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Replica molding-based nanopatterning of
tribocharge on elastomer with application to
electrohydrodynamic nanolithography
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Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been

studied only on untextured elastomer surfaces even though replica molding is an effective

method for their nanotexturing. Here we show that on elastomer surfaces nanotextured

through replica molding the induced tribocharge also becomes patterned at nanoscale in

close correlation with the nanotexture. By applying Kelvin probe microscopy, electro-

hydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly

(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we

reveal that the induced tribocharge is highly localized within the nanocup, especially around

its rim. Through finite element analysis, we also find that the rim sustains the strongest

friction during the demolding process. From these findings, we identify the demolding-

induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern.

By incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we

also accomplish facile realization of nanovolcanos with 10 nm-scale craters.
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Tribocharging of elastomer surfaces due to their electrical1,2

or frictional3–7 contact with other materials has been
attracting substantial interest, with the resulting tri-

bocharges already playing crucial roles in energy harvesting8–10,
mass spectrometry11, and electronics12,13. They are strongly
suggested to arise from the transfer of electrons or ions between
material surfaces1–7. Recently, a similar tribocharging has also
been observed on the surface of the elastomer poly(dimethylsi-
loxane) (PDMS) as the result of replica molding. The ensuing
studies revealed that the level of tribocharging is strong enough to
influence some microfluidic functionalities, such as channel
electrophoresis14–16. So far, however, this replica molding-
induced tribocharging phenomenon has been studied only on
flat, untextured elastomer surfaces. It is rather ironic since replica
molding is the primary method for surface texturing of the
PDMS. Questions regarding how those textures affect the tri-
bocharge’s generation and distribution patterns, especially at
nanoscale, have been left unanswered to date.

Here we attempt to answer the questions through a multi-
physical investigation employing replica molded PDMS nanos-
tructures. Since the resulting tribocharge distribution is below the
range of direct imaging, we adopt indirect approaches which pair
experimental techniques, such as scanning Kelvin probe micro-
scopy (SKPM) and electrohydrodynamic lithography (EHDL),
with iterative numerical modeling. In addition, we also model the
replica molding process from the mechanical point of view. Based
on the findings from the investigations, we identify the frictional
stress, induced by the demolding action, as the main factor
governing the tribocharge’s nanoscale distribution pattern. This
work also establishes a useful application for the resulting ring-
shaped tribocharge by configuring it to enable EHDL to build
nanovolcanos with 10 nm-scale nanocraters, a center-dimpled 3D
nanostructure.

Results
Multi-physical investigation strategy. As our model nanos-
tructure, we adopt arrayed PDMS nanocups replicated from a
polycarbonate (PC) nanocone array (Fig. 1a). We first image the
tribocharge using SKPM. A recent application of SKPM to a flat
PDMS surface, detached from a flat PC surface, revealed that the
tribocharge distribution was an ensemble of negatively and
positively charged nanodomains, with the overall polarity deter-
mined ultimately by the net charge5. In our case, SKPM of the
PDMS nanocup arrays reveal that the tribocharge is highly
localized inside the nanocups, making its distribution pattern
accurately match the nanocup’s array pattern. To find the tri-
bocharge’s distribution pattern inside the nanocup, we adopt two
additional approaches.

First, we reconstruct the charge distribution through iterative
electrostatic modeling which adjusts the model charge distribu-
tion until the computed electric potential agrees well with the
experimental SKPM result. For our nanocup structure, a ring
charge distribution around the rim produces the best match.

Second, we utilize EHDL in which liquid-phase polymer is
attracted by spatially modulated electric fields to form out-of-
plane structures17–21. We employ the tribocharged nanocups as
the source of the spatially modulated electric fields (Fig. 1b).
Then, we reconstruct the charge distribution through an iterative
numerical simulation, which adjusts the model charge distribu-
tion until the simulation result agrees well with the experimental
EHDL result. This tribocharge-enabled EHDL produced very
unusual nanovolcanos with 10 nm-scale nanocraters, indicating
that the polymer is attracted toward the nanocups’ rims
preferentially. In the numerical simulation, a ring charge
distribution around the rim again produces the best agreement,

corroborating both the electrostatic modeling and the EHDL
results.

Then, we perform an independent finite element analysis to
find the origin of the ring shape in the charge distribution. It
shows that the demolding process produces the maximum level of
PDMS-PC friction around the rim area, successfully bridging
mechanical phenomena with electrostatic observations.

