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Introduction 
Most of the present vaccines are administered 
parenteraly and encountered with several 
disadvantages. Mucosal delivery of vaccines 
could be a highly effective route for induction of 
local and systemic immunity (1). Among the 
mucosal routes, nasal immunization has good 
potentials for induction of systemic and mucosal 
immune responses (1, 2). Because of low 
permeability of mucosal epithelia to most 
antigens, using efficient adjuvants is needed. 
Recently, various delivery systems and 
adjuvants, like trimethylchitosan (TMC) 
nanoparticles (4), oligomannose-coated 
liposomes (3), nanoemulsions (4), chitosan-
coated liposomes (5), a modified pulmonary 
surfactant named Surfacten (6) and a mutant 
TNF- alfa (7) have been used for mucosal 
immunization against Influenza, TB and other 
infections.   

Among the immunoadjuvants, absorption 
enhancer adjuvants such as cross-linked dextran 
microspheres (CDM, Sephadex®) could be 
utilized to overcome the mucosal barriers and 
increase immune responses (10). Bioadhesive 
polymers such as  dextran could decrease the 
mucociliary transport rate and prolong the 
residence time in the nasal cavity, by the help of 
which contact time of antigens with specialized 
antigen sampling cells (M cells) and resulting 
immune responses will be increased (8, 9). CDM 
should be administered in dry powder form to be 
able to absorb water and exert its penetration 
enhancer effect.  

Formulation of vaccines in dry powder form 
has several advantages. More chemical and 
microbiological stabilities of vaccines in dry 
form could eliminate the need for cold chain. As 
a result, storage, distribution and mass 
vaccination is easier and more economical than 
liquid-based vaccines (10, 11). Therefore 
antigens are better to be used in dry powder 
form. 

Among the natural immunoadjuvants, the 
adjuvant effect of Quillaja saponins (QS) has 
been shown in several studies. The purified 
Quillaja saponins (Quil A) are now approved for 
veterinary vaccines and these are commercially 
available vaccines, like bovine respiratory 
syncytial virus vaccine, adjuvanted with QS (12, 

13). A purified fraction of QS, named QS21, is 
also frequently used in clinical trials (12, 14).  

At the present study, CDM powder as an 
absorption enhancer adjuvant and Quillaja 
saponins (QS) as immunomodulator adjuvant 
were used for nasal immunization against a 
model antigen, tetanus toxoid. Powder 
formulations adjuvanted with CDM, QS or both 
were nasally administered in rabbits and their 
impacts on mucosal and systemic immune 
responses were evaluated.   
 

 

Materials and Methods 
Materials 
Purified Quillaja saponin was purchased from 
Sigma (St Louis, USA). Cross-linked dextran 
microsphere (Sephadex® G-150) was from 
BioGene (Sweden). Tetanus toxoid (TT) 2700 
Lf/ml and alum-adsorbed TT 50 Lf/ml were 
obtained from Razi Institute. (Hesarak, Iran). 
Each Lf of TT was equivalent to 5 g protein, as 
determined by BCA protein assay. Anti-rabbit 
IgG and IgA antibodies were from Sigma 
(Missouri, USA) and Bethyl Laboratories Inc. 
(Texas, USA). 

White albino rabbits weighing 2–2.5 kg were 
provided by Pasteur Institute (Tehran, Iran). 
 
Loading of CDM with TT and/or QS 
Ten mg of CDM powder was added to 40 Lf 
TT and/or 20 g QS solution and were mixed 
in ambient temperature for 10 min. The 
mixture was freeze-dried and the resulting 
powder was used for nasal immunization. In 
some of experimental groups, TT or TT+QS 
solution were first freeze-dried and resulting 
powder was mixed with CDM.   
 
Morphology and particle size determination 
Optical microscope (Olympus, Japan) was used 
for studying morphological features of CDM 
before and after freeze-drying. Scanning electron 
microscope (Leo, Germany) was used for 
studying the morphology and size of 
microspheres (Figure 1). For sample preparation, 
one drop of concentrated suspension of 
microspheres was dropped on the stub and left in 
ambient temperature to be dried. Microspheres 
were coated with gold-palladium in sputter-
coater. 
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Figure 1. Scanning electron micrograph of CDM microspheres before (A) and after (B) freeze drying 
 

 

 

Nasal immunization studies 
White albino rabbits weighing 1.5–2.5 kg      
(four animals per group) were nasally 
immunized with the following formulations in 
days 0, 14 and 28 of experiment. (1Two hundred 
l of TT-Sol (100 l in each nostril) or 10 mg of 
powder (all groups except for TT-Sol and alum-
TT groups, 5 mg in each nostril) were nasally 
administered. For nasal administration of dry 
powder of microspheres, powders were filled in 
polyethylene tubes (2 mm in diameter) and 
connected to a syringe. Tubes were inserted in 
animal nose (0.5 cm) and 10 ml of air was blown 
in tube. Each animal was bled in 3rd and 6th 
weeks. In the 6th week, the nasal cavity was 
washed with 5 ml sterile PBS buffer for 
determination of mucosal sIgA titer. 

