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A B S T R A C T   

Heavy-labelled internal standard (IS) compounds are commonly used in liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) assays to control for stochastic and systematic variation. Identifying samples that 
suffer from unwanted variation is critically important in order to avoid factitiously inaccurate results. Current 
approaches for outlier detection typically employ arbitrary thresholds and ignore systematic drift. To improve 
this, we applied robust linear mixed-effects models (LMMs) to capture the within- and between-run variability in 
IS signal and generate data-driven acceptance ranges for routine use. 

Data from in-house LC-MS/MS assays for 25-hydroxyvitamin D3 and D2 and prednisolone were retrospectively 
collected. The variation in the percentage deviation of the internal standard area from the mean of the calibrators 
was modelled through the use of robust LMMs. The fitted LMMs revealed significant positive drift in IS signal 
over the analytical runs for vitamin D, with slope coefficients of 0.118 (95% CI: 0.098, 0.138) and 0.192 (0.168, 
0.215) for D3 and D2, respectively. In contrast, the models for prednisolone demonstrated a significant negative 
drift in IS signal, with a slope coefficient of − 0.164 (− 0.297, − 0.036). Non-parametric, cluster bootstrap 
resampling enabled us to define acceptance ranges for use in future assays. 

Here, we have described a computational approach to extensively characterise the variation in IS signal in 
routinely-performed LC-MS/MS assays. This approach facilitates a robust quality assessment of IS outliers in 
routine practice and thus has the potential to improve patient safety. Importantly, this approach is applicable to 
other MS assays where linear variation in IS signal is observed.   

Introduction 

Deuterated or 13C-labelled internal standards (IS) are commonly 
used in targeted liquid chromatography-tandem mass spectrometry (LC- 
MS/MS) assays to control for stochastic and/or systematic variation in 
analyte extraction and analysis. This is typically achieved by adding a 
fixed amount of IS to each sample prior to further processing. Due to 
their structural similarity to the compound of interest, heavy element- 
labelled internal standards behave effectively identically during 
extraction and mass spectrometric analysis. As a result of the selectivity 
of mass spectrometers, however, the analyte and IS can be distinguished 
by their unique mass-to-charge ratios. The analyte concentration in each 
sample is then interpolated by calculating the ratio between the analy-
te’s peak area/height and the peak area/height of the IS (i.e., the 
response ratio). Despite the success of this approach, it is imperative to 
be able to detect outliers in IS signal in order to avoid falsely suppressed 

or enhanced response ratios that may lead to inaccurate estimates of 
analyte concentration. Such anomalies in IS signal can result from ion 
suppression or enhancement (caused by a co-eluting interferent in the 
sample matrix) or from analytical errors (e.g., inaccurate or imprecise 
addition of the internal standard) [1,2]. In order to detect such outliers, 
IS signals can be expressed as a ratio to the mean IS signal of the cali-
brators or other, stable reference sample, in which it is assumed that no 
suppression or enhancement effects occur (or where these are identical 
to those observed in patient samples). These values, termed “relative 
deviations”, can then be assessed against acceptance limits in order to 
identify outliers [1]. Once identified, the extraction of these samples can 
be repeated or further investigations performed (e.g., dilution series) 
[3]. There is, however, a dearth in the clinical mass spectrometry 
literature regarding the definition of these acceptance limits and the 
typically suggested fixed limits (e.g. − 50 to +50% [1]) are problematic 
as: (i) they are largely arbitrary and thus may not detect more subtle 
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variations in IS signal; (ii) they do not account for potential drift in the 
measurement system, leading to varying detection power across the 
course of a run; and (iii) such limits do not appropriately account for the 
within- and between-variability in IS signal observed in reality. Litera-
ture from other fields, such as bioanalysis, has detailed approaches for 
the detection and assessment of IS outliers [4]. These guidelines define a 
rule-of-thumb approach that makes use of intra-assay low and high IS 
signal references (Reflow and Refhigh), against which sample-specific 
deviations can be judged. Although these guidelines incorporate rules 
for the detection of systematic deviations, the proposed approach still 
relies on arbitrary limits (e.g., <10% or >2x the signal of the Reflow) and 
the definition of local minima and maxima will be sensitive to outliers in 
IS signal. 

