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Summary
Background We aimed to evaluate the cost-effectiveness of an artificial intelligence-(AI) based diabetic retinopathy
(DR) screening system in the primary care setting for both non-Indigenous and Indigenous people living with
diabetes in Australia.

Methods We performed a cost-effectiveness analysis between January 01, 2022 and August 01, 2023. A decision-
analytic Markov model was constructed to simulate DR progression in a population of 1,197,818 non-Indigenous
and 65,160 Indigenous Australians living with diabetes aged ≥20 years over 40 years. From a healthcare
provider’s perspective, we compared current practice to three primary care AI-based screening scenarios—(A)
substitution of current manual grading, (B) scaling up to patient acceptance level, and (C) achieving universal
screening. Study results were presented as incremental cost-effectiveness ratio (ICER), benefit-cost ratio (BCR),
and net monetary benefits (NMB). A Willingness-to-pay (WTP) threshold of AU$50,000 per quality-adjusted life
year (QALY) and a discount rate of 3.5% were adopted in this study.

Findings With the status quo, the non-Indigenous diabetic population was projected to develop 96,269 blindness cases,
resulting in AU$13,039.6 m spending on DR screening and treatment during 2020–2060. In comparison, all three
intervention scenarios were effective and cost-saving. In particular, if a universal screening program was to be
implemented (Scenario C), it would prevent 38,347 blindness cases, gain 172,090 QALYs and save AU$595.8 m,
leading to a BCR of 3.96 and NMB of AU$9,200 m. Similar findings were also reported in the Indigenous population.
With the status quo, 3,396 Indigenous individuals would develop blindness, which would cost the health system
AU$796.0 m during 2020–2060. All three intervention scenarios were cost-saving for the Indigenous population.
Notably, universal AI-based DR screening (Scenario C) would prevent 1,211 blindness cases and gain 9,800 QALYs in
the Indigenous population, leading to a saving of AU$19.2 m with a BCR of 1.62 and NMB of AU$509 m.

Interpretation Our findings suggest that implementing AI-based DR screening in primary care is highly effective and
cost-saving in both Indigenous and non-Indigenous populations.
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Research in context

Evidence before this study
We searched PubMed using the keywords “cost-effectiveness”,
“cost-utility”, “health economics”, “artificial intelligence”,
“diabetic retinopathy” and “Australia” until April 01, 2023. We
found no publications pertaining to the cost-effectiveness
analysis of applying AI for DR screening in Australia.

Added value of this study
We modelled different scenarios of AI-based DR screening in
Australian primary care settings for Indigenous population
and non-Indigenous population respectively, including (A)
replacing clinicians with AI-based DR screening, (B) and
scaling up the coverage to the level of patient acceptance and
(C) ultimately universal screening. This study found that in
Australian settings, implementing AI-based DR screening
would be cost-saving compared to the current practice in all
scenarios. For the Australian health care system, the screening
program will generate total net savings consisting of
screening, link-to-care, direct medical costs and blindness care

costs, as well as health benefits of timely detection of
additional cases, reduction in blindness cases and gain of
quality-adjusted life years.

Implications of all the available evidence
Our cost-effectiveness study provides economic evidence for
making an informed decision to implement AI-based DR
screening. It showed to be highly cost-saving for Indigenous
and non-Indigenous Australians. AI-based DR screening could
provide a novel point-of-care approach in the primary care
setting facilitating large-scale DR screening. This approach
would bridge the skill gap of GPs in performing DR screening
and potentiate the efficiency of the primary care system in
Australia. Furthermore, in rural and remote areas where
people are more vulnerable to DR, AI-based DR screening
would improve equity in both access to care and health
outcomes. Lastly, the evidence of the cost-effectiveness of AI-
based DR screening may inform the potential value of
implementing other AI-based diagnostic tools.
Introduction
Diabetic retinopathy (DR), a visually debilitating condi-
tion resulting from hyperglycaemia, continues to be a
leading cause of low vision and blindness in the working-
age population in Australia.1,2 This condition imposes a
significant burden in terms of the affected individuals’
well-being, healthcare expenditure and social productiv-
ity.3 Over the past three decades, the prevalence of dia-
betes in Australia increased tremendously, accompanied
by a two-fold increase in mortality rate.4 In Australia,
more than one million people are living with diabetes and
up to one-third of these patients are affected by DR.5,6 In
2015, the economic cost associated with diabetic macular
edema alone was estimated to be AU$2.07 billion and
disability-adjusted life years (DALYs) exceeded 7720
years.3 Urgent and proactive measures are needed to
mitigate the detrimental impact of DR on the Australian
population and healthcare system.

The World Health Organization (WHO) recom-
mends regular screening for DR as an effective inter-
vention to prevent vision impairment and blindness in
people with diabetes.7 Regular screening enables early
identification, prompt management and slowing down
disease progression.8 The English National Programme
for DR demonstrated the effectiveness of universal DR
screening by removing DR as the leading cause of
blindness in the UK.9 These findings highlight the
importance of implementing similar screening pro-
grams to combat DR in other global regions.