Scanning Kelvin probe microscopy of nanopatterned tri-
bocharge. Figure 1a shows the process to induce nanopatterned
tribocharges on PDMS through replica molding. Using a PC
mold patterned with a 750 nm-pitch nanocone array, we obtained
a matching array of PDMS nanocups. The surface topography,
examined with atomic force microscopy (AFM) in the tapping
mode and scanning electron microscopy, are shown in Fig. 2a and
Supplementary Fig. 1, respectively. The average depth d was 153
± 13 (s.d.) nm. To elucidate the polarity and the distribution
pattern of the tribocharges on the replica molded PDMS surface,
the surface potential was also measured through SKPM and
plotted in Fig. 2b. More details on the AFM and SKPM proce-
dures can be found in Methods.

From the comparison of the scans in Fig. 2a, b, it is evident that
the positions of the negative potential wells closely match those of
the nanocups’ apertures. The surface topography and potential
profiles shown in Fig. 2c, superimposed for facile comparison,
further confirm their close correlation. Since the work function
difference between the PDMS surface and the AFM probe is
almost the same across the scanning area, the wells in the surface
potential are induced mainly by the tribocharges22. It also
indicates that the PDMS surface was negatively charged, which
agrees well with the negative tribocharging of PDMS by PC
reported by Baytekin et al.5. Interestingly, the surface potential
exhibits peaks near the center of the nanocups, which yields
valuable information on the charge distribution within the
nanocups.

a PDMS nanocup array

PC nanocone array
b

Fig. 1 Replica molding-based tribocharging and its use in EHDL. a After
being replica molded from a nanotextured polycarbonate (PC) mold, the
elastomer replica’s surface acquires tribocharges distributed in close
correlation with the nanotexture. b The resulting electric field can
subsequently shape the photopolymer at nanoscale through EHDL. In this
work, the PDMS nanocup, replicated from a PC nanocone, acquires a
nanoring-shaped tribocharge which shapes the photopolymer into a
nanovolcano
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Electrostatic modeling of surface potential. To extract more
information from the SKPM results, we performed iterative
electrostatic modeling which reconstructs the charge distribution
by repeatedly adjusting the model charge distribution until the
resulting electric potential exhibits a good agreement with the
experimental measurement. Among the salient features of the
SKPM result in Fig. 2b, c, of special concern was the peak inside
the potential well. As shown in the charge distribution models
and the corresponding electric potential computation results
shown in Fig. 2d, e, such a center peak appears when a ring or
annular strip-shaped charge distribution is dipped or penetrated
by an AFM probe’s tip and it becomes increasingly higher as the
charge distribution becomes more concentrated around the
nanocup’s rim, reducing Lch. In contrast, the peak becomes much
lower in the case of a half-dome charge distribution (Lch=
0.5Ltot) and almost disappears in a uniform dome charge dis-
tribution (Lch= Ltot). Jacobs et al.1 observed ‘dip-in-the-peak’
potential profiles, the inverse of our ‘peak-in-the-well’ profile,
from their positive ring charges.

In Fig. 2c, the average ratio between the center peak height and
the potential well depth was ~0.46 with the average potential well
depth at 6.9 ± 0.7 (s.d.) V. As shown in Fig. 2e, the best match was
obtained when the tribocharge was configured to form a ~55 nm-
wide annular strip (Lch= 0.18Ltot) around the rim. Under the
assumption that the tribocharge is distributed in a bipolar mosaic
form5,23–27 with the overall polarity determined by the net
charge, the corresponding net surface charge density is approxi-
mately −9.9 mCm–2 or 0.6 net negative elementary charges per
10 nm2, which is in order-of-magnitude agreement with the result
reported by Baytekin et al.5 (1 net negative elementary charge per
10 nm2) for the same material combination (PDMS-PC)5. The
fact that the potential stayed below the rim level throughout the
PDMS nanocup’s cavity strongly suggests that any portion of the
PDMS nanocup not covered by the negative charge was
uncharged or positively charged at a negligibly low charge
density. Either way, our model of negative ring charge prevails.
Details of the electrostatic model and charge distribution
reconstruction can be found in Methods.

In SKPM-based analysis, however, the possibility that the
observed surface potential pattern was a spurious projection of
the surface topography is not entirely zero28. To test the ring
charge hypothesis further, we performed EHDL of polymer using
the tribocharged PDMS nanocup array as the source of the
spatially modulated electric field and then reconstruct the
tribocharge distribution through iterative numerical simulations.