Linear mixed-effects models (LMMs) – so-called because they 
combine both fixed/constant and random/varying effects – are useful 
tools for the estimation of experimental factors that may vary between 
groups within a hierarchy (the varying effects), while also estimating the 
effects that are identical for all groups within a hierarchy (the constant 
effects) [5,6]. In a typical experimental design, LMMs can therefore be 
used to assess the relationship between an outcome variable and its 
predictor variables (e.g., run position or time) and appropriately model 
the variance at each level of the experiment (e.g., within- and between- 
runs). Despite this, traditional LMMs are sensitive to the presence of 
outliers or other forms of contamination in the data on which they are 
modelled, and this can lead to inflated varying effect estimates [7]. 
Robust LMMs overcome this limitation by making no assumptions about 
the data’s grouping structure and by weighting the varying effects and 
residuals to reduce the influence of outlying observations on the model’s 
parameter estimates [7]. Here, we present the use of robust LMMs to 
model the variability in IS signal in routinely performed LC-MS/MS 
assays for the measurement of 25-hydroxyvitamin D3/D2 and prednis-
olone. Once fitted, these models were utilised to obtain robust, empirical 
acceptance ranges that properly account for system drift and within- and 
between-run variation in IS signal. Our approach, therefore, provides a 
robust, statistical tool for detecting IS outliers that we hope can be easily 
adopted by the clinical mass spectrometry community. 

Materials and methods 

Source data 

Data from analytical runs from two in-house assays for the mea-
surement of: (i) 25-hydroxyvitamin D3 and D2 (herein referred to as 
vitamin D), and (ii) prednisolone, were retrospectively collected (be-
tween November 2018 – September 2019 for vitamin D and August 2018 
– September 2019 for prednisolone). Each run consisted of a mix of 
blanks, calibrators, QC material, and patient samples (Tables S1 and S2). 
The calibrators for the vitamin D assay were purchased from Chrom-
Systems and consisted of pooled serum (product number: 38033). The 
calibrators for the prednisolone assay were prepared in-house in a so-
lution of 0.1% bovine serum albumin dissolved in phosphate-buffered 
saline. The collected data consisted of runs that had been processed 
via the relevant standard operating procedure performed in routine 
clinical practice (i.e., examination of peak quality, peak integration, 
calculation of responses, calculation of analyte concentrations, etc. in 
Waters TargetLynx software) by appropriately trained and competency- 
assessed members of laboratory staff. The vitamin D samples were 
prepared in an automated fashion through the use of Freedom EVO 100 
(Tecan, Reading, UK) and Biotage Extrahera (Biotage, Uppsala, Sweden) 
robotic platforms. In brief, this involved the automated addition of in-
ternal standard to each sample (150 µL), mixing for 5 min, and a 10 min 
equilibration at room temperature. The samples then underwent sup-
ported liquid extraction (SLE) with hexane on the Extrahera robot. The 
prednisolone samples were prepared through the manual pipetting of 
samples followed by manual addition of internal standard (60 µL) and a 
simple protein precipitation, as previously described [8]. The internal 

standards used for the vitamin D assay were: (i) 26,26,26,27,27,27-hex-
adeutero-25-hydroxyvitamin D3 and (ii) 6,19,19-trideutero-25-hydroxy-
vitamin D2 (QMX Laboratories Ltd, Thaxted, UK). The internal standard 
used for the prednisolone assay was 2,4,6,6,21,21-hexadeutero-prednis-
olone (Merck Millipore, Watford, UK). System suitability tests were 
performed prior to the start of each run in-line with ISO 15189:2012 
standards against which our laboratory is accredited by the UK 
Accreditation Service (medical laboratory 8673). These involved the 
injection of purified analyte, dissolved in solvent, to ensure acceptable 
chromatography and adequate signal. The runs analysed here were each 
injected following a successful system suitability test. 

Data analysis and statistical modelling 

The collected data were manipulated and analysed within the R 
statistical computing environment (v3.6.1) using a combination of the 
doParallel, dplyr, foreach, ggplot2, iterators, readxl, reshape2, and stringr 
packages [9–17]. Robust linear mixed-effects models were fitted to the 
data through the use of the robustlmm package using the default settings 
[7]. Robust linear mixed-effects models were fitted to each analyte 
measured within the given assay (e.g., 25-hydroxyvitamin D3 and D2 for 
the vitamin D assay). The general equation describing the fitted models 
is shown in Equation 1, and summarised in Fig. 1, where yij is the per-
centage deviation of internal standard area from the mean of the cali-
brators for the jth sample in the ith run; β0 is the constant effect of the 
average percentage deviation across all of the included runs; β1is the 
constant effect of run position across all of the included runs; ui is the 
varying effect for the ith run (i.e., the random/varying intercept); xij is 
the run position at which the jth sample within the ith run was performed; 
and εij is the residual error (i.e., sample-specific deviation within the 
run) for the jth sample in the ith run. These models were then utilised to 
obtain estimates of the sample-specific variation (σ2