Retinal photography has gained popularity as a DR
screening technique and presents a valuable opportunity to
enhance DR screening in Australia. Nevertheless, the
availability of active screening programs remains limited
in Australia, particularly in rural and remote areas where
access to eye care services is constrained.10,11 Primary
healthcare providers, such as general practitioners (GPs),
are ideally positioned to bridge this gap, given that 85% of
the Australian population visits a GP at least once a year.12

To support this approach, the Australian Government has
introduced new Medicare Benefits Schedule (MBS) item
numbers to promote the use of retinal cameras by GPs for
DR screening.13 Despite the ready availability of retinal
www.thelancet.com Vol 67 January, 2024
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cameras, their utilisation remains suboptimal, evident
from low rates of DR screening MBS item number claims,
with only 1506 claims during November 2016–December
2017.14 Previous studies have identified several barriers,
including a lack of awareness regarding the DR screening
services, cost of retinal cameras, time constraints, and
insufficient training in the interpretation of retinal images
among GPs,15 hindering the success of the initiative.
Therefore, it is essential to address these challenges to
facilitate greater uptake of DR screening in Australia.

Recent years have witnessed significant advance-
ments in AI-based screening for DR, which offer an
efficient, cost-effective, and labour-saving approach to
improving DR screening on a large scale. Multiple
prospective studies conducted in real-world settings
have demonstrated that AI-based tools achieve compa-
rable performance to human experts,16–18 highlighting
their potential for enhancing DR screening efforts. In
Australia, pilot studies have validated the real-world ac-
curacy, feasibility and patient acceptability of automated
real-time AI-based DR screening systems.19,20 The large-
scale implementation of this technology requires careful
consideration of health economics. While previous
research has investigated the cost-effectiveness of
implementing AI-assisted DR screening in Brazil,
China, Singapore, the United Kingdom and the United
States,21–26 the results remain inconsistent, partially due
to variations in healthcare systems among these coun-
tries. Furthermore, in previous studies, AI was consid-
ered as an alternative strategy to be compared with the
current practice on the same scale. The real-world and
lifetime impact of implementing AI-based screening in
increasing the accessibility of service to diabetic patients
under different levels of care has not been investigated.

The unique population structure in Australia en-
compasses both Indigenous and non-Indigenous pop-
ulations. The risk of developing diabetes in Indigenous
people doubled compared to the non-Indigenous pop-
ulation as a result of health inequities such as less ac-
cess to health resources, higher prevalences of health
risk factors, and socioeconomic disadvantage.27 There-
fore, Indigenous people have demonstrated a signifi-
cantly higher disease burden of diabetes and DR.5 In
addition, Australia has its universal public insurance
scheme that provides access to free and quality care to
everyone,28 which would be a crucial factor that drives
the implementation and execution of a universal
screening program for conditions such as DR. There-
fore, our study aims to investigate the cost-effectiveness
of implementing AI-based DR screening for Indigenous
and non-Indigenous Australians in primary care.
Methods
Model construction
We performed a cost-effectiveness analysis between
January 01, 2022 and August 01, 2023. We constructed a
www.thelancet.com Vol 67 January, 2024
decision-analytical Markov model to investigate the cost-
effectiveness of implementing AI-based DR screening
in Australian primary care settings from the health
provider’s perspective.29–34 The model was constructed
using TreeAge Pro 2022 (TreeAge Software, Williams-
town, MA, USA). The findings were reported according
to the Consolidated Health Economic Evaluation
Reporting Standards statement.35

The workflow of DR screening in Australia is
demonstrated in Fig. 1. In the status quo, diabetic in-
dividuals were screened for DR by optometrists, oph-
thalmologists or GPs.36 As per the National Health and
Medical Research Council’s (NHMRC’s) Guidelines,
non-Indigenous diabetic participants having no DR need
to be screened biennially and Indigenous diabetic in-
dividuals should be screened annually.37 All participants
graded as mild DR would be suggested to be screened
annually and those with moderate DR and worse and/or
macular edema, would require referral to an ophthal-
mologist for further treatment.37,38 In the intervention
scenarios, participants will be screened by an automated
AI-based DR screening system and provided with a real-
time report with referral recommendations.19

The Markov model was constructed to simulate the
progression of DR in 1,197,818 non-Indigenous and
65,160 Indigenous diabetic individuals in Australia aged
20 years and older in 2020.5,39 The cohort was followed
up for 40 years because it can model the lifetime of this
cohort with a baseline mean age of 65 years old. DR
states were determined by the International Clinical
Disease Severity Scale for DR40 and the clinically rele-
vant classification for diabetic macular edema (DME),41