 

  

  
 

Figure 2. Serum anti-TT IgG titers (mean±SD). Rabbits 
(n= 4) were nasally (intramuscularly for Alum-TT) 
immunized with 40 Lf TT and 20 g QS, at weeks 0, 2 and 
4 and were bled at weeks 3 and 6. Sera anti-TT IgG titers 
(end point titration) were determined by an ELISA method 
 

Determination of serum anti-TT IgG titers 
and nasal lavage anti -TT IgA titers 
Anti-TT antibodies in the rabbit serum and 
nasal lavage were detected and quantified by 
end-point titration using an ELISA assay (15).  

End-point titers were determined as the 
highest dilutions with absorbances equivalent 
to the normal sera. 
 
Statistical analysis 
Statistical analysis was carried out by one-way 
ANOVA and unpaired student’s t test. P-values 
less than 0.05 were regarded as significant. 
 
Ethics in animal investigations 
The protocols of animal studies were approved 
by Regional Ethics Committee. 

 

 

 
 

  

Figure 3. Nasal lavage anti-TT sIgA titers. Rabbits     
(n= 4) were nasally (intramuscularly for Alum-TT) 
immunized with 40 Lf TT and 20 g QS, at weeks 0, 2 
and 4 and nasal lavages were collected at week 6. 
Lavages were pooled and Anti-TT IgA titers 
(absorbance) were determined by an ELISA method 
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Results 
Morphology and size of CDM microspheres 
The spherical and smooth CDM microspheres 
were converted to particles with irregular shapes 
after freeze-drying process (Figure 1). Mean 
diameter of CDM microspheres was determined 
by direct measurement of diameters of 100 
microspheres under optical microscope, 
equipped with an eyepiece reticule. The mean 
diameter was 17.4±9.4 m. 
 
Serum anti-TT IgG titers 
Rabbits (n= 4) were nasally immunized with 
40 Lf TT and 20 µg QS at weeks 0, 2 and 4 
and were bled at weeks 3 and 6. Sera anti-TT 
IgG titers were determined by an ELISA 
method (Figure 2). Among nasally immunized 
groups, the highest IgG titer was related to 
CDM microspheres loaded with TT and QS  
(P< 0.01). When freeze-dried powder of TT 
was mixed with CDM microspheres, the IgG 
titer was higher than groups immunized with 
TT-loaded CDM microspheres (P< 0.01) and 
TT solution (P< 0.05). There was no 
significant difference between IgG titers 
induced with nasal administration of TT 
solution and freeze-dried powder of TT+QS 
and TT-loaded CDM microspheres (P> 0.05). 
Positive control group were intramuscularly 
injected with 10 Lf Alum-TT and showed the 
highest IgG titers (P< 0.001).  
 
Nasal lavage anti-TT IgA titers 
Following the above-mentioned immunizations, 
at the 6th week nasal lavage was collected, 
pooled and anti- TT IgA titers were determined 
by an ELISA method (16). No significant 
difference was observed among the groups 
immunized with various formulations (Figure 3) 
(P> 0.05).  

 
Discussion 
In mucosal immunization, the microfold (M) 
cells were thought to be the principal uptake 
site of particulate antigens. These cells which 
are found in the distal regions of the nose, the 
nasopharyngeal and palatine tonsils and 
bronchial associated lymphoid tissues (BALT) 
in the lung could absorb particles of 1-5 m in 

diameter (17, 18). The CDM microspheres 
with a mean diameter of 17.4±9.4 m could 
not be absorbed by M-cells or phagocyted by 
APCs. Therefore, the porous CDM 
microspheres (Figure 1) could only have an 
indirect effect on the responses.  

The need to cold chain for storage and 
distribution is a restricting factor for massive 
vaccination, especially in developing countries. 
One strategy for resolving the problem is 
preparation of stable powder vaccines. Dry 
powder formulations are more stable against 
chemical and microbial destabilization and could 
eliminate the necessity of the cold chain (10). 
At the present study CDM microspheres, 
commercially available as Sephadex®, were 
examined as absorption enhancer and 
excipient for nasal formulations. CDM powder 
was loaded or mixed with TT as a model 
antigen and QS as an adjuvant its impact on 
immune responses was evaluated.  

