been cultivated widely in

China, India, Indonesia, Malaysia, the Philippines, and Singapore [1, 2]. However, information

on the natural distribution of P. cablin is lacking, and its wild populations may be extinct [3–

5]. Patchouli oil is an important ingredient in perfume and cosmetics industries because it pos-

sesses a fixative property that makes other fragrances longer lasting [4, 6]. P. cablin is reported
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as one of the top 20 essential oil yielding plants and is considered to have tremendous eco-

nomic potential [4].

In addition to the traditional use for perfume, P. cablin in China is also an important tradi-

tional Chinese materia medica for dispelling dampness in the middle-energizer, summer heat

and dampness, acedia, fullness in the chest, hypochondrium issues, cramps, diarrhea, and so

on [7]. Due to its vast cultivation in different localities in China under varying environmental

conditions, P. cablin have evolved diverse morphological characteristics and traits (i.e. Glandu-

lar hairs, surface characters of stem and leaves [8], and floral and pollen morphology [9, 10]),

and has further been divided into at least three cultivars, Pogostemon cablin ‘Shipai’ (hereafter

Shipai, Guangzhou, Guangdong Province), Pogostemon cablin ‘Gaoyao’ (hereafter Gaoyao,

cultivated in Zhaoqing, Guangdong Province), and Pogostemon cablin ‘Hainan’ (hereafter Hai-

nan, cultivated in Hainan Province) [11, 12]. The P. cablin populations from Zhanjiang

(Guangdong Province) were formerly treated as P. cablin ‘Zhanjiang’ (cultivated in Zhanjiang

region of Guangdong Province, [12]); however, these P. cablin accessions were introduced

from Hainan Province in the 1960s [11, 12], thus the cultivar has been reclassified as the Hai-

nan cultivar. Currently, the cultivars Shipai, Gaoyao, and Hainan are extensively used in the

Chinese commercial market [13].

More than 140 compounds have been isolated and identified from P. cablin [14]. Among

them, the major chemical components (such as pogostone, patchoulol, α- and β-patchoulene)

are strongly associated with the biological activities of patchouli oil [14]. Moreover, the content

ratios of patchoulol and pogostone of patchouli oil have been an index for quality evaluation of

Chinese P. cablin [7, 15]. Different P. cablin cultivars exhibit significant differences in quality

and bioactive components, as these factors are influenced by climate, soil nutrients, and water

in the different locations [16]. Based on their main components of essential oils, P. cablin in

China can be divided into two chemotypes: pogostone-type, with a high content of pogostone

and a low content of patchouli alcohol, and patchoulol-type, which has a high content of

patchouli alcohol but a low content of pogostone [11, 17, 18]. The cultivars Shipai and Gaoyao

are pogostone-type, while the cultivar Hainan is patchoulol-type [18]. Traditionally, the patch-

oulol-type is mainly used in the perfume industry [17], whereas the pogostone-type cultivars

are considered medicinal plants in China. The cultivar Shipai is especially considered as “the

authentic herb” for containing the highest content of pogostone [11, 15, 18].

However, the production of pogostone, likely the main effective compound in medicinals,

is extremely low, since cultivars Shipai and Gaoyao of the chemotype can be only cultivated in

the suburbs of Guangzhou (Guangdong) and Gaoyao (Zhaoqing city, Guangdong), respec-

tively. The cultivation of the authentic herb of Shipai has been severely impacted with the

urban area expansion of Guangzhou City [15], and its cultivated area is limited to only 0.067

ha. The cultivation of Gaoyao is also very limited [2]. Currently, the patchoulol-type (Hainan

cultivar) is often used as a substitute for the pogostone-type in the commercial market, which

decreases the quality of the medicine.

It is morphologically difficult to distinguish the two chemotypes of Chinese P. cablin in the

commercial market. An easy and reliable way to identify the two chemotypes of P. cablin is

crucial but has not yet been developed. Previous studies have shown the potential use of Gas

chromatography-mass spectrometry (GC-MS) fingerprints of Chinese P. cablin (especially

patchouli alcohol and pogostone) for quality control [15, 19, 20], but GC-MS fingerprinting is

hard in practice because the method is time-consuming and requires relatively complicated

phytochemical experiments. Liu et al. [11] indicated that matK and nuclear 18S rRNA could

be used to distinguish the two chemotypes, but these markers failed when they were re-

sequenced and analyzed more recently by Yao et al. [3].

