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Abstract: Transfer learning is a pervasive technology in computer vision and natural language
processing fields, yielding exponential performance improvements by leveraging prior knowledge
gained from data with different distributions. However, while recent works seek to mature machine
learning and deep learning techniques in applications related to wireless communications, a field
loosely termed radio frequency machine learning, few have demonstrated the use of transfer learning
techniques for yielding performance gains, improved generalization, or to address concerns of
training data costs. With modifications to existing transfer learning taxonomies constructed to
support transfer learning in other modalities, this paper presents a tailored taxonomy for radio
frequency applications, yielding a consistent framework that can be used to compare and contrast
existing and future works. This work offers such a taxonomy, discusses the small body of existing
works in transfer learning for radio frequency machine learning, and outlines directions where future
research is needed to mature the field.

Keywords: machine learning (ML); deep learning (DL); transfer learning (TL); radio frequency
machine learning (RFML)

1. Introduction

The past several years has observed a rise in the application of machine learning (ML)
and deep learning (DL) techniques to the wireless communications domain for applica-
tions including spectrum awareness, cognitive radio, and networking. Such techniques,
loosely defined radio frequency machine learning (RFML) [1], provide increased perfor-
mance and flexibility while reducing pre-processing and pre-defined expert features when
compared to traditional signal processing techniques [2–4]. The vast majority of these
RFML works train ML/DL models from random initialization, and use supervised learn-
ing techniques. Such an approach assumes the availability of a large corpus of labeled
training data, which is representative of anticipated observations once deployed, including
radio frequency (RF) hardware variations and channel effects. When this assumption
breaks down, existing works have shown limited ability to generalize to new hardware
effects and channel conditions. That is, if the hardware effects and/or channel conditions
stray outside of those represented in the training data, performance drops severely. For
example, preliminary results given in [5] showed that the performance of convolutional
neural network (CNN) and long short-term memory (LSTM)-based automatic modulation
classification (AMC) algorithms trained on data from a single transmitter/receiver pair not
only varied significantly across different transmitter/receiver pairs but also dropped by
as much as 8% when tested on augmented data captured from other transmitter/receiver
pairs. Furthermore, results in [6] showed that a CNN-based specific emitter identification
(SEI) model learned to correlate channel distortions with emitters, rather than learning
the characteristics of the emitters themselves, and consequently performed poorly under
different channel conditions.
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Transfer learning (TL) aims to overcome these obstacles by utilizing prior knowledge
gained from a source domain and task to improve performance of a model for a “similar”
target domain and task, when compared to training only on the target domain and task
from random initialization (Figure 1). Although the term “similar” is ill-defined, the use of
TL techniques has resulted in exponential growth in fields such as computer vision (CV)
and natural language processing (NLP), demonstrating a wealth of performance gains that
have yet to be fully utilized in RFML [7].

Figure 1. The difference between traditional ML (a), in which a new model is trained on a each
domain/task pairing from random initialization, and TL (b), in which prior knowledge learned on
one domain/task is used to support performance on a second domain and/or task where less (or no)
labelled data were available.

While TL methods are beneficial in a wide variety of learning scenarios, TL shines
when sufficient training data are not available in the target domain, yet similar source data
are available from which knowledge of the target domain/task can be gleaned. Therefore,
TL provides an avenue for increased performance with reduced captured training data
and for using trained models across a wider variety of hardware platforms and channel
conditions without retraining. For example, large captured training datasets have been
shown to yield the greatest performance, but require several orders of magnitude more
time to create when compared to synthetic and augmented datasets [8]. TL may enable
comparable performance with less captured training data by using prior knowledge gained
from synthetic, augmented, or other captured training datasets. Furthermore, unlike in the
fields of CV or NLP, TL is likely a requisite technology for realizing online and distributed
RFML algorithms, as behavior learned on one platform will be distinctly impacted by RF
hardware and will, therefore, vary from platform to platform.