including mild non-proliferative diabetic retinopathy
(NPDR), moderate NPDR, severe NPDR, proliferative
diabetic retinopathy (PDR), non-central-involved dia-
betic macular edema (NCIDME), and central-involved
diabetic macular edema (CIDME), along with blind-
ness and death. Each DR state was divided into unde-
tected and detected states (Supplementary Figure S1).
The blindness state included unilateral and bilateral
blindness. The proportions of unilateral and bilateral
blindness in the Indigenous and non-Indigenous pop-
ulations were derived from the Blue Mountains Eye
Study and the National Eye Health Survey
(Supplementary Figure S1).42,43 Blindness was defined as
the best-corrected visual acuity of less than 3/60 in both
eyes and/or a corresponding visual field of less than 10◦
or no light perception.44 As this is a static model, it did
not include the newly onset diabetic individuals after
2020. Details of the management plan of each DR state
were described in Supplementary Methods. The
compliance rate to follow-up treatment after screening
was estimated from the Australian Institute of Health
and Welfare data45 and prevalence of DR,6,46 resulting in
20.9% and 67.1% for Indigenous and non-Indigenous
people, respectively. Assumptions of no regression to
previous disease states were applied.
3
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Fig. 1: Flowchart of diabetic retinopathy screening and follow-up management.
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Fig. 2: Scenarios of different diabetic retinopathy screening rates among the diabetic population. Figure captions: Status quo demon-
strated the proportion of undiagnosed diabetic patients, diagnosed but not followed-up diabetic patients, regularly followed-up without eye
screening patients, and the professions that conveyed DR screening in patients who are currently under DR screening. Scenario A modelled the
replacement of manual screening of DR by the automated AI system. Scenario B modelled the replacement and the increased screening rate in
the patients who are not undertaking DR screening. 62.0% of the patients who are regularly followed up for diabetes are assumed to undertake
DR screening by the AI. 85% of the patients with undiagnosed or unfollowed-up diabetes will have access to healthcare and 62.0% of those will
undertake DR screening using the AI system. In Scenario C, a universal screening scenario was modelled where 80% of the patients who are
unscreened for DR currently will be screened by the AI.

Articles
Definition of intervention scenarios
We defined four scenarios including the status quo and
three intervention scenarios (Fig. 2). For the status quo,
75% of the Australian population living with diabetes
has been diagnosed.47 50% of the individuals with
diagnosed diabetes (37.5% of the diabetic patients)
undertake regular follow-up48 and of these, 42% of non-
Indigenous people and 34% of Indigenous people un-
dertake diabetic eye checks,36 resulting in an estimated
15.75% of the total non-Indigenous diabetic population
and 12.75% of the Indigenous diabetic population un-
dertaking DR screening. For individuals currently under
DR screening, 89.77% were screened by optometrists,
7.05% by ophthalmologists and 3.17% by GPs.36

As shown in Fig. 2, Scenario A modelled the
replacement of clinician screening with AI in the sub-
population that is currently under screening. As auto-
mated AI-based screening negates the need for health-
care professionals and when implemented in general
practice clinics, the first key point that links all patients
to the healthcare system, this approach holds the po-
tential to increase the screening rate and formulate a
screening program. Therefore, we modelled the
increased screening rate of AI-based DR screening to
the patient acceptance level in Scenario B and to uni-
versal screening in Scenario C. The increased screening
rate was determined by the patient satisfaction rate of
62.0% from our pilot study (unpublished) and the fact
that 85% of Australians visited their GPs at least once a
www.thelancet.com Vol 67 January, 2024
year.49 We assumed in Scenario B that 62.0% of the
diabetic patients with regular follow-up would be
screened; 85% of the diagnosed diabetic patients
without follow-up would visit a GP in one year for a
general health issue (link to care) and 62.0% of them
would be screened; 85% of the undiagnosed diabetic
patients would visit GP and complete diagnostic tests
for diabetes (link to care) and 62.0% of them would be
screened. This resulted in a total screening rate of
62.17% and 61.03% in the non-Indigenous and Indig-
enous population, respectively. Scenario C modelled a
universal AI-based DR screening scenario that would
cover 100% of the patients who were under DR
screening and 80% of the rest of the unscreened pop-
ulation,50 resulting in a screening rate of 83.15% in the
non-Indigenous population and 82.55% in the Indige-
nous population.

Disease burden of diabetic retinopathy
The prevalence of any DR, PDR and DME in the
Indigenous and non-Indigenous population was derived
from a meta-analysis of the Australian population and
further breakdown of the prevalence of mild NPDR,
moderate NPDR, severe NPDR, NCIDME and CIDME
was calculated based on the prevalence reported in the
National Eye Health Survey (Supplementary Table S1).
As DME can occur at any stage of DR, the initial prob-
ability of mild, moderate, and severe NPDR and PDR in
the Markov model has excluded DME and any DR with
5
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Base case value References Range Distribution