The plastid genome and chemotypes-specific barcode of Patchouli
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Plastid genomes have been recently recommended as important “extended barcodes” [21,

22]. Based on the rapid progress of high-throughput sequencing (HTS) technology and PCR-

free approaches (such as genome skimming) [23], it is feasible to recover plastid genomes at

relatively low concentrations of input DNA (even highly degraded DNA from herbarium spec-

imens, [24]). The use of genome skimming to recover plastid genomes is therefore a useful

tool for barcoding herbal materials, since the DNA of herbal materials from markets is always

highly degraded.

In this study, we sequenced and assembled the plastid genomes of three Chinese P. cablin
cultivars representing two chemotypes (pogostone-type and patchoulol-type). We aimed to

characterize all three plastid genomes to develop specific barcodes for discriminating the two

chemotypes of Chinese P. cablin. The main objective of this study was to provide an accurate

method for quality control of the medicinal plants and plant medicines on the market.

Materials and methods

Ethics statement

The locations of the field studies are neither private lands nor protected areas. No specific per-

missions were required for the corresponding locations/activities.

Plant materials and DNA extraction

In the present study, we collected all three Chinese patchouli cultivars, Shipai (Pogostemon
cablin ‘Shipai’), Gaoyao (Pogostemon cablin ‘Gaoyao’), and Hainan (Pogostemon cablin ‘Hai-

nan’) [12]. For the verification experiment, 29 accessions, consisting of 16 patchoulol-type and

13 pogostone-type, were included, and information on chemotypes and localities of the acces-

sions is shown in Table 1. One accession of each cultivar was included in the study because of

the vegetative propagation of P. cablin.

DNA sequencing, assembly, and annotation

The accessions were obtained from the South China Botanical Garden and the Guangdong

Institute of Chinese Materia Medica, China. Total genomic DNA was extracted from young

leaves using a modified cetyltrimethylammonium bromide (CTAB) method [25].

The plastid genome of the accession from the Shipai cultivar was recovered by long-range

PCR enrichment using nine conserved primers [26]. The genome was sequenced on a Miseq

sequencing platform (details in [27]). The other two accessions (Gaoyao and Hainan) were

sequenced using genome skimming technology [23]. Genome skimming was conducted on

the Illumina Genome Analyzer (Hiseq 2500 platform, Illumina, San Diego, CA, USA) at the

Beijing Genomics Institute (BGI) in Shenzhen, China.

Table 1. Accessions of the two genotypes of Pogostemon cablin tested using Sanger sequencing.

Population Location Latitude Longitude Cultivar N Chemotype Genotype Accession Nos.

SH Sihui, Zhaoqing, China 23˚19057@N 112˚43051@E Pogostemon cablin ‘Hainan’ 11 patchoulol-type Type A MK539941

KK Leizhou, Zhanjiang, China 20˚33005@N 110˚03042@E Pogostemon cablin ‘Hainan’ 2 patchoulol-type Type A MK539942

YC Leizhou, Zhanjiang, China 22˚04044@N 111˚33017@E Pogostemon cablin ‘Hainan’ 2 patchoulol-type Type A MK539943

GY1 Gaoyao, Zhaoqing, China 22˚54027@N 112˚27055@E Pogostemon cablin ‘Hainan’ 1 patchoulol-type Type A MK539944

GY2 Gaoyao, Zhaoqing, China 22˚54027@N 112˚27055@E Pogostemon cablin ‘Gaoyao’ 1 pogostone-type Type B MK539945

LT Liantang, Zhaoqing, China 22˚56057@N 112˚27058@E Pogostemon cablin ‘Gaoyao’ 11 pogostone-type Type B MK539946