While several TL taxonomies and surveys can be found in the literature which examine
TL more generally [9,10] and in the context of specific modalities or learning paradigms such
as CV [11,12], NLP [7], and reinforcement learning (RL) [13], no studies to our knowledge
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have examined TL in the context of RFML. In contrast, this work offers a domain-specific
TL taxonomy for RFML that provides a framework for comparing and contrasting existing
works and underscores unique facets of RFML, which may warrant deliberate TL algorithm
design and yield significant performance gains. In addition, this work surveys the small
body of existing works and suggests directions for future research.

This paper is organized as follows: Section 2 provides the requisite notation and
definitions used in the remainder of the work, background for why TL is necessary to
accelerate research in RFML, and examples of how the terms domain and task can be
interpreted in an RFML context. In Section 3, we briefly discuss the general TL from
which our RFML-specific taxonomy is derived. Next, Section 4 presents RFML-specific
TL taxonomy, discusses specific motivations for RFML TL applications, and highlights
the adaptations made to the general taxonomy introduced previously. Moreover, in this
section, we survey the small body of existing works in TL for RFML, discuss the methods
used to achieve transfer in these works, and highlight initial trends observed across the
works. Section 5 outlines a few key suggested directions for future research in TL for RFML
outside of algorithmic development. Finally, Section 6 concludes the study.

2. Definitions

The term RFML has been used in the literature to describe any application of ML to
the RF domain, including cognitive radio applications and approaches relying on classical
signal processing techniques and expert-defined feature extraction [14]. However, in
this work, we narrow the scope of works discussed to align with the first definition of
RFML in [1] and those used in [14]. More specifically, we define RFML to be approaches,
techniques, and works aimed at reducing the use of expert-defined features and the amount
of prior knowledge needed for the intended RF application, and we primarily discuss
DL-based works that use raw RF input. As discussed further in Section 4, TL has been used
more in the context of cognitive radio and/or expert feature-based algorithms but has been
used very little in the context of RFML, as defined here.

As commonly accepted in the literature, this work uses the TL notation introduced
in [9]: A domain D = {X, P(X)} comprises input data X and the marginal probability
distribution over data P(X), where X = {x1, . . . , xn} ∈ X and where X denotes the input
space. The task T = {Y, P(Y|X)} comprises the label space Y, and conditional probability
distribution P(Y|X) learned from the training data pairs {xi, yi} such that xi ∈ X and
yi ∈ Y. Generally, for RFML, the domain consists of RF hardware and channel environment,
and the task comprises the application being addressed, including the range of possible
outputs. Example elements of RFML domains and RFML tasks are provided in Table 1.

Table 1. Example RFML domain elements and tasks.

Domain Elements Tasks

• SNR
• AWGN
• Ricean Fading
• Multipath Effects
• Doppler
• Bandwidth
• Sample Rate
• Noise Floor
• IQ Imbalance
• Phase Imbalance
• Non-linear distortion

• n-class AMC
• SEI
• Localization
• Signal Detection
• End-to-End Communications
• SNR Estimation
• IQ Imbalance Estimation
• Signal Compression

The source domain and task, denoted DS = {XS, P(XS)} and TS = {YS, P(YS|XS)},
are those defined during the initial training process. That is, the source domain and
task describe initial training data and labels. The target domain and task are denoted
DT = {XT , P(XT)} and TT = {YT , P(YT |XT)}, and they describe the intended use-case of
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the trained ML model. Note that labeled data may or may not be available for the target
domain and task or may only be available in limited quantities.

Traditional supervised ML techniques assume that DS = DT and TS = TT [9], allowing
direct transfer to be employed with success. That is, we can use the model trained for the
source domain and task for the target domain and task with no modification. However, in
the context of RFML, inherent hardware variations and channel effects all but guarantee
that DS 6= DT , unlike in the fields of CV and NLP. TL is motivated by this mismatch
between the source and target domains and/or tasks, inhibiting direct transfer. More
specifically, the aim of TL is to leverage the knowledge P(YS|XS) obtained using DS and TS
to improve the performance of P(YT |XT) on DT and TT [9].