Surface pre-texturing for tribocharge-enabled EHDL. In EHDL,
liquid-phase polymer becomes polarized and attracted by spa-
tially modulated electric fields and forms out-of-plane structures
upon solidification17–21. Therefore, the gap between the source of
the electric field and the polymer surface is one of the most
important factors in EHDL. Conventional EHDL utilizes a pat-
terned electrode as the source of the electric field and separately
prepared dielectric thin film stripes as the spacers17,29. Here we
utilized the tribocharged PDMS nanocups (Fig. 3a) as the source
of the electric field. To place a gap between them and the polymer
surface, we selected a photopolymer, which undergoes low but
definite volume shrinkage upon exposure to UV irradiation30, as
the EHDL’s target material and then textured the surface with a
spatially modulated UV beam. The recesses in the resulting tex-
ture provide the gaps.

Specifically, we spin-coated UV-curable photopolymer NOA73
(Norland Inc.) into a thin film on a Si-substrate, and exposed it to
a UV-two-beam interference pattern (Fig. 3b). Then the
NOA73 surface became sinusoidally textured due to the local
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Fig. 2 SKPM-based imaging and analysis of tribocharge distribution. a AFM
image of the PDMS nanocup array’s surface topography. b SKPM image of
the surface potential VCPD at the same spot. (Scale bars: 1 μm) c
Superimposed cross-sectional profiles of the surface topography and
potential along the scan lines in a, b. The pattern overlap clearly indicates
that the inner cavity of the nanocup is negatively charged. d A schematic
diagram of the surface potential computation setup. Ltot and Lch represent
the arc lengths measured from the nanocup’s rim to the bottom and the
end point of the surface charge distribution, respectively. Ho is the vertical
gap maintained between the probe tips and the PDMS surface. The white
dots represent the probing points for the surface potential measurement
and evaluation. e The computed surface potentials for different charge
distributions. They clearly show that the center peak rises within the
potential well as the charge distribution becomes concentrated around the
rim. In contrast, a dome charge (Lch= Ltot) produces negligible center peak.
The gray dots represent the experimental data in c within the 1.2 μm< x
<1.8 μm range
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volume shrinkage (Fig. 3c and Supplementary Fig. 2). More
details on the sinusoidal texturing of NOA73 can be found in
Methods. Note that even though the NOA73 thin film’s inner
volume becomes well cured by the UV exposure31, a thin layer at
its top surface remains fluidic and, hence, available for EHDL due
to the oxygen-induced inhibition of photopolymerization32–35.
When the tribocharged PDMS nanocup array was placed on the
pre-textured NOA73 film (Fig. 3d), the troughs of the sinusoidal
texture provide periodic recesses in which the NOA73 surface is
vertically separated from the tribocharges by a submicron-scale
gap.

Providing vertical separation through UV-induced texturing of
the target material itself, rather than by adding heterogeneous
spacers17,29, leads to an additional merit. As illustrated in Fig. 3e,
f, the crest portion of the sinusoidally textured NOA73 is in direct
contact with the tribocharged PDMS nanocups and, hence,
experiences both capillary action and tribocharge’s Coulombic
attraction. On the other hand, the trough portion, which is
vertically separated from the tribocharged PDMS surface,
experiences only the Coulombic attraction. This fact will prove
useful in analyzing the EHDL results to corroborate the ring
charge hypothesis.

Tribocharge-enabled EHDL. Upon completion of the photo-
polymer surface pre-texturing, we carried out the EHDL process.
As shown in Fig. 3d–g, we placed the tribocharged PDMS
nanocup array on the sinusoidally textured NOA73 thin film, left
it for a preset period of time, and then applied the final UV
irradiation to fix the final shape. The completely cured NOA73
film was peeled off from the PDMS surface and then examined by
AFM. More details can be found in Methods.