SP Longdong, Guangzhou, China 23˚07059@N 113˚20009@E Pogostemon cablin ‘Shipai’ 1 pogostone-type Type B MK539947

https://doi.org/10.1371/journal.pone.0215512.t001
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FastQC 0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to

assess the quality of raw reads, and Trimmomatic [28] was used to remove adapters and filter

raw reads. The plastid sequence reads were isolated from the raw reads (including non-plastid

DNA, such as the nuclear and mitochondrial DNA) based on all known angiosperm plastid

genome sequences. High quality reads of the P. cablin plastid genomes were initially assembled

using SPAdes v3.10.1 [29]. Contigs were aligned with the reference plastome of Pogostemon
yatabeanus (Makino) Press (KP718618) using the Basic Local Alignment Search Tool (BLAST)

(ncbi-blast-2.6.0, ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/). According to

the reference genome sequence (KP718618), the order and direction of the aligned contigs

were determined. Aligned contigs were subsequently manually assembled to construct a pre-

liminary sequence of the P. cablin plastome.

The resulting assembly genome sequence was used as a reference, to which initial paired-

end plastid reads were mapped using Bowtie 2.3.1 [30]. Finally, we obtained the consensus

sequence as the complete plastid genome of P. cablin. Initial gene annotations of P. cablin were

transferred from the published plastome sequences of congeneric P. yatabeanus (KP718618)

using Geneious R9 v9.1.4 (Biomatters Ltd, Auckland, New Zealand). These transferred gene

annotations were manually corrected by the translation results and comparisons were made to

homologous genes from other sequenced plastid genomes in Lamiaceae. The tRNA genes were

verified using ARAGORN [31], with necessary manual adjustment. The annotated GenBank

file was used to draw the circular plastome map using OGDraw v1.2 (http://ogdraw.mpimp-

golm.mpg.de/) [32].

Comparative analyses of plastid genomes

The protein-coding genes (PCGs) and non-coding regions (intergenic spacers and introns)

were extracted and aligned with MAFFT [33], then they were used to estimate nucleotide vari-

ability. We first illustrated a variation using the VISTA Viewer [34] to show the mutation hot-

spots in the plastid genomes of Pogostemon. We then calculated the percentage of nucleotide

variability for each molecular region by dividing the numbers of nucleotide substitutions (or

indels) by the number of nucleotides of the aligned sequence length.

Phylogenomic analyses

According to the latest molecular results on Lamiaceae published by Li et al. [35], 14 plastid

genomes within Lamiaceae plus two outgroup plastid genomes from other members of

Lamiales were downloaded from GenBank (S1 Appendix). The PCGs, intergenic spacers,

introns, large single-copy region (LSC), small single-copy region (SSC), and inverted repeat

(IR) were individually extracted from all 19 plastid genomes of Lamiaceae (including the three

P. cablin plastid genomes in this study), and were aligned using MAFFT [33]. A phylogenetic

analysis based on the maximum likelihood (ML) method was conducted to confirm the phylo-

genetic position of P. cablin using RAxML-HPC v8 [36] with the GTR + Γ nucleotide substitu-

tion model. ML bootstrapping with 1,000 replicates (RAxML rapid bootstrapping algorithm)

was used to estimate branch support.

Characterization of simple sequence repeats in plastid genomes

Simple sequence repeats (SSRs) in plastid genomes of P. cablin and its relatives (P. yatabeanus
and P. stellatus) were detected using MISA [37] with the minimum number of repeat parame-

ters set to ten, six, five, five, five, and five for mono-, di-, tri-, tetra-, penta-, and hexa-nucleo-

tides, respectively.

The plastid genome and chemotypes-specific barcode of Patchouli
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Chemotype-specific marker identification and verification

The plastid genomes of all Chinese P. cablin cultivars were aligned by MAFFT [33]. We exam-

ined specific nucleotide variations (such as single nucleotide polymorphisms (SNPs), indels,

and cpSSRs) between two chemotypes for chemotype-specific barcodes for these cultivars. To

verify the validity of specific barcodes in P. cablin, we tested the barcodes in all accessions by