TL is feasible because a model trained on a source domain and task has learned generic
knowledge about the structure of raw RF signals through the source domain/task, which
may be used as prior knowledge to solve the target task. The utility of these previously
learned features for solving the target task is dependent on the “similarity” between the
source and target tasks and domains. On the one hand, the learned features used to
perform AMC on a low cost IoT transceiver are likely quite similar to those used to perform
AMC on a high cost military-grade transceiver. On the other hand, the learned features
used to perform AMC are likely different from those learned when performing SEI. As
mentioned previously, the “similarity” between the source and target domains/tasks is not
well-defined, but can be thought of as a continuous two-dimensional spectrum, depicted in
Figure 2, and dictates the success of TL.

Figure 2. The two-dimensional spectrum of “similarity” between source and target domains and
tasks, with the origin (a) representing the same task and domain. For clarity, the settings that describe
(a–i) are provided in Table 2.
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Table 2. The settings that describe points (a–i) on the two-dimensional spectrum of “similarity”
between source and target domains and tasks shown in Figure 2.

Setting Description

(a) The traditional ML setting where the source and target domains and tasks are the same.

(b)
The TL setting in which learned features from one domain are used to support perform-
ing the same task in a second domain. For example, using features learned to perform
AMC in an AWGN channel to support performing AMC in a fading channel.

(c) The setting in which source and target domains are so dissimilar that TL is unsuccessful,
despite the source and target tasks being the same.

(d)

The TL setting in which learned features from one task are used to support a second
task, while the source and target domains are the same. For example, using features
learned to perform AMC to support SEI with the source and target domains being
the same.

(e)

Likely the most challenging TL setting in which learned features from one domain and
task are used to support performing a second task in a new domain. For example, using
features learned to perform AMC in an AWGN channel to support performing SEI in a
fading channel.

(f) The setting in which source and target domains are so dissimilar that TL is unsuccessful,
although the source and target tasks are somewhat similar.

(g) The setting in which source and target tasks are so dissimilar that TL is unsuccessful,
despite the source and target domains being the same.

(h) The setting in which source and target tasks are so dissimilar that TL is unsuccessful,
despite the source and target domains being somewhat similar.

(i) The setting in which both source and target tasks and domains are dissimilar, preventing
the use of successful TL.

To frame this discussion, consider the following four scenarios and examples in which
DS 6= DT and/or TS 6= TT can occur:

1. P(YS|XS) 6= P(YT |XT)—the source and target tasks have different conditional proba-
bility distributions. This most commonly manifests in the form of unbalanced datasets,
where a subset of classes has more examples in the source dataset than the target
dataset or vice versa. A simple example might be transferring an AMC model between
two datasets, both of which only contain BPSK and QPSK signal types. However, the
source dataset contains 70% BPSK signals and 30% QPSK signals, while the target
dataset contains 30% BPSK signals and 70% QPSK signals.

2. YS 6= YT—the source and target tasks have different label spaces. For example, the
target task contains an additional output class (i.e., for an AMC algorithm, and the
source task is a binary BPSK/QPSK output set, while the target task includes a third
noise-only class). Alternatively, the target task may be completely unrelated and
disjoint from the source task (i.e., the target task is to perform SEI, while the source
task was to perform AMC); therefore, the label spaces are also disjoint.

3. P(XS) 6= P(XT)—the source and target domains have different data distributions. An
example of such a scenario includes a transfer of models from one channel environ-
ment to another, as described further in Section 4.1.1.

4. XS 6= XT—the source and target feature spaces differ. An example includes perform-
ing SEI using the same set of known emitters but using different modulation schemes
in the source and target domain.

These scenarios are not mutually exclusive. That is, for any given TL setting, several of
the above scenarios may be encountered. For example, when YS 6= YT (Scenario 2) and/or
P(XS) 6= P(XT) (Scenario 3), the source and target tasks typically also have different
conditional probability distributions (Scenario 1).