ε , the variance of εij) 
and between-run variation of the intercepts (σ2

u , the variance of ui). 

yij = β0 + β1xij + ui + εij (15) 

Confidence intervals for the constant and varying effects and pre-
diction intervals for the overall models were estimated through the use 

Fig. 1. A simplified schematic of the fitted linear mixed-effects models. 
Black points represent individual data-points for run i. The red, solid line in-
dicates the overall trend (constant effects) across all n runs in an assay that 
presents with negative IS signal drift. The green, solid line indicates an example 
varying intercept for run i. 
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of non-parametric, cluster bootstrap resampling [18,19]. This was per-
formed as follows: 

1. Let the original dataset take the form of (yij, xij, zi): where zi repre-
sents the identifier for run i and yij represents the relative deviation 
for sample j within run i at position xij  

2. Sample with replacement from the analytical runs {zi} to create the 
bootstrap sample {z*

i }, where each z*
i contains its original (yij, xij) 

values  
3. Fit a robust linear mixed-effects model to the bootstrapped sample  

4. Estimate all the parameters from the bootstrapped model (β̂
*
0, β̂

*
1, σ̂*

u, 
and σ̂*

ε)  
5. Sample globally with replacement from the bootstrapped model’s 

residuals {ε*
ij} to create the sample {∊*

ij}

6. Predict new relative deviation values from the bootstrapped model: 

y*
ij = β̂

*
0 + β̂

*
1xij + û*

i + ∊*
ij, where the addition of the term ∊*

ij ac-
counts for within-run variation  

7. Repeat steps 2–6, B times (where B = 999) 

The confidence intervals presented herein represent the 2.5th and 
97.5th percentiles of the parameter estimates obtained from each 
bootstrapped model and the prediction intervals represent the 2.5th and 
97.5th percentiles of the predicted values derived from each boot-
strapped model (y*

ij). The code used for the analyses described here can 
be found on GitHub (github.com/ed-wilkes/general-modelling). 

Results 

Data overview 

We retrospectively collected data from our in-house vitamin D and 
prednisolone assays. A total of 105 and 55 analytical runs were collected 
for the vitamin D and prednisolone assays, respectively. Each run con-
sisted of a consistent, pre-determined layout of calibrators, quality 
control (QC) material, and patient samples as dictated by the assays’ 
standard operating procedures and as outlined in Tables S1 and S2. The 
vitamin D and prednisolone assays were prepared as described in the 
Materials and Methods (Section 2.1). 

Modelling internal standard variability in a routine assay for the 
measurement of prednisolone 

Each prednisolone run contained a variable number of patient sam-
ples, depending on the workload present within the laboratory at the 
time of assay preparation. Each assay did, however, contain a stand-
ardised number of calibrator and QC samples at the beginning of each 
run (Table S1). We first sought to determine the pattern of internal 
standard areas measured within each patient sample as a function of 
each samples’ position in the run. In order to account for between-run 
variation in raw signal intensity, we expressed the IS areas as a per-
centage of the mean internal standard area of the calibrators within each 
run (herein referred to as “relative deviation”, Fig. 2A). This demon-
strated that the relative deviations for each sample varied linearly across 
the analytical run. It is important to note that this observed drift in IS 
signal did not impact the responses of QC materials of known 