Sensitivity

AI for any DR 0.870 51 ±25% (0.653–1) Triangular

AI for VTDR 0.970 52 ±25% (0.728–1) Triangular

AI for DME 0.950 52 ±25% (0.713–1) Triangular

Optometrists for any DR 0.750 53 ±10% (0.675–0.825) Triangular

Optometrists for referable DR 0.730 53 ±10% (0.657–0.803) Triangular

GP for any DR 0.433 54,55 ±10% (0.390–0.476) Triangular

GP for referable DR 0.560 56 ±10% (0.504–0.616) Triangular

Ophthalmologists for any DR 0.848 16 95% CI (0.794–0.933) Triangular

Ophthalmologists for VTDR 0.848 16 95% CI (0.794–0.933) Triangular

Specificity

AI for any DR 0.907 51 ±25% (0.680–1) Triangular

AI for VTDR 0.914 52 ±25% (0.686–1) Triangular

AI for DME 0.929 52 ±25% (0.697–1) Triangular

Optometrists for any DR 0.940 56 ±10% (0.846–1) Triangular

Optometrists for referable DR 0.930 56 ±10% (0.837–1) Triangular

GP for any DR 0.940 56 ±10% (0.846–1) Triangular

GP for referable DR 0.980 56 ±10% (0.882–1) Triangular

Ophthalmologists for any DR 0.955 16 95% CI (0.941–0.967) Triangular

Ophthalmologists for VTDR 0.955 16 95% CI (0.941–0.967) Triangular

Table 1: Variable ranges and distributions for the sensitivity and specificity of AI, general practitioners, optometrists and ophthalmologists.
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DME was considered as a separate DME state in the
Markov model (Supplementary Figure S1).

Screening sensitivity and specificity
The sensitivity and specificity of DR screening by the AI
system, optometrists, ophthalmologists and GPs were
shown in Table 1. Consistent with previous studies,
referable DR includes moderate DR or worse and/or
DME, and vision-threatening diabetic retinopathy
(VTDR) includes severe DR and worse and/or DME.57,58

Transition probabilities
All transitions between different DR disease states were
based on a 1-year cycle (Supplementary Table S2). If
transition probability was not available, it was translated
from the incident rate using the formula p(t) = 1 − e−rt,
where r represents the incident rate over a period time
of t. Age-standardised mortality was calculated from the
Australian Bureau of Statistics (ABS) in 2021.59 The age-
specific increased risk of mortality in the diabetic pop-
ulation was derived from the study by Tancredi et al.60

The Indigenous people had a 1.8 increased risk of
mortality compared to the non-Indigenous people.61 In
addition, the risk of mortality in the blindness popula-
tion was 1.08 times higher compared to non-blindness
people.62

Utility values
Utility values were obtained from previous studies
(Supplementary Table S3). Patients with no DR were
assigned the utility value of diabetes. The annual
discount rate of utility was 3.5% according to the rec-
ommendations from the National Institute for Health
and Clinical Excellence (NICE).63

Screening, intervention and healthcare costs
The costs of screening, consultation and treatment were
obtained from the MBS and Pharmaceutical Benefits
Scheme (PBS) in July 2022.13,64 The costs for blindness
care were derived from published studies.65 As data was
limited for unilateral blindness, we adopted an
assumption that the costs associated with rehabilitation,
equipment, education, training, and daily life support
for unilateral blindness was 30% of the corresponding
costs for bilateral blindness.66 Supplementary Table S4
shows the detailed cost breakdown. The cost of DR
screening using the AI system was derived from our
empirical study (unpublished; Supplementary Table S5).
In detail, the patent cost was suggested by Eyetelligence
Pty Ltd., which charges AU$5 per patient, covering
patent licensing, software development and mainte-
nance, and organization overhead. The hardware cost
and depreciation included the automated fundus cam-
eras, personal computer and maintenance fee, resulting
in a unit cost of AU$2.2 per person under the conser-
vative assumption that 1000 patients per year would be
screened by the system. The labour cost included the
one-time training and wages for the operators’ assis-
tance with image acquisition. This resulted in an esti-
mated unit cost of AU$12.2 for the AI-based screening.
All The costs were discounted at an annual rate of
3.5%.63
www.thelancet.com Vol 67 January, 2024
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Cost-effectiveness analysis
The effectiveness measures included the incremental
detected VTDR cases, decremental blindness cases (i.e.,
blindness cases prevented), and the incremental quality-
adjusted life years (QALYs) in the intervention scenarios
relative to the status quo. We estimated the cost-
effectiveness of implementing AI-based DR screening
compared to the status quo using several measure-
ments. The incremental cost-effectiveness ratio (ICER)
indicates the additional cost of a unit increase in the
QALY. A Willingness-to-pay (WTP) threshold of
AU$50,000 per QALY was adopted in this study.67 We
also evaluated the cost-effectiveness by quantifying the
cost per blindness case prevented, benefit-cost ratio
(BCR) and net monetary benefit (NMB). In this study,
BCR was calculated as the total cost savings divided by
the total investment in screening costs and link-to-care
costs related to launching the AI system for DR
screening.

Sensitivity analysis
To assess the uncertainties of the main outcomes, we
performed one-way sensitivity analysis, two-way sensi-
tivity analysis (on sensitivity and specificity of the AI)
and probabilistic sensitivity analysis (PSA). The ranges
for the variables were shown in Table 1 and
Supplementary Tables S1–S4. A range of ±25% was
used for the sensitivity and specificity of the AI system68

and a range of ±50% was applied to the cost of AI, with
the aim of providing a conservative estimation for the
uncertainties associated with AI performance and cost
in the real world. When available, the upper and lower
limits of the 95% CI were used for the other variables.
Lower and upper limits of ±10% from the base case
values were used for the rest of the variables.26 Tornado
diagrams were plotted to demonstrate the factors that
exert the most significant influence on the ICER. In
PSA, triangular distributions were assigned to all the
variables. 10,000 Monte Carlo simulations were con-
ducted where each random sampling of the input vari-
ables from the probability distribution generated an
ICER.