3. Related TL Taxonomies

Before presenting a TL taxonomy for RFML in the next section, we overview the
general TL taxonomy presented in [9] from which our taxonomy builds. This taxonomy, or
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some adaptation thereof, is used in a number of fields including NLP [7] and CV [11]. While
there are a number of ways to categorize TL problems, refs. [9,10] categorizes the broad field
of TL into three sub-fields—unsupervised, inductive, and transductive—each characterized by
the availability of training data in the source and/or target domains and whether or not
the source and target tasks differ.

In unsupervised TL, no labeled data are available in either the source and target do-
mains. The source and target tasks can be the same or different. Inductive TL settings are
characterized by the availability of labeled data in the target domain, when the source
and target tasks differ. Labeled data may or may not be available in the source domain.
Inductive TL is further broken out into the following:

• Self-taught methods that address settings where no labeled data are available in the
source domain;

• Multitask learning that assumes the availability of labeled data in both the source and
target domains and in which the source and target tasks are learned simultaneously;

• Sequential learning, which also assumes the availability of labeled data in both the
source and target domains; however, the source task/domain is learned first and the
target task/domain is learned second.

It should be noted that sequential learning was not included in the taxonomy presented
by [9] but was detailed in [7], as it is an oft-utilized approach in the DL literature and a crit-
ical component of the meta-learning, lifelong learning, and representation learning fields.

In transductive TL settings, no labeled data are available in the target domain, while
the source and target tasks are the same. Transductive TL is further broken out into the
following:

• Domain adaptation, under which the source and target domains differ;
• Sample selection bias, also known as covariance shift, which refers to when both source

and target domains and tasks are the same, but the source and/or target training
dataset may be incomplete or small.

4. An RFML-Specific Taxonomy

The proposed TL taxonomy for RFML is shown in Figure 3 and is adapted from the
general taxonomy discussed previously to contain TL contexts most relevant to the current
state-of-the-art RFML algorithms. More specifically, given the limited use of unsupervised
and self-supervised algorithms in RFML literature, this taxonomy assumes the availability
of some labeled data in both source and target domains, although the size of these labeled
datasets may be limited. This restricts the discussion herein to inductive TL techniques.
However, this taxonomy can easily be expanded to include transductive TL techniques, as
needed.

In addition to limiting the discussion to inductive TL techniques, three key changes
have been made specific to the RF domain: First, while domain adaptation is considered
a transductive TL approach in the general taxonomy of [9], we consider inductive TL
techniques for the purpose of domain adaptation. That is, we discuss domain adaptation
approaches that make use of the labeled source as well as target data. Second, similarly to
the RL TL taxonomy presented in [13], the area of domain adaptation is further divided
into three categories: environment adaptation, platform adaptation, and environment platform
co-adaptation. This alteration specifies the type of domain change and highlights that an
environmental shift (i.e., a channel change) is vastly different than a change in transmitter
or receiver hardware, as described further in the subsequent subsections. Third, similarly
to [7], sequential learning is included in this taxonomy to provide a counterpart to multitask
learning. For the sake of clarity, representative examples for each TL setting are described
in Table 3 and are expounded upon in the following subsections with parallels drawn to
other modalities where appropriate.
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Figure 3. The proposed TL taxonomy for RFML.

Table 3. Representative examples for TL settings in RFML.

TL Setting Use Case Source Domain Source Task Target Domain Target Task

Environment
Adaptation

Move a Tx/Rx pair
equipped with an
AMC model from
an empty field to a

city center

Single Tx/Rx pair,
AWGN channel

Binary AMC
(BPSK/QPSK)

Same Tx/Rx pair,
Multipath channel

Binary AMC
(BPSK/QPSK)

Platform
Adaptation

Transfer an AMC
model between

UAVs

Single Rx, Many
Tx, Fading channel

w/ Doppler

Binary AMC
(BPSK/QPSK)

Different Rx, Same
Tx set, Fading

channel w/
Doppler

Binary AMC
(BPSK/QPSK)