Sanger sequencing. Primer pairs were then designed using Primer3 software [38] to amplify

the specific barcodes using Sanger sequencing. The minimum primer annealing temperature

was set to 60 oC, and other settings were maintained at default values. A 25 μL polymerase

chain reaction (PCR) reaction mixture was prepared and amplified according to the procedure

described by Zhang et al. [39]. PCR reactions were conducted in an ETC811 Thermal Cycler

(Eastwin Life Sciences, Inc., Beijing, China). All primer pairs were initially tested for successful

PCR amplification in all accessions of P. cablin on 2% agarose gels. Amplicons with single,

clear bands on agarose gels were purified and sequenced in both directions on an ABI3730X

sequencer (Applied Biosystems, USA) using the amplification primers. The sequenced geno-

type for each chemotype was deposited in GenBank (Table 1).

Results and discussion

Plastid genome features of Pogostemon cablin and two congeneric relatives

We obtained c. 3 GB paired-end reads for cultivars Hainan and Gaoyao by genome skimming

sequencing on the Illumina Hiseq 2500 platform (Illumina, San Diego, CA, USA), and c. 2 GB

paired-end reads of accession of cultivar Shipai using the Miseq platform. The sizes of the

assembled P. cablin plastid genome are 152,461 bp for Shipai and Gaoyao cultivars, and

152,462 bp for the Hainan cultivar. The complete plastid genomes of P. cablin with annota-

tions have been submitted to GenBank (accession number MF287372 for Shipai, MF445415

for Gaoyao, and MF287373 for Hainan). All plastid genomes of P. cablin have the typical quad-

ripartite structure of angiosperm plastid genomes, with a pair of IRa and IRb of 25,662 bp for

all cultivars, LSC of 83,553 bp for Shipai and Gaoyao and 83,554 bp for Hainan, and SSC of

17,584 bp for all cultivars (Fig 1). These plastid genomes contain 114 genes, including 80

PCGs, 30 tRNA genes, and four rRNA genes (Table 2). Of these, seven PCGs (ndhB, rpl2,

rpl23, rps7, rps12, ycf2, and ycf15), seven tRNAs (trnA-UGC, trnE-UUC, trnL-CAA,

trnM-CAU, trnN-GUU, trnR-ACG, and trnV-GAC), and four rRNAs (rrn4.5, rrn5, rrn16, and

rrn23) were duplicated in the IRs (S2 Appendix). The overall GC content of the P. cablin plas-

tid genomes are 38.2%, and the corresponding values of the LSC, SSC, and IR regions are

36.3%, 32.1%, and 43.4%, respectively.

The plastid genomes of Chinese P. cablin were compared with the two other published plas-

tid genomes from P. yatabeanus and P. stellatus (the only two congeneric relatives with pub-

lished plastid genomes in GenBank [40]). Comparative analyses of all five plastid genomes of

Pogostemon showed highly conserved structures and gene organization. The size of P. stellatus
and P. yatabeanus were 151,825 bp and 152,707 bp, respectively, while the plastid genome

sizes of P. cablin ranged from 152,461 bp to 152,462 bp, depending on the cultivar. The plastid

genomes of both P. stellatus and P. yatabeanus share the common feature of comprising two

copies of IR separated by the LSC and SSC regions, and all contain 80 protein-coding genes, 30

tRNA genes, and four rRNA genes [40]. The two subgenera of Pogostemon were separated dur-

ing the middle to late Miocene (c. 15 Mya, [3]), which probably result in small differences in

plastid genome structures and their sizes among all five plastid genomes.

The plastid genome and chemotypes-specific barcode of Patchouli
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Mutation hotspots in plastid genomes of Pogostemon cablin
The distribution of introns and intergenic spacers in the plastid genomes of Pogostemon were

carefully examined in this study. In total, we identified 21 introns and 100 intergenic spacers.

Fig 1. Gene map of the plastid genome of Chinese Pogostemon cablin cultivars. Genes outside the circle are transcribed counterclockwise, and genes inside the circle

are transcribed clockwise. The gray graph in the inner circle shows the GC content with 50% threshold line.

https://doi.org/10.1371/journal.pone.0215512.g001
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Nine protein-coding genes and six tRNAs contained the single intron, while three protein-

coding genes possessed two introns (S2 Appendix). The plastid sequence variations in Pogoste-
mon were visualized using VISTA (Fig 2). As expected, the coding and IR regions were more

conserved than the non-coding regions and single-copy regions, respectively.