Three different UV doses, 1.2, 1.8, and 3.6 J cm–2, were used for
the two-beam interference to produce different gap widths
between the tribocharge and the NOA73 surface. AFM scans of
the resulting three samples, to be referred to as Samples A, B, and
C, are shown in Fig. 4. They reveal the impact of the UV dose on
the final EHDL result. The scans from Samples A and B, shown as
Fig. 4a, d, respectively, indicate that the EHDL process generated

nanocones arrayed on the top of the sinusoidally textured
NOA73 surfaces, at locations matching those of the PDMS
nanocups. The absence of parasitic protrusions on the
NOA73 surface between the nanocones indicates that the flat,
interstitial area between the nanocups’ apertures hosted little or
no net tribocharge. The nanocone array (~750 nm in pitch) and
the sinusoidal texture (~2.6 μm in pitch) jointly constitute a two-
level hierarchy which will be useful for many applications, such as
superhydrophobic surfaces36,37.

The trough nanocones, however, cannot be unambiguously
attributed to EHDL yet. Given the high-level flexibility of
PDMS38, it is possible for the PDMS nanocup array to collapse
down to the sinusoidally textured NOA73 surface, make a
conformal contact with it, and produce the nanocones through
capillary filling of the nanocups with the liquid-phase NOA73,
rather than through EHDL. We, however, reject the conjecture
based on the observation that the heights of the nanocones on the
NOA73 crests (hc ~ 25 nm as shown in Scan 3 of Fig. 4f) and
troughs (ht ~ 70 nm as shown in Scan 1 of Fig. 4f) are very
different while the capillary filling-induced nanocones must
exhibit similar heights. Moreover, the height of the crest
nanocones is not just different from that of the trough nanocones
but actually shorter. It is almost counterintuitive given the fact
that the crests of the NOA73 texture corresponds to the
destructive portion of the UV-two-beam interference pattern,
which leaves NOA73 more fluidic and deformable. On the other
hand, the trough portion of the NOA73 texture corresponds to
the constructive part which cures NOA73 more intensely. Yet, the
NOA73 in the trough resulted in higher nanocones. Based on
these observations, we reject the conjecture of collapsed PDMS
and attribute the trough nanocones unambiguously to the
tribocharge-enabled EHDL.

Underfilled crest nanocone as ring charge evidence. The crest
nanocones are more intriguing since their height is less than the
depth of the PDMS nanocup (d ~ 153 nm). It indicates that
NOA73 failed to fill the nanocup completely. It was surprising
since the time required for NOA73 to fill the PDMS nanocup

UV

NOA73
Si

C T

NOA73

PDMS

Si

ReleaseEHDLEHDL set up

PC nanocone array

PDMS nanocup array

a

b

d e g

c
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Fig. 3 Fabrication steps for tribocharge-enabled EHDL of photopolymer. a Liquid-phase PDMS is poured onto the PC mold textured with a 2D triangular
nanocone array. After thermal curing, the PDMS replica, textured with a nanocup array, is peeled off. Its surface becomes selectively tribocharged during
this demolding process. b A UV-curable photopolymer (NOA73) is spin-coated on a silicon substrate and exposed to a UV-two-beam interference pattern.
c The NOA73 thin film is textured sinusoidally with well-defined crest (C) and trough (T) areas due to local volume shrinkage. d The tribocharged PDMS
nanocup array is placed on the sinusoidally textured NOA73 film. e NOA73 in the trough region is attracted upward by the spatially modulated electric
fields originated from the tribocharges and undergoes EHDL. NOA73 on the crest experiences forces from both the capillary action and Coulomb
attraction. f The cross-sectional profile defines the heights of the nanostructures in the crest (hc) and trough (ht) areas along with d, the nanocup depth. g
The final UV-induced solidification of NOA73 and removal of the PDMS nanocup array completes the tribocharge-enabled EHDL of NOA73
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through capillary action is <1 s according to39,40

t ¼ 2 μ d2

R γ cos θ
ð1Þ

where μ is the viscosity of NOA73, d is the PDMS nanocup depth,
R is the hydraulic radius of the nanocup, γ is the surface tension
of NOA73, and θ is the contact angle between NOA73 and
PDMS. In our experiments, we maintained the contact between
PDMS and NOA73 for at least 2 min. Yet, the filling was
incomplete. By assuming that the tribocharges were distributed
only around the nanocup’s rim, we can explain this underfilling
as the result of the attraction from the tribocharges which pulls
down NOA73 toward the rim, counteracting the capillary flow
toward the inner cavity41.