Fig. 2. Internal standard relative deviation changes linearly as a function of run position. Data points are binned and coloured as indicated in the associated 
scales. Dashed, red lines indicate zero relative deviation. (A) Data for the prednisolone assay. The x-axis is restricted as samples at the beginning of the run were 
standardised to consist of calibrators and QC material for each assay (Table S1). (B-C) Data for the 25-hydroxyvitamin D3 and D2 assays, respectively. Gaps at the 
beginning, middle, and end of the run represent the standardised positioning of calibrators and QC material (Table S2). 
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concentration injected at the beginning, middle, and end of the runs 
(Fig. S1), as the calculated concentrations showed no significant drift 
over the course of the run. To overcome the observed drift in IS signal, 
we hypothesised that an LMM would allow us to properly account for the 
effect of run position and incorporate the variance of IS signal within- 
and between-runs (Equation 1). Typical LMMs, however, assume that 
the residuals and random effects are normally distributed and do not 
contain outlying observations. The latter of these assumptions clearly 
does not hold in this experimental context, as the runs present within the 
data are likely to contain the outliers that we are seeking to identify. We 
did assume, however, that the majority of patient samples were unaf-
fected by IS issues. We, therefore, fitted a robust LMM to the data in 
order to appropriately account for this contamination and used non- 
parametric cluster bootstrap resampling to estimate the confidence in-
tervals of the fitted model’s parameters [16,17] (see Materials and 
Methods for more information, Section 2.2). A simplified schematic of 
the fitted model is shown in Fig. 1 and the estimated parameters for this 
model are shown in Table 1. These data demonstrated that a statistically 
significant negative drift in IS relative deviation was apparent (Table 1, 
β1 coefficient and associated confidence intervals). These models also 
demonstrated that between-run variability in IS signal contributed 
significantly more to the overall observed variance than within-run 
variability (Table 1, σu vs σε). Diagnostic plots for the fitted model are 
shown in Fig. S2. These validated the rationale for using robust LMMs, as 
neither the residuals (Fig. S2B) nor the random effects (Fig. S2C) were 
normally distributed and both contained clear outlying observations. 
Distributions of the bootstrapped parameters for the model are shown in 
Fig. S3. 

Modelling internal standard variability in a routine assay for the 
measurement of 25-hydroxyvitamin D 

Each vitamin D run contained a maximum of 85 patient samples, 
with a fixed number of calibrator and QC samples. As with the pred-
nisolone assay data shown in Fig. 2A, we first sought to determine the 
pattern of internal standard relative deviation measured within each 
patient sample as a function of each sample’s position in the run 
(Fig. 2B-C). This demonstrated that the relative deviations for each 
sample also varied linearly across the analytical run; however, unlike 
prednisolone, the relative deviation trended upwards. To appropriately 
model this effect, we fitted robust LMMs to the data (Equation 1 and 
Fig. 1). The fitted parameters for each model are shown in Table 1. These 
data demonstrated that a statistically significant positive drift in IS 
relative deviation was apparent for both compounds’ internal standards 
(Table 1, β1 coefficients and associated confidence intervals). Diagnostic 
plots for the fitted models for both compounds are shown in Fig. S4. 
Distributions of the bootstrapped parameters for the models are shown 

in Figs. S5 and S6 for 25-hydroxyvitamin D3 and D2, respectively. In 
contrast to the models fitted to the prednisolone data (Table 1), the 
between- and within-run variation in IS signal contributed approxi-
mately equally to the overall observed variance (Table 1, σu and σε). 

Using the fitted models in routine practice for detecting internal standard 
outliers 

A visual representation of the models fitted to the vitamin D and 
prednisolone data is shown in Fig. 3. These visualisations served to 
demonstrate the overall positive and negative drifts in IS signal captured 
by the models for the vitamin D and prednisolone assays, respectively 
(Fig. 3, solid red lines). In order to derive acceptance ranges from each 
model for assessing future assay runs in routine practice, we reasoned 
that the relative deviation for a typical sample within a typical run 
should fall within the 95% prediction interval of the relevant fitted 
model. As such, we calculated the prediction intervals for each model by 
means of non-parametric, cluster bootstrap resampling. The resulting 
derived acceptance ranges for each model are shown as dashed purple 
lines in Fig. 3A-C. As expected, using these derived acceptance ranges 
retrospectively on the original data resulted in approximately 5% of the 
samples being deemed as outliers (5.7%, 4.2%, and 4.3% for the pred-
nisolone, 25-hydroxyvitamin D3, and 25-hydroxyvitamin D2 assays, 
respectively). Taken together, these data serve to demonstrate how this 
modelling approach is applicable to different assays with alternate 
patterns of IS signal drift, with the vitamin D and prednisolone assays 
demonstrating different directions of systematic signal drift. In addition, 
these data demonstrate how these models can be used to derive accep-
tance ranges that appropriately and robustly account for IS signal drift 
that can be used for future assay runs. 

Discussion and conclusions 

Heavy element-labelled internal standards are useful tools for the 
correction of stochastic variation in sample extraction processes and 
mass spectrometric analysis. It is critically important, however, to be 
able to identify outliers in IS signal that may represent analytical errors 
(e.g., double-spiking or missed addition of internal standard) or ion 
suppression/enhancement [1,2]. Despite this, defined acceptance 
criteria for the detection of internal standard outliers in clinical mass 
spectrometry assays are lacking and arbitrary criteria that disregard a 
sample’s position within a run do not account for potential system drift 
during an assay [1]. We, therefore, sought to develop empirical and 
robust acceptance criteria for internal standard signal in two of our 
routinely performed targeted LC-MS/MS assays. 