The mutation hotspots in the plastid genomes of Pogostemon were further plotted using the

proportion of variable sites of coding and non-coding regions. In this analysis, we calculated

the percentage of nucleotide variability for each molecular region by dividing the numbers of

nucleotide substitutions (or indels) by the number of nucleotides of the aligned sequence

length. Specifically, we termed S/P for the percentage of Single Nucleotide Polymorphisms

(SNPs) for each molecular region, and I/P for the percentage of Indels (Fig 3). Among the

non-coding regions, the average percentage variability was 0.034 for SNPs and 0.045 for indels

in intergenic spacers, while these numbers were 0.022 and 0.019 in introns, respectively. The

average percentage variability of introns was less than that of the intergenic spacers, which is

congruent with the findings of Shaw et al. [41].

The percentage variability of coding regions (introns in coding regions were included

herein) were estimated as above. Among the SNPs of coding regions, the percentage variability

ranged from 0 (i.e., petN, psbJ, psbE, petG, psbT, rpl36, rpl23, and psaC) to 0.044 (rpl16), and

was 0.014 on average (Fig 3). For the indels of coding regions, the percentage variability ranged

from 0 to 0.05 with an average of 0.003. Only seven coding regions without introns had indels

(i.e., rpoC2, ndhF, rpl32, atpH, rpoA, accD, and ycf1). Considering the limitation of Sanger

sequencing, fragments 500–1,500 bp long is most suitable for Sanger sequencing. We therefore

set a strategy for molecular marker selection, of which fragment sizes should range from 500 to

1,500 bp, and the percentage variabilities should be larger than average. Twenty-five highly

variable regions, consisting of 14 noncoding regions and 11 coding regions, were summarized

in S3 Appendix. These molecular regions might be regarded as potential molecular markers

for Pogostemon species, but additional studies are required in the future to confirm this.

Phylogenetic position of Pogostemon cablin
Our phylogenetic trees based on different datasets (i.e., the complete plastid genome, LSC,

SSC, IR, CDS, intergenic spacers, and introns) exhibited congruent topologies in Pogostemon,

which highly supported the monophyly of Pogostemon cablin and the two other Pogostemon
species (Fig 4 and S4 Appendix). As expected, P. yatabeanus and P. stellatus, both belonging to

subgen. Dysophyllus, cluster together with high support (Fig 4). Though our results are congru-

ent with the latest phylogenetic results of Pogostemon [3], more Pogostemon species (especially

Table 2. Features of plastid genomes in five Pogostemon taxa.

Species Size

(bp)

LSC

(bp)

SSC

(bp)

IR

(bp)

Number of

genes

Number of

PCGs

Number of

tRNA genes

Number of

rRNA genes

Overall GC

content (%)

GC content

of LSC (%)

GC content

of SSC (%)

GC content

of IR (%)

Pogostemon
stellatus

151824 83012 17524 25644 114 80 30 4 38.2% 36.3% 32.1% 43.4%

Pogostemon
yatabeanus

152707 83791 17568 25674 114 80 30 4 38.2% 36.2% 32.0% 43.4%

Pogostemon
cablin ‘Shipai’

152461 83553 17584 25662 114 80 30 4 38.2% 36.4% 32.1% 43.4%

Pogostemon
cablin ‘Gaoyao’

152461 83553 17584 25662 114 80 30 4 38.2% 36.3% 32.1% 43.4%

Pogostemon
cablin ‘Hainan’

152462 83554 17584 25662 114 80 30 4 38.2% 36.4% 32.1% 43.4%

https://doi.org/10.1371/journal.pone.0215512.t002

The plastid genome and chemotypes-specific barcode of Patchouli

PLOS ONE | https://doi.org/10.1371/journal.pone.0215512 April 15, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0215512.t002
https://doi.org/10.1371/journal.pone.0215512


the close relatives of P. cablin) are needed to construct a robust phylogeny and evolutionary

history of Pogostemon [3].

