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SUMMARY

Autoantibodies are a hallmark of both autoimmune disease and cancer, but they also occur in 

healthy individuals. Here, we perform a meta-analysis of nine datasets and focus on the common 

autoantibodies shared by healthy individuals. We report 77 common autoantibodies based on 

the protein microarray data obtained from probing 182 healthy individual sera on 7,653 human 

proteins and an additional 90 healthy individual sera on 1,666 human proteins. There is no gender 

bias; however, the number of autoantibodies increase with age, plateauing around adolescence. We 

use a bioinformatics pipeline to determine possible molecular-mimicry peptides that can contribute 

to the elicitation of these common autoantibodies. There is enrichment of intrinsic properties 

of proteins like hydrophilicity, basicity, aromaticity, and flexibility for common autoantigens. 

Subcellular localization and tissue-expression analysis reveal that several common autoantigens 

are sequestered from the circulating autoantibodies.
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Shome et al. performed a meta-analysis to discover the common autoantibodies found in healthy 

individuals. These common autoantibodies appear and increase during youth and plateau at 

adolescence. Bioinformatics techniques demonstrate the potential role of molecular mimicry in 

their production as well as several common intrinsic biochemical properties.

Graphical Abstract

INTRODUCTION

Autoantibodies have been reported in individuals with autoimmune disease and cancer. They 

were believed to be absent in healthy individuals due to the immune tolerance mechanism 

(Nemazee, 2017); however, some have been found frequently in healthy individuals (Nagele 

et al., 2013), which we call common autoantibodies. These common autoantibodies can 

confound the search for disease-linked autoantibodies, and their documentation will simplify 

the identification of autoantibodies specific to certain diseases. Indeed, only a small fraction 

of the autoantibodies reported in the literature have been validated in independent cohorts 

(Wang et al., 2016a), suggesting that the classification performance for many reported 

autoantibodies requires further investigation.

A comprehensive documentation of common autoantibodies will facilitate the elucidation of 

the complex immunology underlying their elicitation. One class of common autoantibodies 

is referred to as natural antibodies (NAbs). Unlike adaptive antibodies, NAbs are synthesized 

by B1 lymphocytes (bearing CD20+CD27+CD43+CD70−) and marginal-zone B cells 

(Griffin et al., 2011; Palma et al., 2018) and do not undergo affinity maturation by antigen 
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stimulation or extensive somatic mutation (Coutinho et al., 1995). Another class of common 

autoantibodies may arise from cross-reactive antibodies to infectious agent proteins when 

the similarity in foreign and self peptides may activate self-reactive T or B cells. It 

has been experimentally demonstrated that patients with either measles virus or herpes 

simplex virus type 1 produce antibodies against a viral phosphoprotein that cross-react 

with an intermediate filament protein of human cells (Fujinami et al., 1983). Additionally, 

transgenic mice infected with lymphocytic choriomeningitis virus (LCMV) may develop 

chronic inflammation in the central nervous system (CNS) due to epitopes shared between 

LCMV proteins and CNS antigens (Evans et al., 1996). Several bioinformatics techniques 

have been developed to discover potential mimicry candidates (Doxey and McConkey, 2013; 

Ludin et al., 2011; Venigalla et al., 2020).

The immunogenicity of a protein can be attributed to its intrinsic properties and extrinsic 

responses by the host (Berzofsky, 1985). Biochemical and structural properties like 

flexibility, hydrophilicity, and beta turns can promote antigenicity, while hydrophobicity, 

alpha helices, and beta sheets can suppress antigenicity. That these common autoantibodies 

do not cause evident autoimmune disease is intriguing. The presence of autoantibodies in 

serum reflects leakiness of central and/or peripheral tolerance mechanisms (Ludwig et al., 

2017). However, their presence does not guarantee a causal role in autoimmune-disease 

development. For autoantibody-induced pathology, the autoantibody needs to bind to the 

autoantigen to form an immune complex (Suurmond and Diamond, 2015). Sequestration 

of the autoantigen from autoantibodies can inhibit the autoantibody-induced pathology. In 

this report, we have performed a meta-analysis of autoantibodyome data from 9 different 

case-control biomarker studies to identify common immunoglobulin G (IgG) autoantibodies 

in healthy individuals (Table S1).