Environment
Platform

Co-Adaptation

Transfer an AMC
model between a

ground-station and
UAV

Single Rx, Many
Tx, Multipath

channel

Binary AMC
(BPSK/QPSK)

Different Rx, Same
Tx set, Fading

channel w/
Doppler

Binary AMC
(BPSK/QPSK)

Multitask Learning
Simultaneous

signal detection
and AMC

Single Tx/Rx pair,
AWGN channel

Binary AMC
(BPSK/QPSK)

Same Tx/Rx pair,
AWGN channel SNR Estimation

Sequential
Learning

Addition of an
output class(es) to

an

Single Tx/Rx pair,
AWGN channel

Binary AMC
(BPSK/QPSK)

Same Tx/Rx pair,
AWGN channel

Four-class AMC
(BPSK/QPSK/

16QAM/64QAM)

4.1. Domain Adaptation

When the source and target tasks are the same, but the source and target domains
differ, we require domain adaptation in the form of environment adaptation, platform adaptation,
or environment platform co-adaptation, and each are described in the following subsections.
More specifically, domain adaptation techniques are needed when the label space remains
constant (i.e., YS = YT) and the conditional probability distributions learned from the
source and data sets is the same (i.e., P(YS|XS) = P(YT |XT)), but the source and target
domains have different data distributions (i.e., P(XS) 6= P(XT)) and/or the source and
target feature spaces differ (i.e., XS 6= XT). However, the cause of different source and
target data distributions and/or feature spaces can be caused by either a change in platform
(i.e., transmitter and/or receiver hardware) or environment.
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4.1.1. Environment Adaptation

In the context of RFML, the aim of environment adaptation is to adapt a learned model
to a changing channel environment, while holding the transmitter/receiver pair(s) con-
stant. Environmental factors such as time of day, temperature, atmospheric conditions,
channel type, and any movement of the transmitter and/or receiver may potentially create
variations in signal capture which has the potential to affect the learned behavior of an
RFML system. Consider the representative example of moving a transmitter/receiver pair
equipped with an AMC model from an empty field to a city center. Although the transmit-
ter/receiver pair stays constant, we move from a line-of-sight, likely AWGN, channel to an
environment with significant multipath effects and interference from neighboring devices.
Such an example is similar to performing image classification indoors versus outdoors [15]
or utilizing image classification algorithms in environments where the captured image may
degraded by weather conditions [16].

Few works have examined the impact of a changing environment on RFML perfor-
mance, and as a result, little is known about the extent to which the parameters given above
may prevent transfer between environments. However, existing work used finetuning
techniques to successfully transfer RFML models from one real environment to additional
real environments [17]. More specifically, in [17], a robust DL-based spectrum sensing
framework was proposed that used techniques similar to those used for sequential learn-
ing to adapt pretrained models to changing wireless conditions with little-to-no labeled
target data.

If we consider the use of spectrograms as input to a DL model, rather than raw RF
data, additional work presented in [18] used a CNN-based support vector machine (SVM)
approach to perform non-cooperative spectrum sensing. In this study, an AlexNet inspired
CNN was used as a naive feature extractor, and a linear SVM was used to determine
whether or not the spectrum band-of-interest was occupied using the features extracted by
CNN. When the environment or location changed, the initial layers of the CNN feature
extractor were frozen, while the remaining layers and the SVM were retrained using data
from the new environment or location. Results showed that TL reduced the number of
spectrograms needed to achieve the same performance without TL, and this was most
significantly observed when transferring from environments with low SNR levels to envi-
ronments high SNR levels. Some performance improvements were also observed when
transferring between environments with similar SNR levels. However, performance typi-
cally degraded when transferring from high SNR levels to low SNR levels, a phenomenon
known as negative transfer [19,20].

4.1.2. Platform Adaptation

In contrast to environment adaptation, the aim of platform adaptation is to overcome
changes in transmitter/receiver hardware while holding the channel environment constant.
Variations in hardware non-linearities, IQ imbalances, or frequency; phase; and/or timing
offsets all have the potential to inhibit model transfer between platforms. Additionally,
note that while the receiver hardware will always be user-controlled, the transmitter may
or may not be. That is, if we are a third party listener, changes in transmitter hardware will
be outside of our control, further complicating the task.