For over two decades, a driving question in the theory of phylogenetic experimental design

has been how to select a set of characters that are evolving at rates appropriate for resolving a

given phylogenetic problem [42]. Among the results of all datasets in this study, the ML

Fig 2. VISTA percent identity plot of five Pogostemon plastid genomes with the cultivar Pogostemon cablin ‘Shipai’ as a reference.

https://doi.org/10.1371/journal.pone.0215512.g002

Fig 3. Percentage of variable characters in five aligned plastid genomes of Pogostemon. (A) noncoding region; (B) coding region. S/P means the percentage of Single

Nucleotide Polymorphisms for each molecular region; I/P indicates the percentage of Indels for each molecular region.

https://doi.org/10.1371/journal.pone.0215512.g003
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phylogenies of Lamiaceae in this study were well resolved by the LSC dataset and completed

plastid genomes since almost branches were supported with high bootstrap values (S4 and S5

Appendices). Specifically, the phylogenetic relationships in endemic Hawaiian Lamiaceae (a

recent radiation group in Hawaii, Welch et al. [43]) could be well resolved using the both data-

sets (the LSC and completed plastid genomes datasets) in the present study (S5 Appendix).

The performance of two datasets in the Lamiaceae showed its potential utility for the construc-

tion of a robust Pogostemon phylogeny in the future.

CpSSRs in Pogostemon cablin and chemotype-specific markers

Though the rate of molecular evolution in the plastid genome is relatively slow, noncoding plas-

tid DNA can provide informative variation at the species and population level [44]. Because of

uniparental inheritance, plastid simple sequence repeats (cpSSRs), which are often located in

the noncoding regions of the plastid genome, have the ability to complement nuclear genetic

markers in population genetic, biogeographic, and hybridization studies (e.g., [45]).

A total of 58 cpSSRs with lengths of at least 10 bp were detected throughout the Pogostemon
cablin plastid genomes, including 58 mononucleotides, but no other repeats were found

(Table 3). These cpSSR loci were mainly located in intergenic spacers (IGS, 42/58), followed by

Fig 4. The maximum likelihood tree of Lamiaceae based on the completed plastid genomes. The bootstrap values

are given on each main node.

https://doi.org/10.1371/journal.pone.0215512.g004
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introns (11/58) and protein-coding regions (5/58). Specifically, five cpSSRs are located in three

protein-coding genes (rpoC2 (×2), atpB, and ycf1 (×2)), and eleven are located in seven introns

(introns in trnK-UUU; trnS-CGA, atpF (×2), rpoC1, ycf3, petB (×3), and rpl16 (×2)) of the P.

cablin plastid genomes. Most of these SSR loci are found in the LSC region (84.48%), followed

by the SSC (12.07%) and IR regions (3.44%). We also listed the cpSSRs of P. yatabeanus and P.

stellatus in Table 3. Mononucleotide repeats were dominant in these two Pogostemon species,

and only one and two dinucleotide repeats, respectively, were found in P. yatabeanus and P.

stellatus. These cpSSRs of all three Pogostemon plastid genomes are generally A or T repeats,

which is consistent with the AT-richness mainly in intergenic and intron regions of plant plas-

tid genomes [46].

Since it seldom flowers [9], extensive vegetative propagation is practiced in cultivation [1,

47], resulting in the overall low genetic diversity of P. cablin. The low genetic diversity has

been verified by genome scanning with specific-locus amplified fragment sequencing (SLAF-

seq) [18].The previously suggested low mutation rate for the plastid genomes of P. cablin is

supported by this study, since no nucleotide polymorphisms and indels were found among the

plastid genomes of all three Chinese cultivars, except one cpSSR locus. The cpSSR locus is

located in the intergenic region between ycf3 and trnS-GGA (ranging from 43,951 bp to

43,960 (or 43,961) bp), and it exhibited a variation in A/T repeats among the P. cablin cultivars.