RESULTS

Identity and prevalence of common autoantibodies

Autoantibody profiles for 272 healthy subjects from 9 case-control studies were compiled 

(Table S1). There were more females than males, 195 versus 67, because several studies 

focused on female-specific diseases such as breast and ovarian cancers. These studies were 

diverse in terms of subject ages, ranging from infancy to adulthood, with most above 50 

years old. Antibodies against 8,282 unique human proteins were studied; however, the 

number of proteins studied for each subject varied by study (Figure S1). To minimize 

the effect of study heterogeneity, sample-size-based weighted prevalence was calculated as 

the sum of individual prevalence of antibody in each study multiplied by the sample size 

of the study. For the healthy subjects, 77 autoantibodies occurred frequently and had a 

weighted prevalence between 10% and 47% (Table S2). These were termed as common 

autoantibodies. Antibodies against STMN4, ODF2, RBPJ, AMY2A, EPCAM, and ZNF688 

showed the highest prevalence (Table S2).

To examine the time course of autoantibody development, we divided 160 healthy subjects 

from five studies that included age information (studies I, II, IV, VI, and VII; Table S1) into 

five age groups based on human development stages. The infant- and early-childhood-age 

group (0–6 years) had the least number of autoantibodies. The number increased in the 
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middle- and late-childhood-age group (6–12 years) and then plateaued (Figure 1A; p < 

0.001). To investigate whether the number or identity of autoantibodies showed a gender 

bias, we compiled four studies that included both male and female subjects with matched 

ages (studies I, II, IV, and VII) and compared the counts and identities of the antibodies. 

The median numbers of autoantibodies for male and female subjects were similar (Figure 

1B; p = 0.17). The weighted prevalence of 77 common autoantibodies also had comparable 

distribution between male and female subjects (Figure 1C; p = 0.06).

We reasoned that if these common autoantibodies observed in the healthy subjects were 

elicited through common non-pathogenic mechanisms, they should also occur at similar 

frequencies in their matched disease cohorts. Indeed, the 77 common autoantibodies 

occurred at similar frequencies in diseased cohorts to those in healthy cohorts (Figure 1D; 

Pearson correlation coefficient r = 0.975).

We wondered if any of these common autoantibodies were related to each other; that is, was 

there any concordance among them, or were their occurrences independent? We analyzed 

the common autoantigens pairwise to determine if any occur together in healthy individuals 

at frequencies greater than chance alone (Figure S2). We found that the majority of them 

were independent of each other except several pairs: EDG3 and EPCAM (Phi correlation 

coefficient: 0.83), PML and PSMD2 (Phi correlation coefficient: 0.73), and EPCAM and 

CSF3 (Phi correlation coefficient: 0.67). Moreover, when we looked at these pairs in the 

diseased individuals, their concordance was also elevated (Figure S2).

Sequence similarity with viral proteins

To understand the extent that common autoantibodies observed in our study resulted 

from cross-reactivity of antibodies induced by viral infection, we examined the sequence 

similarities between viral proteins and common autoantigens. As these autoantibodies 

developed early in age and did not change after adolescence, respiratory and common 

viruses found in children of the United States were included in the analysis (Table S3). In 

order to avoid redundancy and false positives, duplicate proteins and consecutive amino-acid 

repeats were removed from viral proteomes (Figure 2). Similarly, human proteins were 

masked to avoid repeats and low-complexity regions (homopolymeric runs, short-period 

repeats, and over representation of one or few residues) as potential hits. Using 7 ungapped 

amino-acids matches as the threshold, we identified 28 instances of 7 ungapped amino-acid 

matches and 1 instance of 8 ungapped aminoacid matches with viral proteins that were 

present in 21 common autoantigens (Table 1). Some of the matches were from the peptides 

of high-complexity regions like SYFGLRT, LRQEINA, WPEGYQL, and ARCETQN. To 

assess if these matches were statistically significantly higher than random chance, we 

calculated the total sequence matches above the threshold for the unreactive proteins (i.e., 

proteins without any autoantibody response) against the same set of viral proteins. To 

control for increased chance of a match due to protein length, the results were normalized 

and expressed as frequency at the amino-acid level. There were 201 amino acids in matched 

peptides higher than the threshold among 34,070 amino acids of the common autoantigens, 

while 5,801 amino acids matched higher than the threshold among 2,026,890 amino acids of 

the unreactive proteins (chi-square test, p < 0.00001).
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Biochemical and structural properties