Ethics
Ethics approval is waived for this cost-effectiveness
analysis as it does not involve human subjects. The
analysis solely relies on aggregated and unidentifiable
data obtained from published literature or open-source
data sources.

Role of the funding source
All authors confirmed that they had full access to all data
involved in this study and accepted responsibility for the
decision to submit for publication. The sponsor or
funding organisation had no role in the design or
conduct of this research.
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Results
Population impact and DR-related costs with the
status quo
The results of the cost-effectiveness analyses in non-
Indigenous and Indigenous populations can be found
in Table 2 and 3. With the status quo, the cohort of
1,197,818 non-Indigenous diabetic individuals projected
a total of 15,102,882 quality-adjusted life years (QALYs)
over a 40-year period. Within this timeframe, 304,865
cases of VTDR would be detected by screening and
96,269 cases of blindness would occur. The estimated
cost for the non-Indigenous cohort over 40 years would
be $13,039.6 m, including $139.8 m for screening costs,
$2,875.0 m for direct medical costs, and $10,024.8 m for
blindness care. In particular, the direct medical costs
included $330.5 m consultation fees, $92.4 m angio-
gram fees, $81.0 m OCT fees, $639.0 m photocoagula-
tion fees, $1,687.6 m anti-vascular endothelial growth
factor (anti-VEGF) injection fees, and $44.7 m vitrec-
tomy surgery fees.

The cohort of 65,150 Indigenous diabetic individuals
is projected to gain 647,551 QALYs. 5,010 VTDR cases
would be detected and 3,396 cases of blindness would
develop over 40 years. The total cost would be $796.0 m,
including $6.7 m screening costs, $101.7 m direct
medical costs, and $687.6 m for care for blindness. The
details of the direct medical costs breakdown can be
found in Table 3.

Population impact and cost-effectiveness of
replacing manual DR screening with AI-based DR
screening
Replacing manual DR screening with AI-based DR
screening (Scenario A) in the non-Indigenous people
was projected to increase the number of detected VTDR
cases to 348,186, resulting in 43,321 more detected
VTDR cases than the status quo. The number of
blindness cases would reduce to 89,645, preventing
6,624 cases of blindness compared with the status quo,
leading to an additional 16,477 QALYs gained by the
cohort over 40 years. The projected cost for the non-
indigenous people over 40 years was $12,860.0 m,
including $24.3 m for screening, $3,344.8 m for direct
medical costs, and $9,490.8 for blindness care. The
direct medical costs included $428.5 m for consultation,
$107.9 m for angiogram, $94.5 m for OCT, $746.3 m for
photocoagulation, $1,967.7 m for anti-VEGF injection,
and $52.1 m for vitrectomy surgeries. Although this
scenario required an additional $469.8 m for direct
medical care, it would save $115.4 m on screening and
$533.9 m on blindness care, resulting in net savings of
$179.6 m. The net savings and health benefits resulted
in a BCR of 7.37 and NMB of $1,003 m.

For the Indigenous people, the total QALYs gained
would increase by 669 compared to the status quo. An
additional 922 VTDR cases would be detected and 136
7
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Status
quo

Scenario A Scenario B Scenario C Incremental
cost
or effectiveness
(Scenario A)

Incremental cost
or effectiveness
(Scenario B)

Incremental cost
or effectiveness
(Scenario C)

QALY 15,102,882 15,119,359 15,250,035 15,274,972 16,477 147,154 172,090

Total cost (AU$, million) 13,039.6 12,860.0 12,510.6 12,443.8 −179.6 −529.0 −595.8

Screening cost 139.8 24.3 58.5 67.0 −115.4 −81.3 −72.8

Link to care cost 0.0 0.0 62.9 83.5 0.0 62.9 83.5

Direct medical cost 2,875.0 3,344.8 5,861.0 6,220.1 469.8 2985.9 3345.0

Consultation cost 330.5 428.5 783.0 836.9 98.0 452.6 506.5

Fluorescein angiography cost 92.4 107.9 188.9 200.1 15.5 96.6 107.7

OCT cost 81.0 94.5 165.6 175.4 13.6 84.6 94.4

Photocoagulation cost 639.0 746.3 1,308.4 1,384.3 107.3 669.4 745.4

Anti-VEGF injection cost 1,687.6 1,967.7 3,415.0 3,623.3 280.1 1,727.5 1,935.7

Vitrectomy cost 44.7 52.1 90.4 95.9 7.4 45.7 51.2

Cost for blindness care 10,024.8 9,490.8 6,528.2 6,073.2 −533.9 −3,496.6 −3,951.6

VTDR detected (cases) 304,865 348,186 509,209 521,692 43,321 204,344 216,827

Blindness (cases) 96,269 89,645 60,884 57,922 −6,624 −35,385 −38,347

ICER – – – – −10,897
(Dominating)

−3,595
(Dominating)

−3,462
(Dominating)

Incremental cost/blindness averted (AU$) – – – – −27,108
(Dominating)

−14,950
(Dominjating)

−15,537 (Dominating)

Benefit-cost ratioa – – – – 7.37 4.36 3.96

NMB (AU$, million)b – – – – 1,003 7,887 9,200

aBenefit-cost ratio is calculated as the total cost savings divided by the sum of screening costs and link-to-care costs. bNMB, net monetary benefit is calculated as the QALYs
gained multiplied by willingness-to-pay minus total incremental costs.