A representative example of platform adaptation includes transferring an AMC model
between UAVs. Presuming, when UAVs are flying in the same vicinity, the channels they
encounter will be similar. Additionally, the received signals on both platforms will be
affected by Doppler shifts. However, small hardware variations caused by manufacturing
inconsistencies, age, settings, etc., will cause variations between the signals received on each
platform. While one might draw parallels between transferring models between RF plat-
forms and between cameras capturing images for CV algorithms, it seems that, assuming
that the two cameras are capable of capturing images at the same resolution, such a transfer
does not affect performance in any significant manner [21]. However, Ref. [5] showed that
directly transferring learned models between transmitter and receiver pairs diminished
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performance by as much as 7%, even when augmentations, such as adding noise, frequency
offsets, and resampling, were applied to the training data. These results have been echoed
in several subsequent works, both in the context of AMC [8] and SEI [22], which have
aimed to mitigate performance degradation through data augmentation/transformation,
data preprocessing, or training over a variety of platforms. However, despite the growing
body of work recognizing the need for platform adaptation methods, little work has been
performed to identify the impact of changing hardware platforms on RFML performance
or to develop methods for transfer between hardware platforms, as discussed in further
detail in Section 5.

4.1.3. Environment Platform Co-Adaptation

Finally, environment platform co-adaptation combines the challenges of environment
adaptation and platform adaptation with the goal of transferring a learned model to a new
channel environment, as well as to a new transmitter/receiver pair(s). As a representative
example, consider transferring an AMC model between an RFML-enabled ground station
and a UAV. In such a scenario, not only will the change in hardware impact the received
signals and resultant performance but the channel environments encountered by the two
devices will also differ significantly. Due to the fact that changes in CV platform (i.e.,
cameras) do not impact performance in the same manner that changes to the RF platform
do, as discussed above, environment platform co-adaptation is a scenario that is not typically
discussed in the CV literature but is akin to techniques aimed at domain adaptation
using drawings or clip art as a source domain and real images as the target domain [23].
Conceptually, this is similar to transferring models between synthetic and captured data in
the RF space.

In the context of RFML, existing works in the area of environment platform co-
adaptation have primarily taken the form of DL models pre-trained on synthetic data
and finetuned using captured data. More specifically, Refs. [24,25] examine transferring
residual and autoencoder (AE)-based models from synthetic to real environments for AMC
and channel model estimation problems. These works finetune varying amounts of the
pre-trained neural network (NN)—only the final layer in [24] and the latter half of the
NN in [25]—for a small number of epochs with a small learning rate, taking cues from
the CV literature [26]. If we categorize power spectrums as raw RF data, Ref. [27] has also
examined the transfer of CNNs from synthetic to real environments for signal detection.
In this work, the entire CNN is tuned again for a small number of epochs with a small
learning rate.

Recent work has also confirmed the intuitive result that the order in which datasets
are trained is critical to achieving successful transfer of learned behaviors [28]. More
specifically, in [28], the authors showed that when comparing the performance of an AMC
model trained on synthethic data, augmented data, captured data, or some combination
thereof, the best performance on captured test sets (which are representative of what
will be observed once deployed) is achieved when pre-training on synthetic datasets and
using captured data for finetuning. That is, synthetic and augmented data are best for
pre-training, while captured data, which is typically smaller in quantity anyhow, are best
for finetuning. Such results do make the realistic assumption that the final trained model
will be evaluated/tested/deployed on real captured data, the implications of which are
discussed further as a part of sequential learning in Section 4.3.