We asked whether any intrinsic biochemical and structural properties of the target antigens 

were responsible for common autoantibody production. We examined various properties 

by comparing our list of common autoantigens with all 8,282 proteins using gene set 

enrichment analysis (GSEA). The 77 common autoantigens were significantly enriched with 

proteins having low aromaticity (normalized enrichment score [NES]: −2.13, p < 0.001), 

low hydrophobicity (NES: −2.01, p < 0.001), high isoelectric point (NES: 1.58, p = 0.018), 

high fraction of amino acids in beta turns (NES: 1.95, p = 0.04), high Karplus and Schulz 

flexibility (NES: 4.40, p < 0.001), high Parker hydrophilicity (NES: 2.33, p < 0.001), and 

high Chou and Fasman beta-turn score (NES: 2.61, p < 0.001) (Figure 3). However, other 

biochemical properties such as protein length, the fraction of amino acids in beta sheets, and 

Emini surface accessibility showed no significant enrichment (Figure S3).

Subcellular localization and tissue expression

The discovery of common autoantibodies in healthy individuals raised the question 

about why these antibodies do not lead to autoantibody-mediated pathology. A primary 

requirement for such pathology is the formation of immune complexes. We examined 

the subcellular localization of the common autoantigens to see if they were antibody 

accessible. We divided them into three broad categories: “intracellular,” “cell membrane,” 

and “secreted” (Table S5). The localization of an autoantigen can belong to one or more 

of these 3 categories. We found that 55 among 70 common autoantigens were located 

exclusively at intracellular sites. The percentage of common autoantigens with intracellular-

only subcellular localization was significantly higher than that for all the proteins studied on 

the microarrays (78% versus 54%, p < 0.001) (Figure 4A).

Tissue-specific gene expression can impact autoantigen exposure to circulating 

autoantibodies and the potential to trigger autoimmune disease. We used the data from 

GTEx, which is a public resource portal for tissue-specific gene expression in multiple 

human tissues. In the GTEx dataset, transcripts encoding for 14 common autoantigens were 

organ/tissue-specific (defined as having log2 ((organ expression)/(mean expression in all 

other organs) > 3) (Figure 4B). Among them, PMFBP1, ODF2, RNF138, and CCDC34 were 

predominately expressed in testis, while STMN4 and SOX2 were predominantly expressed 

in the brain. For instance, PMFBP1 has 29.47 transcripts per million (TPM) in testis, while 

the mean in other organs is 0.48 TPM. Similarly, STMN4 has 77.23 TPM in the brain, while 

the mean in other organs is 0.32 TPM. Other common autoantigens did not show tissue 

specificity (Figure S4).

DISCUSSION

Autoantibodies can be broadly divided into two types: (1) pathogenic autoantibodies 

that contribute to various immune-mediated diseases and (2) common autoantibodies 

that are found in apparently healthy individuals. While pathogenic autoantibodies can 

lead to autoimmune diseases, common autoantibodies can bind to a variety of microbial 

components, thereby providing the first line of defense against infections (Elkon and Casali, 

2008). They can also recognize self antigens which help in B cell repertoire development 
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and homeostasis of the immune system. Some of these common autoantibodies occur 

frequently enough to confound studies intended to find disease-related autoantibodies.

The number of unique IgG autoantibodies in healthy individuals increased with age 

from infancy to adolescence and then plateaued. This observation suggests that while 

response to infectious agents (and maybe vaccines) might contribute to autoantibodies 

through molecular mimicry, this mechanism does not appear to continue to accumulate 

autoantibodies throughout life. Gender did not appear to play a role in autoantibody 

production in healthy individuals, which is in agreement with the results reported by 

Neiman et al. (2019). This stands in contrast to the observation that autoimmune 

diseases disproportionally affect females compared with males because male-predominant 

autoimmune disease is associated with acute inflammation, whereas female-predominant 

autoimmune disease is associated with antibody-mediated pathology (Fairweather et al., 

2008). We noted that several common autoantibodies co-occurred frequently. This could 

occur if the same antibody recognized two different proteins that share a common epitope. 