Table 2: Cost-effectiveness analysis of applying AI in DR screening in primary care settings in non-Indigenous diabetic patients over a time horizon of
40 years.

Status
quo

Scenario A Scenario B Scenario C Incremental cost
or effectiveness
(Scenario A)

Incremental cost
or effectiveness
(Scenario B)

Incremental cost
or effectiveness
(Scenario C)

QALY 647,551 648,219 655,751 657,350 669 8,200 9,800

Total cost (AU$, million) 796.0 787.7 778.4 776.7 −8.3 −17.6 −19.2

Screening cost 6.7 1.1 3.5 4.2 −5.6 −3.2 −2.5

Link to care cost 0.0 0.0 5.7 7.7 0.0 5.7 7.7

Direct medical cost 101.7 116.8 251.2 276.1 15.1 149.5 174.4

Consultation cost 10.4 13.1 30.5 33.8 2.7 20.1 23.4

Fluorescein angiography cost 2.9 3.4 7.4 8.1 0.5 4.5 5.2

OCT cost 2.6 3.0 6.5 7.1 0.4 3.9 4.5

Photocoagulation cost 18.5 21.6 47.6 52.3 3.1 29.1 33.8

Anti-VEGF injection cost 65.6 75.7 159.2 174.8 10.1 93.6 109.2

Vitrectomy cost 1.7 2.0 4.2 4.6 0.3 2.5 2.9

Cost for blindness care 687.6 669.9 518.1 488.8 −17.7 −169.5 −198.8

VTDR detected (cases) 5,010 5,932 11,846 12,522 922 6,836 7,512

Blindness (cases) 3,396 3,260 2,313 2,185 −136 −1,083 −1,211

ICER – – – – −12,360
(Dominating)

−2,143
(Dominating)

−1,964
(Dominating)

Incremental cost/blindness averted (AU$) – – – – −60,837
(Dominating)

−16,232
(Dominating)

−15,890
(Dominating)

Benefit-cost ratioa – – – – 7.70 1.91 1.62

NMB (AU$, million)b – – – – 42 428 509

aBenefit-cost ratio is calculated as the total cost savings divided by the sum of screening costs and link-to-care costs. bNMB, net monetary benefit is calculated as the QALYs
gained multiplied by willingness-to-pay minus total incremental costs.

Table 3: Cost-effectiveness analysis of applying AI in DR screening in primary care settings in Indigenous diabetic patients over a time horizon of 40
years.
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people would be prevented from blindness. The pro-
jected total cost for Indigenous people would be
$787.7 m, saving $8.3 m in total. It is projected to in-
crease the direct medical cost by $15.1 m compared to
status quo, but would save $5.6 m in screening and
$17.7 m in care for blindness, resulting in a BCR of 7.70
and NMB of $42 m.

Population impact and cost-effectiveness of
scaling-up AI-based DR screening to potential
population acceptance level
Increasing AI-based DR screening coverage to the po-
tential patient’s acceptance level (62.17% for non-
Indigenous, Scenario B) was projected to detect a total
of 509,209 VTDR cases over the 40 years in the non-
Indigenous cohort, which was 204,344 more than the
status quo. A total of 60,884 blindness cases would
develop, preventing 35,385 blindness cases and
increasing the total QALYs gained by 147,154. This
scenario would have cost the healthcare system a total of
$12,510.6 m for the non-Indigenous people, including
$58.5 m in screening costs, $62.9 m that linked the
unscreened population to primary healthcare,
$5,861.0 m in direct medical costs, and $6,528.2 m
blindness care cost. The direct medical costs would
consist of a $783.0 m consultation fee, $188.9 m
angiogram fee, $165.6 m OCT fee, $1,308.4 m photo-
coagulation fee, $3,415.0 m anti-VEGF injection fee,
and $90.4 m vitrectomy surgery fee. While this scenario
would lead to an increase of $2,985.9 m in direct med-
ical care, it could save $81.3 m in DR screening and
$3,496.6 m in blindness care, resulting in a net saving of
$529.0 m compared to the status quo, resulting in a
BCR of 4.36 and NMB of $7,887 m.

For the Indigenous cohort, when the screening
coverage increased to 61.03% in Scenario B, it was
projected to detect 11,846 VTDR cases, resulting in
6,836 more cases detected compared to the status quo.
In addition, a total of 2,313 blindness cases would
develop, which is 1,083 less than the status quo. This
scenario is projected to cost the health system $778.4 m,
including $3.5 m screening costs, $5.7 m link-to-care
costs, $251.2 m direct medical costs and $518.1 m
cost for blindness care. The net saving would be
$17.6 m, resulting in a BCR of 1.91 and NMB of
$428 m.