The results presented herein indicate that 
Quillaja saponin (QS) as an adjuvant and 
cross-linked dextran microspheres (CDM) as 
an absorption enhancer adjuvant could 
positively affect the systemic IgG titers. 
Intranasal administration of (TT+QS)CDM 
microspheres in powder form showed the 
highest serum IgG titers (P< 0.001). The end 
point titer (EPT) induced with this formulation 
was half of EPT induced with IM injection of 
alum-adsorbed TT (P< 0.001), which is 
indicative of a potent mucosal adjuvant 
system. When TT powder was mixed with 
CDM, induced higher IgG titers than TT+QS 
powder (P< 0.05), therefore the adjuvant 
potential of CDM is higher than QS.  

The IgG titers induced with (TT)CDM was 
similar to CDM mixed with TT powder            
(P> 0.05). However, (TT+QS)CDM induced 
significantly higher IgG titers than 
CDM+TT+QS (P<0.001). This implies that 
loading of CDM microspheres with TT+QS 
could highly increase its adjuvant potential.  
Based on previous studies on CDM 
microspheres for nasal delivery of peptide and 
protein drugs, absorption of water by the 
microspheres from the mucus layer may 
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Table 1. Details of formulations used for in vivo immunizations 

 
 

Induce reversible shrinking of the epithelial 
cells and widening of the tight junctions for 
about 15 min. In this time, the transport of 
hydrophilic compounds could be increased 
(19, 20). Additionally, the absorbed water will 
dissolve the loaded drug and high 
concentrations of drug will be formed in 
contact with epithelial surface (21). It seems 
that the higher IgG titers induced with 
(TT+QS) CDM could be attributed to the 
simultaneous delivery of antigen and adjuvant, 
while delivery of TT alone has not a 
significant impact.   

In several studies the porous cross-linked 
dextran and starch microspheres have been 
used for mucosal delivery of insulin (22-25), 
HCG (26), octreotide (27), G-CSF (28). But 
there are few reports about using of these 
microspheres for mucosal delivery of antigens 
(29). There are controversial results reported 
in the literature after mucosal immunization by 
these microspheres (29-31). However, in 
recent oral immunization studies, cross-linked 
dextran and starch microspheres smaller than 5 
m in diameters showed better results (32-35).  
In our previous nasal immunization study in 
rabbits, the immunoadjuvant potential of CDM 
loaded with TT was compared with TT and 
TT+ CpG ODN solutions. Among the nasally 
immunized animals, the highest antitoxin titers 
was seen in group immunized with CDM+TT 
(P< 0.0001). The serum IgG titers of the 

CDM+TT group was higher than the TT 
solution group (P< 0.05). The adjuvant 
potentials of CDM and CpG-ODN in inducing  
IgG titers was not significantly different       
(P> 0.05) (21).  

The nasal sIgA titers induced with different 
formulations was also studied. Among the 
groups studied the highest sIgA titers were 
seen in groups immunized with CDM-
containing formulations (Figure 4). The 
highest titer was seen in TT+QS+CDM and 
followed by (TT) CDM group. The lowest titers 
were seen in groups immunized with i.m. 
injection of Alum-TT and i.n. administration 
of TT sol. All differences seen in sIgA titers 
were not statistically significant. In our 
previous studies, PLGA nanospheres and 
alginate microspheres encapsulated with TT 
were mixed with CDM and administered as 
dry powder. CDM could increase the sIgA 
titers compared with lactose powders (11, 36). 
In another study, the nasal sIgA titers induced 
by CDM+TT was lower than TT solution (21). 
It seems that mixing of particulate delivery 
systems like nanospheres and microspheres 
with CDM can increase the systemic immune 
responses, but its effect on mucosal antibodies 
is marginal.  

In nasal delivery of vaccines, the residence 
time of antigen on the nasal mucosa is very 
important (37). Mucoadhesive compounds 
have been used to prolong the residence time 

Formulation TT (Lf) Dosage form CDM (mg) QS (g) Inert powder 
(lactose) (mg) 

Administration 
route 

TT mixed with QS 
TT+QS 

40 Dry powder - 20 10 i.n. 

CDM loaded with TT 
(TT)CDM 

40 Dry powder 10 - - i.n. 

CDM loaded with TT+QS  
(TT+QS)CDM 

40 Dry powder 10 20 - i.n. 

CDM mixed with TT+QS 
TT+QS+CDM 

40 Dry powder 10 20 - i.n. 

CDM mixed with TT 
TT+CDM 

40 Dry powder 10 - - i.n. 

TT solution 
TT-Sol 

40 Solution - - - i.n. 

Alum-adsorbed TT 
Alum-TT 

10 Suspension - - - i.m. 
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on a mucosal surface (10). CDM microspheres 
were reported, in previous studies, to have 
high mucoadhesion potential (38).  

 
Conclusion 
After nasal immunization, CDM microspheres 
loaded with TT+QS significantly increased serum 
anti-TT IgG titers, but mixing of CDM with 
TT+QS powder could not increase IgG titers. 

Neither QS nor CDM adjuvant could significantly 
increase the lavage anti-TT IgA titers.  
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