Other possibilities include sharing common human leukocyte antigen (HLA) haplotypes or 

playing similar biological roles that lead to escape from tolerance. It is notable that the 

targets of several of the co-occurring antibodies play roles in stem cell proliferation and 

differentiation (EPCAM, EDG3, and CSF3) and two others play roles in DNA-damage 

repair (PML and PSMD2). The meaning of this is not clear, but it occurred frequently 

enough (Phi correlation coefficient >0.6) that it is worth further investigation.

Viral proteins with sequences similar to a human protein may initiate cross-reactive 

antibodies leading to autoimmunity. There are around 20 autoimmune diseases reported 

in literature where autoantibodies are generated due to cross-reactivity to infectious agent 

proteins (Cusick et al., 2012). We reasoned that some of the common autoantibodies may 

be a result from cross-reactivity from anti-viral antibodies, albeit without causing subsequent 

pathology. The typical length of linear epitope of antibodies ranges from 7 to 9 amino 

acids, and hence, these specific matches have the potential to elicit cross-reactive antibodies 

(Buus et al., 2012; Dunn et al., 1999). The fact that these matches occur significantly 

more frequently between viral proteins and common autoantigens, but less frequently for 

unreactive proteins on the microarrays, further suggests the role of molecular mimicry in 

common autoantibody elicitation.

The intrinsic properties of a protein, such as its chemical and structural complexity, can 

impact its antigenicity (Berzofsky, 1985). Based on our GSEA, we found that common 

autoantigens tended to favor more basicity, hydrophilicity, and fewer aromatic amino acids. 

In addition, common autoantigens were also found to be more flexible and have more 

beta turns. Flexibility is a property that can help the polypeptide chain to bind easily to 

Ig compared with a stiff polypeptide chain (Berzofsky, 1985). Also, beta turns can be a 

potential site for antibody binding as the peptide chain reverses its direction at beta turns 

with the side chain projected outwards (Rose et al., 1985).

Accessibility of autoantigens to circulating autoantibodies is critical to autoimmune disease 

pathology (Janeway et al., 2001). In systemic autoimmune diseases, a majority of the 

target antigens are intracellular molecules and therefore not normally accessible to the 
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B cells or antibodies (Suurmond and Diamond, 2015). Only after excessive cell death 

or ineffective clearance of apoptotic debris do these intracellular autoantigens become 

available for immune complex formation. In Wegener’s granulomatosis, the autoantigen is 

an intracellular protease that becomes accessible to the autoantibodies only after an infection 

triggers translocation of the protease to the surface (Janeway et al., 2001). Similarly, the 

autoantigen in Goodpasture’s syndrome, normally ensconced in the basal membranes of 

alveolar capillaries, becomes accessible to the antibodies after an environmental insult to 

the capillaries, leading to pulmonary hemorrhage (Janeway et al., 2001). A majority of the 

common autoantigens we identified were located exclusively at intracellular sites, which 

make them inaccessible to circulating autoantibodies. We also found that some of the 

common autoantigens are organ/tissue specific and predominately expressed in the testis 

and brain, which are isolated from the immune system by the blood-testis or blood-brain 

barriers, respectively. No obvious form of sequestration was identified for the remaining 

autoantigens, although this cannot be ruled out.

Thousands of studies over the past decade have investigated autoantibodies as potential 

biomarkers for disease risk assessment, diagnosis, and prognosis (Leslie et al., 2001; Yadav 

et al., 2019). Given the prevalence we observed for these common autoantibodies in healthy 

individuals, in some cases exceeding a quarter of all individuals, they will be frequently 

encountered in such studies and may confound them as false positives. An examination 

of the AAgAtlas and PubMed revealed that 20 of our 77 common autoantibodies have 

been reported as disease-related biomarkers (Table S2). Although membership among the 

common autoantibodies found here does not exclude the possibility that an antibody could 

not also be disease specific, it would certainly be beneficial for authors to know which 

autoantibodies commonly occur in healthy individuals (Dervan et al., 2010; Frostegård et al., 

2018). It is also now evident that a holistic approach to understanding autoimmunity at the 

omics level is important in addition to the individual antibody level (Moritz et al., 2020).