Population impact and cost-effectiveness of
achieving universal AI-based DR screening
Scaling up AI-based DR screening to universal coverage
(83.15%for non-Indigenous people, Scenario C), would
identify 521,692 cases of VTDR over 40 years, 216,827
cases more compared to the status quo. A total of 57,922
blindness cases would develop and an additional 38,347
cases of blindness would be prevented compared with
the status quo, leading to an additional gain of 172,090
QALYs. This universal screening scenario was estimated
www.thelancet.com Vol 67 January, 2024
to cost the healthcare system $12,443.8 m for non-
Indigenous people, including $67.0 m for screening,
$83.5 m for link-to-care costs, $6,220.1 m for direct
medical costs, and $6,073.2 m for blindness care costs. It
was projected to save the healthcare system $595.8 m
over 40 years. Despite an increase in direct medical costs
by $3,345.0, this scenario would reduce screening costs
by $72.8 m and blindness care costs by $3,951.6 m,
resulting in a BCR of 3.96 and NMB of $9,200 m.

When the AI-based DR screening covers 82.55% of
the Indigenous population, it is projected to detect
12,522 cases of VTDR over 40 years, which would be
7,512 more cases compared to the status quo. 2,185
cases of blindness would develop, which would be 1,211
less compared to the status quo. The universal screening
program for the Indigenous people would cost
$776.7 m, including $4.2 m screening costs, $7.7 m
link-to-care costs, $276.1 m direct medical costs, and
$488.8 m costs for blindness care. This scenario would
save $19.2 m in total relative to the status quo, and
would result in a BCR of 1.62 and NMB of $509 m.

Sensitivity analysis
Fig. 3a and b shows the results from the one-way
sensitivity analysis for non-Indigenous and Indigenous
people respectively as Tornado diagrams. In Scenario A,
the most important parameters influencing the ICER
included the sensitivity of the AI, sensitivity of optom-
etrists, cost of blindness, utility of blindness, and tran-
sition probability from DME to blindness without
treatment in both Indigenous and non-Indigenous
populations. In Scenario B and C, the cost of blind-
ness, the transition probability from DME to blindness
with treatment, and without treatment, the cost of anti-
VEGF injection, and the transition probability from se-
vere NPDR to PDR without treatment were the five most
impactful parameters that affected the ICER in the non-
Indigenous population. The Indigenous population
shared four of those parameters, except for the transi-
tion probability from severe NPDR to PDR without
treatment. Instead, the transition probability from PDR
to blindness without treatment was among the most
impactful parameters.

Results from two-way sensitivity analysis on the
sensitivity and specificity of the AI system showed that if
manual screening would be replaced by the AI system at
the same screening rate, the AI system should have a
sensitivity of at least 80.1% for the non-indigenous
population, and 79.5% for the indigenous population
to become a cost-effective measure compared to the
status quo. The specificity of the AI did not show an
apparent influence on cost-effectiveness.

The scatter plot depicted the PSA results (Fig. 4a and
b). For Scenario A, all 10,000 simulations demonstrated
cost-saving results in both non-Indigenous and Indige-
nous people. Among the non-Indigenous population,
Scenario B exhibited cost-saving outcomes in 99.7% of
9
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Fig. 3: The tornado diagram from one-way sensitivity analysis in the non-Indigenous population (A) and the Indigenous population (B).
Figure captions: The Tornado diagram demonstrated the ten parameters from one-way sensitivity analysis that have the most significant
influence on ICER. The analysis compared scenarios A, B and C with different screening rates with status quo. The bars on the plot represent the
potential effect of each parameter on the ICER, with the width of the bar indicating the range of the parameter. The red part of the bar
represents high input values of the variables, while the blue part represents low values.
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Fig. 3: (continued)
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Fig. 4: Probabilistic sensitivity analysis in the non-Indigenous population (A) and Indigenous population (B). Scatter plot from the
probabilistic sensitivity analysis represented the incremental cost and incremental effectiveness of Scenario A, B and C compared to the status
quo under 10,000 simulations.
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all iterations, with the remaining 0.3% being cost-
effective. Similarly, in Scenario C, 99.7% of all itera-
tions resulted in cost-saving results, while 0.3% were
categorised as cost-effective. For the Indigenous popu-
lation, 94.7% of all iterations in Scenario B were iden-
tified as cost-saving, with 5.3% deemed cost-effective. In
Scenario C, 93.3% were cost-saving iterations and the
rest 6.7% were cost-effective.
Discussion
Our study has demonstrated that implementing an AI-
based DR screening system in primary care settings
was a highly cost-saving strategy in Australia. This
would be attributed to the lower DR screening cost and
higher accessibility and sensitivity of the AI system
allowing for increased early detection, prompt treatment
and slowing down the disease progression. Despite the
www.thelancet.com Vol 67 January, 2024
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increase in direct medical costs, the overall health ben-
efits and monetary savings for the health system are
significant.

The use of AI-based DR screening is a new model of
care that is gaining popularity. Investigating the health
economics of this technology would facilitate its further
clinical application. To the best of our knowledge, this is
the first study to investigate the cost-effectiveness of
implementing AI-based DR screening in Australia,
where optometrists and GPs play key roles in providing
primary eye care under the national publicly-funded
health insurance scheme.