It is invaluable that the patchoulol-type (Hainan) showed (A/T)11 (which indicates Genotype

A herein) in the locus, while the pogostone-type (Shipai and Gaoyao) exhibited (A/T)10 (Geno-

type B herein). Using high-fidelity PCR enzymes (PrimeSTAR Max DNA Polymerase,

TAKARA, Beijing), we amplified and sequenced the molecular regions (ranging from 967 bp

to 968 bp) throughout all accessions using primer pairs (P1F: TCGCGATCTAGGCATAGCTA,

P1R: TTCCAATGCTACGCCTTGAA). The scaled map of the locus with primer positions is

illustrated in Fig 5. The results of the PCR amplification and Sanger sequencing (both direc-

tions) were congruent with the results of the plastid genomes (Table 1), which confirms the

presence of the chemotype-specific marker in Chinese P. cablin.

Liu et al. [11] reported that these two chemotypes correspond to the genotypes of plastid

matK and nuclear 18S rRNA. However, matK and ITS (including partial 18S rRNA) did not

have any mutations corresponding to the chemotypes ([3]; the data in this study). The GC-MS

fingerprint of Chinese P. cablin is a reliable and straightforward method for quality control [15,

19, 20], but the experiment is time-consuming and requires a large amount of plant materials.

Genome scanning filtered out reliable SNPs in P. cablin, and the genetic groups of Chinese sam-

ples matched the two chemotypes [18]. However, SNP discovery on the whole genome level is

not a rapid and efficient authentication method, since using bioinformatics for genotype calling

is relatively complicated. Recently, Ouyang et al. characterized 45 EST-based SSR markers of P.

cablin, which might be helpful for fingerprinting Chinese P. cablin cultivars [48].

To our knowledge, the specific cpSSR marker discovered here is the first simple and robust

tool for chemotype-specific identification for practical use. Though PCR-based Sanger

sequencing for the cpSSR locus is a viable option using the primer pairs presented in this

Table 3. Statistics of cpSSRs in five Pogostemon plastid genomes.

Species N LSC SSC IRa IRb Compound Mono-(�10) Di-(�6) A/T C/G AT/TA

Pogostemon cablin ‘Shipai’ 58 49 (84.48) 7 (12.07) 1 (1.72) 1 (1.72) 6 (10.34) 58 (100.00) No data 57 (98.28) 1 (1.72) No data

Pogostemon cablin ‘Gaoyao’ 58 49 (84.48) 7 (12.07) 1 (1.72) 1 (1.72) 6 (10.34) 58 (100.00) No data 57 (98.28) 1 (1.72) No data

Pogostemon cablin ‘Hainan’ 58 49 (84.48) 7 (12.07) 1 (1.72) 1 (1.72) 6 (10.34) 58 (100.00) No data 57 (98.28) 1 (1.72) No data

Pogostemon yatabeanus 68 55 (80.88) 11 (16.18) 1 (1.47) 1 (1.47) 5 (7.35) 67 (98.53) 1 (1.47) 66 (97.06) 1 (1.47) 1 (1.47)

Pogostemon stellatus 62 52 (83.87) 8 (12.90) 1 (1.61) 1 (1.61) 5 (8.06) 60 (96.77) 2 (3.23) 59 (95.16) 1 (1.61) 2 (3.23)

https://doi.org/10.1371/journal.pone.0215512.t003
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study, we suggest using high-throughput sequencing, such as genome skimming, to obtain the

locus in plastid genomes. SSR is essentially derived from replication slippage [49] and could be

aggravated by PCR amplification using normal DNA polymerase. Further, the SSR marker

itself is difficult for direct sequencing based on the limits of Sanger sequencing. Genome skim-

ming based on HTS effectively overcomes PCR and sequencing errors by yielding large plastid

datasets and is able to obtain plastid genomes from multiple sources of plant DNA from fresh

to herbarium specimens [24, 50]. Moreover, rapid advancement of bioinformatics and assem-

bly pipelines facilitate the recovery and assembly of plastid genomes from whole genome

sequencing data (such as [51, 52]). Overall, the first step to recover the plastid genome is using

genome skimming technology, then the specific cpSSR barcode can be extracted from the

sequencing data. The chemotype-specific markers developed in this study are a simple and

reliable barcode for the quality control of P. cablin in China.
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