Limitations of the study

Our study used subjects from different studies performed at different times, some with 

smaller protein subsets, and an overall moderate number of samples. While these factors 

do not limit the validity of the common autoantibodies found here, they limit the statistical 

power for finding less prevalent ones. There were more samples from female than male 

participants. We did not see differences in direct comparison, but we might be lacking the 

power to find common autoantibodies in males. Overall, the study examined less than half of 

all human proteins, so examination of the remaining proteins would likely reveal additional 

common autoantibodies not found here. The potential role of viruses in eliciting common 

autoantibodies requires more experimental evidence. The use of linear-epitope matching 

may miss some three-dimensional epitopes. Also, in the future, access to history of viral 

infection in the healthy subjects would provide a point of comparison with the data and more 

confidence in potential molecular mimicry.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information about this manuscript and requests for resources will 

be fulfilled by the Lead Contact, Joshua LaBaer (Joshua.LaBaer@asu.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—All raw binary data have been deposited at Mendeley Data 

and is publicly available as of the date of publication. DOIs are listed in the key resources 

table.

Any additional information or code required to reanalyze the data reported in this paper is 

available from the lead contact upon request.

METHOD DETAILS

Datasets—The healthy subjects included in this study were originally included in 9 

different case-control studies (Table S1). These studies were all conducted in our lab; 5 

of them were published (Table S1). The serum samples were collected from various parts 

of the USA and the UK. The goal of the original studies was to discover biomarkers of 

various cancers and autoimmune diseases by comparing the prevalence of antibodies present 

in diseased and healthy subjects. The presence of antibody was determined using protein 

microarrays that displayed thousands of human proteins as potential targets. Serum samples 

were probed on protein microarrays followed by a secondary antibody with a fluorophore 

tag specific for human IgG. Microarrays were scanned by a laser scanner. The microarray 

images from the 9 studies were qualitatively examined to identify protein targets that serum 

antibodies bound using Array-Pro Analyzer 6.3 (Media Cybernetics) (Bian et al., 2016; 

Montor et al., 2009). All proteins were not probed by all samples included in our analysis 

(Figure S1). Several studies focused on female-associated disease and thus only employed 

samples from females. A table of 8,282 rows of unique proteins and 587 columns of subjects 

in the case and control groups with binary response data of protein microarrays was created 

for data and statistical analysis (https://doi.org/10.17632/g57436wy6j.1).

Age and gender comparison—To understand the effect of age on autoantibody counts 

in healthy individuals, studies having both male and female subjects with age information 

were used (Studies I, II, IV, VI, VII, Table S1). A total of 160 subjects were divided 

into five age groups based on human development stages. The groups were 0–6 years old 

(infancy & early childhood), 6 to 12 years old (middle & late childhood), 12 to 18 years old 

(adolescence), 18 to 51 years old (early adulthood) and 51 to 84 years old (late adulthood). 

The number of autoantibodies in each subject was plotted using GraphPad Prism by age 

groups. To understand the effect of gender on autoantibody counts in healthy individuals, 

studies having both male and female subjects with matched age were used (Studies I, II, 

IV, VII, Table S1). The subjects were divided into male and female groups. The number 

of autoantibodies found in each subject was plotted using GraphPad Prism. The weighted 

prevalence of each autoantibody was calculated for male and female separately. The 
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method of weighted prevalence calculation is described in the “Quantification and statistical 

analysis” subsection. Prevalence values for the 77 most common autoantibodies were 

plotted as a population pyramid using GraphPad Prism. A paired t test was performed to 

determine the significance of the prevalence difference between genders. Pearson correlation 

of common autoantibodies frequency in diseased and healthy cohorts were plotted using 

Python seaborn package.

Correlation of common autoantibodies—As the presence of common autoantibodies 

were measured on a binary scale, a phi correlation coefficient (Cramér, 2016) was computed 

to measure associations between autoantibodies. Specifically, for each pair of antibodies, 

a phi correlation coefficient was computed for each study, and multiple phi correlation 

coefficients across different studies were combined into a single phi correlation coefficient 

using the R meta package. The R “pheatmap” package was then used to produce correlation 

heatmap plots for both healthy and diseased cohorts (Figure S2). Here, phi correlation 

coefficient was not defined when one pair of antibodies showed no responses for all the 

samples, and these undefined phi correlation coefficients were colored as gray on the 

heatmap plots. Pairs of antibodies having correlation coefficient higher than 0.6 in both 

cohorts and have correlation in more than one study were validated.