Nanovolcano formation as ring charge evidence. The ring
charge hypothesis can be further corroborated by the very unu-
sual nanovolcano structures (Fig. 4g, h, i) produced by the
tribocharge-enabled EHDL with the UV dose increased to 3.6 J
cm–2 (Sample C). Their biggest distinction from the nanocone
structure is the nanocrater with 10 nm-scale height. The forma-
tion of the nanocrater indicates that NOA73 was attracted more
strongly toward the rim of the nanocup’s aperture than its center.
If the tribocharges were distributed only along the nanocup’s rim,
they can attract the photopolymer in that fashion, as shown
schematically in Fig. 1b. Under such a charge distribution, the
nanocones in the troughs shown in samples A and B (Fig. 4a, d)
can be interpreted as the result of the nanocrater’s fusion at the

center of the nanocup due to the lower UV dose, which renders
NOA73 more fluidic and dispersive.

Note that the height profiles in Fig. 4 could give the wrong
impression that the sinusoidal texture is deeper in Fig. 4c than in
Fig. 4i even though the former sustained a lower UV dose and,
consequently, smaller shrinkage and shallower texturing. It can be
explained by the fact that the upward deformation of photo-
polymer in both EHDL and capillary filling requires additional
photopolymer. Therefore the nanocones in the trough in Fig. 4c
achieved their height by lowering the bottom level around them,
thus generating the illusion of a deeper trough.

To further corroborate the ring charge hypothesis, we
proceeded to reconstruct the tribocharge distribution through
iterative numerical simulations in which the model charge
configuration was adjusted until a good agreement was reached
between the experimental and simulation results. The two-
dimensional model of the experimental setup is shown in Fig. 5a.
The simulation is based on Eq. (2) which describes the nonlinear
electrohydrodynamic interaction between the electric field and
incompressible Newtonian fluid as42–44

∂h
∂t

¼ ∂

∂x
h3

3μ
� ∂P
∂x

� �
ð2Þ

where x is the lateral coordinate, h(x, t) the height of the polymer
surface in y-direction, μ the viscosity, and t the time. P is the
pressure acting on the polymer surface and typically includes
three components: the Maxwell stress, the Laplace pressure, and
the disjoining pressure. They result from the Coulombic
attraction, the interfacial tension, and the van der Waals
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Fig. 4 EHDL-generated nanocones and nanovolcanos. AFM scans of EHDL results obtained with the UV exposure dose of the two-beam interference
lithography set to a–c 1.2 J cm–2, d–f 1.8 J cm–2, and g–i 3.6 J cm–2. The first and second columns show the final textures in the bird’s eye and top views,
respectively. The third column shows their cross-sectional profiles along the lines in the second column. While the low dose, narrow-gap EHDL produced
nanocone array as shown in the first two rows, the high dose, wide-gap EHDL resulted in a nanovolcano array as shown in the third row. (Scale bars: 1 μm)
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interaction between the polymer and the electrode surfaces,
respectively. Since the disjoining force becomes significant only
when the polymer gets very close to the electrode, which is not
the case in our EHDL, it is excluded from the simulation.
Regarding the Maxwell stress, conventional EHDL simulations
often include only the vertical, y-directed electric field43. Since
our tribocharge-enabled EHDL setup utilizes non-uniform, highly
localized charge distributions, we considered both normal and
tangential electric fields at every point on the polymer surface.
The overall pressure term becomes45

P ¼ γ � ∂
2h
∂x2

þ ϵ0
2

ϵ2r1E
2
n �

1
ϵr1

� 1
ϵr2

� �
þ E2

t � ϵr2 � ϵr1ð Þ
� �

ð3Þ

where the first and the second terms are the Laplace pressure and
the Maxwell stress, respectively, γ the interfacial tension of the
polymer, En(Et) the strength of the electric field normal
(tangential) to the polymer surface, ϵr1;r2 the relative permittivity
of the material, and ϵ0 the electric permittivity in vacuum.

We solved the governing equation numerically by integrating it
over time t. The parameters were set to the values that are either
measured or obtained from the literature. In particular, μ and γ of

NOA73 were set to 130 cps and 0.04 Nm–1 (see Ref. 46). The
absolute value of the surface charge density and its distribution
shape were varied iteratively until a good match between the
experimental and numerical results was obtained. Details can be
found in Methods. Figure 5b shows the nanovolcano formation as
a function of time.