Several studies have previously assessed the health
economics of using AI for DR screening in various
settings.21–26 For example, Xie et al. conducted a cost-
minimisation analysis to demonstrate that the annual
unit cost of AI-assisted DR screening in fully-automated
or semi-automated approaches is less expensive than
human graders in Singapore.21 In terms of short-term
cost-effectiveness, the UK National Health Services
Diabetic Eye Screening Program indicated that AI-
assisted DR grading saves costs in terms of screening,
however, the diagnostic accuracy of the AI systems will
largely affect the effectiveness compared to human
graders.25 A one-year cost-effectiveness analysis was
conducted in pediatric diabetes population in the United
States, and the findings suggested the cost-effectiveness
of AI would be largely associated with adherence to DR
screening.23 As DR is a chronic condition that requires
lifelong management, long-term cost-effectiveness
analysis found that AI-based DR screening would be
cost-saving compared to clinician screening over the
lifetime horizon in hypothetical cohorts in China and
Singapore.22 Our study demonstrated similar cost-saving
findings in both real-world non-Indigenous and Indig-
enous cohorts. Moreover, we measured the effectiveness
not only in terms of QALYs but also VTDR detected and
blindness prevented, which provided more clinical
relevance. However, inconsistent findings were reported
in Brazil, where the AI-based DR screening cost more
than the standard care model, with QALYs remaining
similar.24 The potential reason is that the costs of
specialist consultations and DR management were
inexpensive.

Our findings suggest that using AI-based DR
screening in primary care could be an effective way to
increase efficiency and reduce barriers to DR screening.
According to the National Eye Health Survey, a signifi-
cant proportion of Australians are not adhering to DR
screening guidelines.69 A plethora of potential barriers
to performing DR screening may explain the low
adherence, such as lack of time in routine practice, lack
of awareness, and inadequate training of primary care
providers in DR screening.15 The assistance of AI could
help to bridge the skill gaps of GPs, thus providing the
point-of-care screening service to the large number of
eligible patients visiting the GP clinics who were not
www.thelancet.com Vol 67 January, 2024
previously screened. Furthermore, in rural and remote
areas, there is a higher proportion of indigenous Aus-
tralians who have poorer overall health and greater
disease burdens. The high cost of retinal cameras and
limited access to eye care may exacerbate the problem in
these areas.15,69 Introducing AI-based automated
screening facilities to rural and remote areas helps to
increase the accessibility of healthcare to these residents
who are more vulnerable but are underserved, therefore
improving the health of this population. Although no
AI-based DR screening program has been launched in
Australia, the technology has been proven through
pragmatic trials to be a feasible and accurate approach in
Australian healthcare settings and participants demon-
strated reasonably good satisfaction.19,20 These findings
shed light on the potential of AI-based DR screening to
be translated into a routine screening practice and in-
tegrated into the full-cycle management of DR.

Nonetheless, the real-world implementation and
scaling up of AI-based screening is challenging. Firstly,
it is crucial to ensure the technology is well-validated
before its application, as the algorithms may perform
differently in distinct populations and devices used in
practice. Secondly, the acceptability of the technology by
end-users should be considered. Measures such as
training, workshops, and informative materials could
help shift the mindset of clinicians, patients, and poli-
cymakers and familiarise them with the technology.
Thirdly, further research on health policy is necessary to
establish a model of care that integrates AI-based DR
screening into existing practices while upholding ethical
standards, affordability and quality of care. Lastly,
infrastructure updates are essential to the implementa-
tion of large-scale screening, such as setting up
screening camps or point-of-care screening sites in
primary care clinics.

Several limitations of the study need to be acknowl-
edged. Firstly, when limited data is available on some
parameters, such transition probabilities between DR
states and utility values for the Australian population,
we used data from other populations but have priori-
tised data from countries with similar socioeconomic
status and ethnicity background. Nonetheless, we per-
formed sensitivity analyses to confirm the robustness of
our results. Secondly, as data was limited for a finer
breakdown of disease states (i.e., unilateral and bilateral
blindness) and population demographics (i.e., remote-
ness index), it has prevented us from performing more
detailed analyses for these characteristics. Thirdly,
further validation of the AI parameters is needed, as the
cost data were obtained from our primary data in the
empirical study and the sensitivity/specificity was based
on published data from experimental settings.52 The
real-world performance of the AI system may be
affected by various factors, necessitating additional
validation in prospective studies. Fourthly, the workflow
of DR screening in our model was constructed based on
13
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the best available guideline in Australia in 2008.
Although we have incorporated the updated treatment
strategies according to the literature and guidelines in
other countries, we did not take into consideration the
impact of policy updates on diagnosis and treatment in
this study. Lastly, as a modelling study, we simulated the
ideal scenarios of scaling up the AI-based DR screening
using primary care attendance and patient satisfaction
rate from our pilot study, but the real-world feasibility
was not considered, which requires further research
into the end-user acceptability, health policies and
availability of infrastructure.

In conclusion, our study showed that introducing an
AI-based DR screening system in Australian primary
care settings would be both effective and cost-effective.
This novel approach has the potential to overcome
existing barriers to DR screening, such as high staffing
costs, shortage of trained personnel, and difficulties
accessing adequate eye care in remote regions. Further
input and feedback from stakeholders and decision-
makers are necessary to fully evaluate and implement
this innovative screening method.
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