Sequence similarity with viral proteins—The proteomes of respiratory and common 

viruses found in children of the US were downloaded from UniProt as a FASTA file. All 

the common human viruses were included except sexually transmitted ones as common 

autoantibodies that develop early in age and then plateau (Table S3). CD-HIT was employed 

to remove duplicate sequences in the file (sequence identity cut-off: 1) (Huang et al., 

2010). The sequences were then segregated into 14-mer peptides using a Python script 

(sliding window: 1) and consecutive amino acid repeats (3 or more) were removed. 

The sequences of all the human proteins analyzed on microarrays were retrieved from 

DNASU (https://dnasu.org) and split into two sequence databases, “common autoantigens” 

and “unreactive proteins”. The “unreactive proteins” database comprises proteins from the 

microarrays without any autoantibody responses. Repeats and lowcomplexity regions were 

masked using BLAST+ (Basic Local Alignment Search Tool, version 2.10.1) package 

“segmasker” (Galperin, 2003). A protein-protein BLAST was run with the following 

parameters, “-ungapped, -db_hard_mask 21, -comp_based_stats F, -evalue 10”, between 

viral 14-mer peptides and “common autoantigens”. Another protein-protein BLAST was 

run between viral 14-mer peptides and “unreactive proteins” with similar parameters except 

adjusted “-evalue 593.89” to compensate for the bigger size of unreactive proteins database 

(Effective search space of “unreactive proteins” and “common autoantigens” databases were 

15,970,464 and 268,912, respectively). The total number of amino acids matches higher 

than the threshold (7 ungapped amino acids match) was calculated for both databases and 

compared with the total number of amino acids in each database using a chi-square test 

(Figure 2A).

Biochemical and structural properties—Biopython (version 1.75) module 

Bio.SeqUtils.ProtParam for Python (version 3.7.6) was used to calculate the values of 

aromaticity, isoelectric point, hydrophobicity, the fraction of amino acids in sheets and 
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turns for each protein (Table S4). Secondary structure and antigenicity prediction methods 

from Immune Epitope Database (IEDB) were also used. Command-line tools from IEDB 

analysis resource (http://tools.iedb.org/bcell/download/) were employed to calculate the 

values of Chou & Fasman beta-turn, Emini surface accessibility, Karplus & Schulz 

flexibility, and Parker hydrophilicity across the proteins, which were then averaged for each 

protein. The computed biochemical property values were used for the enrichment analysis 

on the identified common autoantigens using Gene Set Enrichment Analysis (GSEA) 

“GSEAPreranked” package (version 4.2) (Subramanian et al., 2005).

Subcellular localization and tissue expression—All 8,282 proteins were used to 

query the UniProt database for subcellular localization (downloaded in December 2020), 

among which 6,875 proteins had subcellular localization data available in the database 

(Table S5). Some of the proteins were found simultaneously in more than one location, 

and hence, seven groups were created to segregate the proteins based on their subcellular 

localization profiles. Proteins that were found only in one subcellular location were put 

into “intracellular only”, “cell membrane only” and “secreted only” groups. Proteins that 

were found in two subcellular locations were put into “intracellular & cell membrane”, 

“cell membrane & secreted” and “secreted & intracellular” groups. Proteins that were 

found simultaneously inside the cell, in the cell membrane, and outside the cell were put 

into “intracellular, cell membrane and secreted” group. p value was calculated to assess 

the statistical significance of difference in fractions of “intracellular only” proteins for all 

proteins on the microarrays and for common autoantigens using the proportion test.

All 8,282 proteins were mapped to the Ensembl IDs using “BiomaRt” package available 

for R (version 3.5.0). The Ensembl IDs were used to identify the protein of interest in 

the Genotype-Tissue Expression (GTEx, version 8) dataset. The gene expression levels in 

52 human tissue types, measured in transcripts per million (TPM), were downloaded from 

GTEx. Expression values for tissue types belonging to the same organ were averaged. 

Differentially expressed genes for each organ/tissue were identified using edgeR package 

for R (version 3.6.2) with a cutoff of Log2 (fold change) > 3 to determine organ/tissue 

specificity, where the fold change for each gene was calculated by dividing the TPM value in 

a particular organ/tissue by the mean TPM values in all other organs/tissues. The log2-scaled 

fold changes across the organs/tissues for each gene were standardized to the Z scores for 

data visualization. The Z score profiles were displayed in a heatmap with correlation-based 

average-linkage clustering by using the Python seaborn package.