We retrospectively collected data from two of our routinely per-
formed assays; one for the measurement of prednisolone and other for 
the simultaneous measurement of 25-hydroxyvitamin D3 and D2. Initial 
visualisation of the data revealed a linear relationship between the po-
sition of the samples with the assay runs and the relative deviation of the 
IS signal (Fig. 2A-C). We hypothesise that the drift observed was the 
result of a build-up of mobile phase/matrix constituents on the source 
and/or changes in room temperature over the course of the runs, as most 
of the runs are processed overnight and, thus, there is less traffic within 
the laboratory. Given the drift present in the data, the use of fixed, 
arbitrary thresholds would lead to false positive and negative identifi-
cations of IS outliers depending on the direction of drift in IS signal and 
the sample’s position in the run. To solve this problem, we fitted robust 
LMMs to the data in order to appropriately model IS signal drift and the 
between- and within-run variation in IS relative deviation (Table 1). 

Throughout the analyses presented here, we have made the 
assumption that the majority of patient samples present in our data are 
not outliers and have not been subject to sampling errors or ion sup-
pression/enhancement. It is likely, however, that the data are contam-
inated with samples affected by these issues. By using robust LMMs, 
however, we have reduced the impact of these on the estimates of the 

Table 1 
Estimated parameters from the fitted models for prednisolone, 25-hydrox-
vitamin D3, and 25-hydroxyvitamin D2. Confidence intervals (95%) derived 
from non-parametric cluster bootstrapping are shown in parentheses. β0, overall 
intercept; β1, overall slope; σu, standard deviation of the random intercepts 
(between-run variation); σε, standard deviation of the residuals (within-run 
variation).  

Parameter Prednisolone 
model 

D3 model D2 model 

Intercept (β0) − 11.6 
(− 15.6, − 7.4) 

− 26.3 
(− 28.5, 
− 24.2) 

− 21.4 
(− 23.5, 
− 19.3) 

Slope (β1) − 0.164 
(− 0.297, − 0.036) 

0.118 
(0.098, 
0.138) 

0.192 
(0.168, 
0.215) 

Between-run variation (σu) 10.1 
(7.3, 13.0) 

12.9 
(11.4, 14.3) 

11.3 
(10.0, 12.5) 

Within-run, residual 
variation (σε) 

6.10 
(5.49, 6.69) 

12.0 
(11.4, 12.5) 

13.0 
(12.4, 13.5)  
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models’ parameters and derived acceptance ranges. An additional lim-
itation of the analyses presented here is that, as we have modelled the 
relative deviation values of each IS, the developed models are dependent 
on the matrix of the calibrators. Should this change significantly (e.g., 
changes in lot number or supplier changes), the relationship between 
run position and relative deviation should be reassessed and the models 
re-fitted. This should not, however, represent a significant obstacle to 
laboratories that already perform verifications of new reagent or QC 
material lots on a regular basis; as is required for laboratory accredita-
tion to international standards (e.g., ISO 15189:2012). 

The data presented here demonstrate that robust LMMs can be uti-
lised to develop empirical, robust acceptance ranges for internal stan-
dard signals using data that are abundantly available to laboratories that 
routinely perform these types of analyses. The code used to perform 
these analyses is publicly available on GitHub (github.com/ed-wilkes/ 
general-modelling) and can be run within the open source and freely 
available R statistical computing environment. The code can also be 
used to fit more simple varying (random) effects models (ignoring the 
effect of run position) to develop acceptance ranges for assays where 
system drift is absent (i.e., where β1 is not significant). Indeed, this 
modelling approach could be used during assay development to deter-
mine if a significant drift is present in order to trigger further in-
vestigations as to its cause. Taken together, our analyses provide a freely 

available method by which any laboratory performing targeted LC-MS/ 
MS analysis can more robustly identify internal standard outliers. 
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Fig. 3. Fitted models and derived acceptance ranges for the vitamin D and prednisolone assays. (A) The model fitted for prednisolone. (B) The model fitted for 
25-hydroxyvitamin D3. (C) The model fitted for 25-hydroxyvitamin D2. Dashed, red lines indicate zero relative deviation. The red lines indicate the constant effects 
fitted to the runs (β0 + β1xij). Green lines indicate the varying intercepts fitted to each individual run (ui). Dashed, purple lines indicate the derived predic-
tion intervals. 
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