Again, the best agreement between the simulation and
experimental results was achieved when the tribocharge distribu-
tion was set to the form of a ring around the rim of the PDMS
nanocup. Figure 5b clearly shows that the nanovolcano initially
appears as an annular ridge induced by the ring charge (marked
as “I”), becomes taller and thicker, and then begins to merge at
the center. At that point, the balance between the upward pulling
Coulombic attraction and the laterally broadening Laplace
pressure becomes critical. Depending on their relative strengths,
the final state (marked as “F”) can be either a nanocone or
nanovolcanos with varying values of crater height. For example,
Fig. 5c shows the simulation result obtained after the μ and γ
values changed to 100 cps and 0.08 Nm–1, respectively, which
corresponds to the case of low-UV-dose and less-viscous NOA73.
Even though the initial profile is identical to that in Fig. 5b, the
final profile exhibits only a small dip at the center due to the
dispersion and merging of the crater at the center. By iteratively
adjusting the relative strengths of the Coulombic attraction and
Laplace pressure in the simulation, we could reproduce the
experimental results very closely. For instance, Fig. 5d shows the
simulated surface height profile very closely agrees with those of
the three nanovolcanos (Fig. 4i, Scan 1).

Computational simulation of demolding-induced friction.
Given the supporting evidences for the ring charge formation due
to the replica molding of PDMS nanocup replicated from PC
nanocones, we sought the reason for such a spatially selective,
non-uniform tribocharging. Our immediate hypothesis was that
the PDMS nanocup’s rim area sustained the highest level of
friction during the demolding process which, in turn, increased
the level of tribocharging in that region. To test the hypothesis,
we carried out a nonlinear finite element analysis (FEA) of the
cohesive demolding process. Details of the analysis setup and
procedure can be found in Methods. The results are shown in
Fig. 6.

Due to the spherical shape of the PDMS-PC interface, the
detachment occurred in a ‘mixed’ mode, which combines the
pure crack opening and the sliding modes. So, to compute σ f , the
frictional stress measured in Pa, we adopted the mixed mode
cohesive zone model (CZM) in the presence of the nonlinearities
both in material and geometry. Figure 6a–c shows that as the
PDMS nanocup is gradually detached from the PC nanocone, the
rim area experiences the maximum level of frictional stress. The
complete temporal evolution of the frictional stress distribution
along the progress of the demolding action is clearly visualized in
Supplementary Movie 1.

To assess the cumulative impact of the frictional stress, we also
computed the frictional fracture energy Gf, measured in J m–2, by
integrating the area under the frictional stress-tangential sliding
curve over the whole process of demolding and plotted it in as a
function of L/Ltot in Fig. 6d, where L and Ltot are the arc lengths
from the nanocup rim to the observation point and the nanocup
bottom, respectively, as shown in the inset. It confirms that the
cumulative frictional stress during the demolding process is
concentrated near the rim, forming a peak covering up to L ~
0.2Ltot, or ~60 nm in our nanocup setup, before decaying rapidly.
It agrees well with our electrostatic modeling result which
indicated that the surface charges formed a 55 nm-wide annular
strip from the rim. Over the mid-to-bottom portion of the PDMS
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nanocup, the lack of intense frictional stress is likely to lead to a
matching lack of tribocharging, rather than charging at the
opposite polarity which will only weaken the EHDL efficiency.
This analysis result not only gives further corroboration to our
ring charge hypothesis but also provides useful insights for
designing more elaborate replica molding-based tribocharge
nanopatterning.

Discussion
The technological contribution of this work is twofold. First, it
introduced a technique to produce nanopatterned tribocharges on
highly flexible PDMS surfaces capable of forming intimate con-
tact with non-flat surfaces. It is a simple and effective technique
which accomplishes both tribocharge generation and patterning
in a single operation of replica molding. By generating the charge
directly through triboelectrification, this technique also eliminates
the need for external supply of electric charge, which often
necessitates metallization of the elastomer surface.

Second, through the effort to utilize EHDL as a tool for tri-
bocharge characterization, this work has also advanced the EHDL
technique itself. In the conventional EHDL, which relies on
electric fields generated by patterned electrodes, the polymer
either forms an array of nanopillars under the electrode’s surface
pattern or simply mirrors the pattern itself through merging of
the nanopillars, limiting the feature size to that of the electrode
pattern or the characteristic length of the electrohydrodynamic
instability42–44,47. Both are generally at micron-scales. Using the
replica molding-induced nanopatterned tribocharges as the
source of the electric fields, we have greatly reduced the EHDL’s
feature size. For instance, this work produced a highly regular
array of submicron-scale nanovolcanos by decorating plain
nanocones with 10 nm-scale nanocraters.