QUANTIFICATION AND STATISTICAL ANALYSIS

Weighted prevalence—Due to the heterogeneous number of proteins and subjects 

being analyzed in each study, we computed the weight for the j th antibody as, 

pj = ∑i = 1
k wijpij/∑i = 1

k wij where pij = xij/nij is the prevalence,xij is the total number of 

positive signals found for the jth antibody in the study ,i and nij is the number of samples 

for the j th antibody in the study ,i and k is the number of studies. Here, wij = (vij + τj2)−1 is 

the inverse variance-weighting which accounts for the heterogeneous effects between studies 

(Borenstein et al., 2010), where vij = nij/(pij(1 − pij)), τj2 = Qj − k + 1 /Uj if Qj > k − 1 or τj
2 
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= 0 otherwise, Qj = ∑i = 1
k vij pij − pj

2, Uj = (k − 1) vj − sj2/ kvj ), pj = ∑i = 1
k vijpij∑i = 1

k vij, 

sj2 = (∑i = 1
k vij2 − kvj

2)/(k − 1), and vj = ∑i = 1
k vij/k. The same analysis was performed to 

calculate gender-specific weighted prevalence by splitting the dataset into male and female 

subsets.

Age and gender comparison—The significance of increase in the autoantibody counts 

among the five age groups was calculated using the Welch’s t test while the significance of 

difference in autoantibody counts between the male and female groups was calculated using 

a two-sample unpaired t test.

Biochemical and structural properties—The “GSEAPreranked” package available in 

GSEA software returned p values of “0.0” when the number of permutations was set to 

1,000, as it cannot calculate very small p values. Another R package named “fgsea” was 

used to calculate the very small p values with number of permutations set to 10,000 for 

more accurate calculation. To adjust multiple comparisons, we computed false discovery rate 

(FDR) adjusted p value using the “p.adjust” function in the R stats package.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Meta-analysis reveals 77 common autoantibodies found in healthy individuals

• Autoantibodies in healthy individuals increase with age and then plateau at 

adolescence

• Sequence similarity with viral proteins likely elicits a subset of these 

antibodies

• Several intrinsic properties of common autoantigens are enriched
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Figure 1. Autoantibody development in healthy subjects
(A) All subjects were divided into five age groups based on human development stages. 

Each blue dot represents the number of autoantibodies found in a healthy subject belonging 

to that age group. The number of autoantibodies increased significantly over the first two 

age groups (p < 0.001). The horizontal black bar represents median with interquartile range.

(B) Comparison of number of autoantibodies in female and male healthy subjects. A red dot 

represents the number of autoantibodies found in a single female subject while a blue dot 

represents the same in a single male subject. There were no significant differences between 

male and female for the number of autoantibodies (two-sample unpaired t test, p = 0.17). 

The horizontal black bar represents median with interquartile range.

(C) Comparison of weighted prevalence of common autoantibodies in male and female 

healthy subjects. A blue bar represents the weighted prevalence of a common autoantibody 

in the male population, while a red bar below the blue one represents the weighted 

prevalence of the same autoantibody in the female population. Common autoantibodies are 

ranked from left to right based on their overall prevalence in healthy subjects. Names of the 

autoantigens and their ranks are listed in the Table S2. No significant difference between 

male and female for the weighted prevalence was observed (paired t test, p = 0.06).

(D) Pearson correlation of common autoantibody frequency in healthy and diseased cohorts 

(r = 0.975). Each dot represents an autoantigen, against which the autoantibody frequency in 

either cohort is shown.
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Figure 2. Sequence similarity between common autoantigens and viral proteins
Schematic diagram for the discovery of 7 or more ungapped amino-acid matches between 

common autoantigens and viral proteins.

Shome et al. Page 16

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. GSEA of common autoantigens for various biochemical and structural properties
(A–D) Primary structure enrichment analysis as labeled.

(E–G) Antigenicity and secondary structure prediction method enrichment analysis as 

labeled. The gray colored curve on the graph represents the values of the property sorted 

in descending order for all the proteins studied. The black vertical lines on the graph show 

where the common autoantigens appear in the ranked list. The green curve corresponds to 

the enrichment score, which is calculated by walking down the ranked list, increasing it 

when a gene is encountered from the gene set and decreasing it when the encountered gene 

is not from the gene set. The red color gradient is used to represent positive values, while the 

blue color gradient is used to represent negative values. Concentration of vertical lines on the 

graph toward a side signifies enrichment, while randomly dispersion of vertical lines on the 

graph signifies no enrichment.
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Figure 4. Subcellular localization and tissue expression of common autoantigens
(A) Subcellular localization of all proteins and common autoantigens on the microarrays.