4.2. Multitask Learning

The aim of multitask learning is to learn differing source and target tasks simultaneously
and is typically characterized by the use of more than one loss term during training. This
encourages the model to learn more general features that are useful in multiple settings.
For example, an RFML model trained to simultaneously perform signal detection and
AMC will likely learn more general features about signal structure and modulation than an
RFML model trained to perform only one of these tasks.
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Multitask learning has perhaps been explored more frequently than any other TL set-
ting in the context of ML-enabled wireless communications using expert-defined features.
For example, in [29], a multitask learning architecture is designed for joint jamming detec-
tion/localization and link scheduling; in [30,31], CNN and recurrent neural network (RNN)
architectures are trained to perform Wi-Fi and cellular traffic forecasting, predicting the
maximum, minimum, and average load and the load across neighboring cells, respectively,
and work in [32] used CNNs to perform indoor Wi-Fi localization.

However, examples of multitask learning in the context of RFML, as defined in this
work, are far fewer. The limited body of works include an approach for end-to-end
communications presented in [33], as well as several that have explored multitask learning
as a method to both improve the explainability and accuracy of models trained to perform
automatic modulation classification (AMC). More specifically, in both [34,35], modulation
classes are broken into subgroups, either by modulation type (i.e., linear, frequency, etc.) or
in order to separate the modulation schemes that cause the most confusion (i.e., 16QAM
and 64QAM); moreover, in [36], concept bottleneck models were used to provide inherent
decision explanations while performing AMC via the prediction of a set of intermediate
concepts defined prior to training.

4.3. Sequential Learning

Finally, sequential learning describes the setting in which a source task is learned
first, and the aim is to transfer the pre-trained model to a different target task, typically
via fine-tuning techniques [26], similarly to those used for domain adaptation. In ever-
changing wireless conditions, sequential learning will be a critical component of future
online, lifelong, and meta-learning techniques for RFML systems. For example, adding
output class(es) to a pre-trained AMC model can be considered a representative example
of sequential learning. Such an approach was examined in [37] and could be extended by
performing a successive refinement of models by adding a single signal type to the task
at a time. More specifically, in [37], sequential learning techniques were used to fine-tune
a pre-trained residual CNN for 190 entirely new categories/output classes, with as few
as 50 to 500 samples per category, versus a model trained from random initialization.
(The pre-trained model had been trained for using 13,000,000 training samples from over
5000 categories.) Results showed that the fine-tuned models not only converged over an
order of magnitude faster than the model trained from random initialization, but achieved
higher test accuracies as well.

Additional work in [38] examined the use of sequential learning methods for adapting
pre-trained SEI models for intended use cases, including tuning for changes in emitters
(i.e., output classes) and protocols used. More specifically, this work built upon an existing
architecture, RiftNet [39], using supervised pre-training and fine-tuning methods similar to
those discussed above, as well as unsupervised pre-training and transfer learning methods,
such as the use of reconstruction losses and manifold clustering, for novel device detec-
tion/classification. This work further examined the impact of source/target dataset size, the
number of source/target output classes, and changes in protocol between the source and
target on transferability. When using supervised pre-training and fine-tuning methods, the
results showed that pre-training on larger, more diverse source datasets provided the best
transfer learning result, hypothesizing that such models learned the most generalizeable
features for the domain. The fine-tuning of these pre-trained models outperformed baseline
classifiers trained from random initialization in most all cases, and performance was best
when only the relevant output classes were retained and extraneous output classes were
removed. As expected, the larger source and target datasets yielded higher performance,
with the size of the source dataset having a slightly larger impact on end performance than
the size of the target dataset. However, overfitting was common during the fine-tuning
process, requiring care and attention in the setting of hyperparameters and use of early
stopping and/or checkpoint methods. Additionally, transfer was more challenging be-
tween protocols, requiring additional fine-tuning steps and resulting in low top-1 accuracy.
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When using unsupervised reconstruction-based transfer learning methods, results showed
that the use of multiburst processing, batching five signals from the same emitter together,
provided additional context for the model during the reconstruction process that yielded
the best performance. Further, the reconstruction-based transfer learning methods were
more capable of overcoming differences in protocol between the source and target dataset.