In addition, we have also integrated the EHDL process with a
variety of spatially selective photopolymer texturing techniques,
enabling it to realize multiscale nanotextures. For example, the
nanovolcanos were monolithically integrated with microscale
sinusoidal surface texture (~2.6 μm in pitch). More complex
textures can be realized through a judicious choice of the UV-
illumination pattern. To demonstrate the robustness of the
tribocharge-enabled EHDL, we have also tried nanovolcano fab-
rication on NOA73 surfaces pre-textured in a totally different
setup and geometry (Supplementary Fig. 3) and obtained affir-
mative results (Supplementary Fig. 4 and Supplementary Fig. 5),
as detailed in Supplementary Note 1.

In conclusion, we have systematically investigated the intri-
guing phenomenon of replica molding-induced nanopatterning
of tribocharge on elastomer surfaces using SKPM, electro-
hydrodynamic lithography, electrostatic modeling, and finite
element analysis. Their results all pointed to the fact that the
induced tribocharge’s final distribution pattern is determined not
only by the mold’s surface topography but also by the mechanics
of the demolding process. In particular, the level of frictional
stress accumulated over the demolding action turns out to be of
paramount importance. These findings provide deeper insights
into nanoscale patterning of electric charges on elastomer sur-
faces. The technique will be especially useful for generating
nanoscale annular charge distributions. With careful balancing of
capillary action and Coulombic attraction, this tribo-
electrohydrodynamic lithography will become a versatile tool
for fabricating functional materials and meta-surfaces.

Methods
Tribocharged nanocup array fabrication. To fabricate the tribocharged PDMS
nanocup array, we first prepared a PC mold with a 750 nm-pitch triangular array of
nanocones (500 nm in base diameter, 150 nm in height, about 1 × 1 cm2, Micro-
continuum Inc.) and then poured liquid phase PDMS (Sylgard 184, Dow Corning)
mixed with the curing agent at 10:1 wt. ratio. Upon its complete solidification, we
peeled it off from the mold, obtaining a matching array of nanocups, 500 and 153
± 13 (s.d.) nm in diameter and depth, respectively.

AFM-based surface characterization and Kelvin probe microscopy. The surface
topography of the photopolymer after EHDL was examined by AFM in the tapping
mode (Multimode, Veeco). To measure the surface topography and potential, we
also configured the AFM in the SKPM mode. Antimony (n) doped Si tips (TESPA-
V2, spring constant 42 Nm–1, resonance frequency of 320 kHz) and Pt/Ir coated
tips (SCM-PIT, spring constant 2.8 Nm–1, resonance frequency of 75 kHz) were
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Fig. 6 Computational analysis of demolding-induced friction. a–c The
distribution of the frictional stress computed by nonlinear FEA. The left and
right columns represent the top and cross-sectioned bird’s eye views of a
PDMS nanocup getting demolded from a PC nanocone, respectively. The
color indicates σfn, the frictional stress normalized by its overall maximum.
a, b, c Describe the PDMS nanocups in conformal contact with the PC
nanocone, at the initial stage of the vertical demolding (along the direction
indicated by the arrows), and at the starting point of the peel-off,
respectively. The latter two clearly show that the demolding action induces
the highest level of frictional stress around the nanocup’s rim. d Gfn, the
frictional fracture energy normalized to its maximum, as a function of L/Ltot.
It further confirms that the frictional stress accumulated over the whole-
demolding process maximizes around the rim. Gfn exhibits a sharp peak up
to L ~ 0.2Ltot (~60 nm in our setup) before a rapid decay, in good agreement
with our electrostatic modeling result, which indicated that the surface
charges form a 55 nm-wide band from the rim
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purchased from Bruker. The lift height and the amplitude set-point were set to be
100 nm and 0.28 V, respectively.

Electrostatic modeling of surface potential. To compute the electric potential
arising from the electric charges distributed on the nanocup’s inner cavity surface,
we first decomposed the inner cavity surface into a stack of thin annular strips with
varying radii. Then we multiplied the preset surface charge density ρs to the surface
area of each annular strip to determine the corresponding total charge. We then
modeled each annular strip as a ring charge distribution. The electric potential V
arising from a ring charge distribution with radius a is given in closed form as48

V ¼ Q
2π2ϵ0

�
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aρ

a2þρ2þh2þ2aρ

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ρ2 þ h2 þ 2aρ

p ð4Þ

where Q, ρ, h, and ϵ0 are the total charge of the ring, the radial and vertical
displacement of the observation point from the center of the ring, and the electric
permittivity in vacuum, respectively. K is the elliptic integral of the first kind. Then
we summed up the contributions of the ring charges at each observation point. The
number of the stacked rings was increased until the final summation converged.