(B) Expression profiles of organ/tissue-specific common autoantigens. Each row represents 

an organ as labeled on the right, and each column represents an autoantigen as labeled 

at the bottom. Gene expression in transcripts per million (TPM) from GTEx dataset was 

standardized to the Z-scores for data visualization. Organs and autoantigens were clustered 

based on correlation-based average-linkage clustering.
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Table 1.

Sequence similarity of common autoantigens and viral proteins

S. no. Autoantigen Viral UniProt ID Sequence similarity Organism

1 ADNP2 P16812 LPVPPGG human herpesvirus 5

H9C1C1 SYFGLRT human rotavirus C

2 AHCY F8WQQ3 GKLNVKL human adenovirus 41

3 AMY2A P16766 SAGTSST human herpesvirus 5

4 APEX2 M1JRT8 NRSGYSG influenza A virus

P09289 ALLAAGS human herpesvirus 3

5 C9orf78 P16764 EDCLYEL human herpesvirus 5

6 CTTNBP2NL P52529 EQLRAKL human herpesvirus 6A

C4AL53 AKLNREE influenza A virus

Q6SW92 SSNTVVA human herpesvirus 5

7 FLJ36888 P52355 TIKRTLV human herpesvirus 7

8 KAZ O09800 ARCETQN human herpesvirus 1

9 MAK P16793 GTSEVDE human herpesvirus 5

Q01350 WPEGYQL human herpesvirus 6A

Q69513 KSDSELS human herpesvirus 7

10 MAPK13 Q8QT31 VIGLLDV human parainfluenza virus 1

11 MTUS2 P09284 IDQNTVV human herpesvirus 3

A0A0D5Z8N5 SPIKLSP rotavirus B

12 MYLK2 Q6SWD0 AEEGKNI human herpesvirus 5

13 PAK1 P24433 SVIEPLP human herpesvirus 6A

14 PAK7 P16739 ATAQELL human herpesvirus 5

15 PELI1 Q9QJ30 LRQEINA human herpesvirus 6B

16 PML A0MK42 TLGAVVP human adenovirus 52

17 RABGEF1 I1V183 SPRKQEAE human adenovirus 7

18 SECISBP2 D3JIS2 ELTVAAR human adenovirus 18

19 TAF1D P09252 DATHLED human herpesvirus 3

20 TRAP1 P0C723 ALIRKLR Epstein-Barr virus

P10200 AQLGPRR human herpesvirus 1

21 ZNF688 Q1HVD1 GAQPPAP Epstein-Barr virus

Common autoantigens with 7 or more ungapped amino acids that match with viral proteins are reported along with virus name and the 
corresponding sequences.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Autoantibody reactivity raw binary 
data

Mendeley Data 10.17632/g57436wy6j.1

Software and algorithms

Array-Pro Analyzer 6.3 Media Cybernetics N/A

Prism 9 GraphPad https://graphpad.com/

R 3.5 R Foundation https://r-project.org/

RStudio RStudio PBC https://rstudio.com/

Python 3.7.6 Python Software Foundation https://python.org/

Spyder 4.1.4 Spyder project contributors https://spyder-ide.org/

Anaconda 1.9.12 Anaconda Inc. https://anaconda.com/

CD-HIT Weizhong Li’s group http://cd-hit.org/

MobaXterm 20.1 Mobatek https://mobaxterm.mobatek.net/

BLAST 2.10.1 National Center for Biotechnology Information https://blast.ncbi.nlm.nih.gov/

IEDB National Institute of Allergy and Infectious 
Disease

http://iedb.org/

GSEA 4.2 UC San Diego and Broad Institute https://gsea-msigdb.org/

DAVID 6.8 Laboratory of Human Retrovirology and 
Immunoinformatics

https://david.ncifcrf.gov/

GTEx 8 GTEx Consortium https://gtexportal.org/

UniProt UniProt Consortium https://uniprot.org/

DNASU Arizona State University https://dnasu.org/

Photoshop Adobe Inc. https://www.adobe.com/products/photoshop.html
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