Universal representation learning, a pre-training method, has also been explored in the
context of RFML, but has yet to become as ubiquitous in the CV and NLP fields [38,40–42].
Universal representation learning approaches aim to learn general purpose features or
embeddings that “capture the generic factors of variation present in all the classes” and that
can be used between tasks [43]. Such approaches are then used as feature extractors or are
fine-tuned for the target task(s). That is, universal representation learning is a source task
that aims to provide successful transfer to a variety of target tasks, significantly decreasing
training time for downstream algorithms.

5. Future Work

Every area of TL in the context of RFML remains an open area of research. Therefore,
algorithmic development is the most apparent direction for future work. Most readily,
parallels can be drawn between RFML and other modalities in which TL has been employed
successfully in an effort to identify existing methods that can be borrowed. For example,
many of the DL architectures used in RFML are CNN-based, such as in CV, yielding a
large selection of TL methods from which to work from. Alternatively, the sequential
nature of raw RF data is more akin to that used in text or speech-based language modeling,
yielding additional NLP TL methods. However, borrowing such approaches yields no
guarantee of success. Just as TL in text domains is characteristically different from TL in
visual domains [44], thereby requiring different approaches and techniques, it is possible
that wholly new TL algorithms will need to be developed for the RFML space.

Designing TL algorithms for the RFML space will first require a fundamental under-
standing of how both the channel environment and platform variations impact learned
behavior and inhibit or facilitate transfer, which has yet to be thoroughly investigated. Even
for RFML works that have successfully used TL, such limits in understanding may hinder
further performance improvements that might be yielded from TL techniques. Finally, these
fundamental limitations in the understanding also obscures insights into long-term model
behavior during deployment, which has long been a criticism of RFML and prevented
commercial support and deployment [14].

While existing works have addressed environment adaptation and environment plat-
form co-adaptation via sequential learning techniques, little-to-no work has been performed
to systematically examine the extent to which environmental factors and hardware consid-
erations impact learned behavior and may, therefore, encourage or prevent transfer. One
approach to performing such an analysis is to utilize transferability or distance metrics
such as the LEEP score [45], LogME score [46], or Proxy-A distance [47] to quantify the
distance between datasets and/or trained NNs. Such metrics can be examined as a function
of domain and task metadata parameters-of-interest using sensitivity analysis.

Similarly, while existing works have utilized multitask and sequential learning tech-
niques with success, no work has examined the changes in learned behavior between
models trained using TL techniques versus random initialization. Methods for understand-
ing pre-trained NNs, often through the use of visualization techniques or mathematical
theory [48–52], are still a very active area of research [53]. Some recent works have used
Canonical Correlation Analysis to compare NN representations, and they have been used to
examine how learned representations change throughout training and differ when trained
from different random initializations [54–56]. Such an approach could be also used for
studying changes in learned behavior between models trained from random initialization,
those that have been fine-tuned using sequential learning methods, and those trained using
multitask learning techniques.
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Finally, as the field of RFML grows to encompass unsupervised and self-supervised
techniques, this taxonomy will need to be expanded to include transductive learning
techniques such as those presented in the general taxonomy of [9].

6. Conclusions

TL has become a transformative technology in the CV and NLP modalities for im-
proving the performance of DL algorithms with less training data by utilizing knowledge
gleaned from similar domains and/or tasks. In light of recent research highlighting the ne-
cessity for and extraordinary cost of representative captured RF training data for RFML [8],
TL is a promising future capability for RFML, but it has been underutilized thus far. Further-
more, TL is a requisite technology for realizing online and distributed learning techniques
for RFML, where the propagation environment and RF hardware have a direct impact on
received data and, therefore, the performance of the resultant algorithm. This paper has
presented a TL taxonomy for RFML and has surveyed the small body of existing works
utilizing TL in the context of RFML, including the methods used and patterns observed
in the results across these existing works. In performing this, this work has offered a
framework through which broader research efforts in TL for RFML can be categorized,
compared, and contrasted, and it has highlighted areas where future work is needed in
order to mature the field.
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