Sinusoidal pre-texturing of photopolymer. The UV-curable photopolymer
(NOA73, Norland Inc.) was spin-coated on the silicon substrate for 10 s at 500 r.p.
m. and then 45 s at 3000 r.p.m., resulting in a thin film with thickness of ~40 μm.
The photopolymer thin film was then exposed to a UV-two-beam interference
pattern generated by the Lloyd mirror set-up employing a HeCd laser (Kimmon)
installed on a floated optical table49. The pitch can be facilely controlled by the
beam incident angle. The power intensity of the interference pattern on the pho-
topolymer thin film was around 1 mW cm–2 (power meter, 2931-C, Newport). The
dose applied to the photopolymer was controlled by the exposure time, and hence
the amplitude of the obtained one-dimensional surface relief structure can be
accurately tuned. The AFM scans of two different types of sample sinusoidal
textures on NOA73 are shown in Supplementary Fig. 2. Their profiles exhibit
excellent agreements with the theoretically predicted sinusoidal pattern49, signaling
a successful two-beam interference. The strong crest-to-trough contrast, main-
tained even after several tens of minutes of exposure, also attests to the overall
integrity of the Lloyd mirror setup.

Tribocharge-enabled EHDL. The flexible PDMS stamp with triangular nanocups
array was placed in contact with the pre-structured photopolymer thin film for 2
min without applying any pressure, followed by additional UV exposure for 2 min
(0.1W cm–2, Bluewave 200, Dymax) to fix the shape of the hierarchical nano-
pattern. The PDMS stamp was then peeled off from the photopolymer thin film,
resulting in the photopolymer multiscale nanotexturing on the silicon substrate.

Numerical modeling of EHDL. The EHDL process was computationally simulated
by simultaneously solving the coupled Eqs. 2 and 3. Along the x-direction in
Fig. 5a, the computational domain measured 4 μm and was discretized into 150 ~
230 computation points. Along the h-direction, the extent was varied from its
minimum at 100 nm, i.e., the gap between the PDMS replica and the
NOA73 surfaces, depending on the shape of the charge distribution within the
nanocup, which was modeled to exhibit an arc or a super-Gaussian profile. Since
the simulation was carried out in 2D, the model charge distribution was configured
to reproduce the 3D distribution pattern after revolution about the center axis. For
example, a simple ring charge distribution was translated into two point charges
located symmetrically about the center axis of the nanocup. More pairs were added
to model charge distributions covering the nanocup’s cavity wall. We computed the
electric fields by applying Coulomb’s law along the surface profile of the polymer
and decomposing the result into components tangential and normal to the surface.
Once the pressure term in Eq. 3 was evaluated, it was substituted into the right-
hand side of Eq. 2 which, in turn, got integrated in time domain using
Newton–Rahpson method. The integration time was set to 5.2 ps empirically. All
computations were performed with Matlab (R2013b, Mathworks Inc.).

Finite element analysis of demolding-induced frictional stress. We performed a
computational simulation to estimate the non-uniform distribution of the max-
imum frictional stress over the interface between the PDMS replica and the PC
mold. Since the goal was to elucidate the spatiotemporal evolution of frictional
stress on the spherical interface, we adopted the continuum-based nonlinear finite
element analysis based on the cohesive zone model (CZM). All computational
simulations were conducted on ANSYS (Release 18.2). We scaled up the nanocup
structure to the micrometer length scale while preserving all the geometric features
due to the length-scale limit of the continuum-based FEA program in ANSYS. The
material and failure characteristics of the interface elements were modeled from
literature50–53. In particular, the Young’s modulus and the Poisson’s ratio were set
to 1.8 MPa and 0.45, respectively. The CZM was defined with 15 kPa for the
normal and shear strengths and 330 μm for the separation limit. We assumed a
clear interfacial failure without any fracture of PDMS fibrils, based on the

observation that the PC mold stayed usable and no PDMS fracture has been
detected after repeated molding/demolding.

Data availability. The data supporting the plots and other findings of this study
are available from the corresponding authors upon reasonable request.
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