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Abstract: Signet ring cell gastric carcinoma (SRCGC) is a lethal malignancy that has developed drug
resistance to cisplatin therapies. The aim of this study was to characterize the acquisition of the
cisplatin-resistance SRCGC cell line (KATO/DDP cells) and to understand the molecular mechanisms
underlying cisplatin resistance. Transcriptomic and bioinformatic analyses were used to identify the
candidate gene. This was confirmed by qPCR and Western blot. Aldoketoreductase1C1 and 1C3
(AKR1C1 and AKR1C3) were the most promising molecules in KATO/DDP cells. A specific inhibitor
of AKR1C1 (5PBSA) and AKR1C3 (ASP9521) was used to enhance cisplatin-induced KATO/DPP
cell death. Although cisplatin alone induced KATO/DDP apoptosis, a combination treatment of
cisplatin and the AKR1C inhibitors had no influence on percent cell apoptosis. In conjunction with the
autophagy inhibitor, 3MA, attenuated the effects of 5PBSA or ASP9521 to enhance cisplatin-induced
cell death. These results indicated that AKR1C1 and 1C3 regulated cisplatin-induced KATO/DDP
cell death via autophagy. Moreover, cisplatin in combination with AKR1C inhibitors and N-acetyl
cysteine increased KATO/DDP cells’ viability when compared with a combination treatment of
cisplatin and the inhibitors. Taken together, our results suggested that AKR1C1 and 1C3 play a
crucial role in cisplatin resistance of SRCGC by regulating redox-dependent autophagy.

Keywords: signet ring cell gastric carcinoma; RNA sequencing; aldoketoreductase; autophagy;
drug resistance

1. Introduction

Gastric cancer is the fifth most common threat to human health worldwide according
to GLOBOCAN 2018. It has been associated with a significantly high mortality rate, making
it now the third leading cause of cancer-related deaths [1]. In the last few years, there
has been an overall decline in incidences of cancer; however, some studies have reported
that there has been an abrupt increase in the occurrence of signet ring cell gastric cancer
(SRCGC) in Asia, Europe, and the United States [2]. In recent years, effective treatments for
gastric cancer have included surgery, chemotherapy, and targeted therapy. However, the
degree of efficacy of these forms of treatment has not yet reached expectations. Platinum
drugs (cisplatin and oxaliplatin) appear to be effective as a first-line treatment in SRCGC
patients [3], although many patients still suffer from relapses and may eventually become
resistant to chemotherapy. This has contributed to a decrease in the 5-year survival rate. At
present, many researchers are now focusing on various mechanisms to reverse the cisplatin
resistance of SRCGC.

Cisplatin, once it enters the cell; becomes activated and binds to DNA. The platinum
atom of cisplatin binds to the N7 atom of purine nucleotide and creates intrastrand and
interstrand crosslinks and disturbs the structure of DNA, which further stimulates the DNA
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repair process and apoptosis cascades [4]. Cisplatin not only attacks nuclear DNA, but
also attacks mitochondrial DNA and induces mitochondrial reactive oxygen species (ROS)
production and promotes cell death [5]. Excessive reactive oxygen species can stimulate not
only apoptosis via both the extrinsic and intrinsic pathways, but can also induce autophagy,
which is a self-catabolic process that induces the sequestration of cytoplasmic contents,
including exhausted organelles and protein aggregates for degradation in lysosomes [6].

The poor response of gastric cancer to cisplatin chemotherapy is usually due to com-
bined mechanisms of chemoresistance, which may include a reduction in drug uptake,
enhanced drug efflux, and a reduction in the proportion of active agents in tumor cells
due to a reduction in pro-drug activation or an enhancement in drug inactivation. Other
mechanisms of chemoresistance include changes in the expression or function of the molec-
ular targets of anticancer drugs, the enhanced ability of cancer cells to repair anticancer
drug-induced DNA damage, and a decrease in the expression of proapoptotic factors
or an upregulation in antiapoptotic genes [7]. In addition, recent studies have shown
that overexpression of glutathione transferase P1-1, UGT1A1, microsomal cytochrome
P450 enzymes (CYPs), and aldoketoreductases (AKRs) were involved in development
of cisplatin resistance in various types of cancer by neutralizing the cytotoxicity of the
drug [8–11]. Presently, there exists a lack of published studies on how cisplatin resistance
has been developed in signet ring cell gastric carcinoma patients, as they have been known
to possess distinctive pathological features from other cell types of gastric cancer.

Nowadays, transcriptomic sequencing technologies are considered very practical and
beneficial revolutionary tools in genomic cancer research, drug resistance, and determin-
ing the prognosis of various forms of cancer [12]. Therefore, we used this technique to
comprehensively analyze the differences in gene expression between cisplatin resistance
in SRCGC cells and their parental cells. Such transcriptome profiling will help to build a
solid foundation for further in-depth studies of the mechanisms of cisplatin resistance in
SRCGC cells.

In order to explore the underlying mechanisms of cisplatin-resistant SRCGC cells,
we developed a cisplatin-resistant gastric cancer cell line, namely KATO/DDP, from its
parental cell line KATOIII and compared the relevant gene expression profiles using the
transcriptome sequencing technique. Bioinformatic analysis revealed that the oxidation re-
duction pathway, the steroid hormone metabolic process, and the small molecule metabolic
process were all more active in KATO/DDP cells. All of these pathways indicated the pres-
ence of aldoketoreductase 1C1 and 1C3 genes (AKR1C1 and 1C3). These highly expressed
genes were further confirmed by qPCR and Western blot analysis. Furthermore, we effec-
tively inhibited AKR1C1 and AKR1C3 activity-induced cell death via autophagy. AKR1C1
and 1C3 have already been implicated in therapeutic resistance via the mediation of intra-
cellular ROS levels for several types of cancer [13,14]. By using the inhibitors of AKR1C1
and AKR1C3, our results confirmed that high levels of AKR1C1 and 1C3 in KATO/DDP
could reduce cisplatin-induced cell death via regulated intracellular ROS. Thus, our find-
ings indicated that AKR1C1 and AKR1C3 play an important role in cisplatin-resistant
SRCGC via the regulation of autophagic cell death.

2. Results
2.1. Long-Term Exposure to Cisplatin Treatment Can Promote Drug Resistance in SRCGC

The SRCGC cells (KATOIII cells) were treated with a stepwise concentration of cis-
platin at 0.5 to 3 µM over 9 months to generate acquired resistance cells. This resistant cell
line was termed KATO/DDP. Cell viability was assessed using a trypan blue cell exclusion
assay. As shown in Figure 1A,B, the IC50 of KATOIII was found to be 12.67 ± 1.155 µM
and of KATO/DDP was reported to be 98 ± 1.732 µM, while the resistance ratio was 7.7.
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Figure 1. Response of parental drug-sensitive KATOIII and drug-resistant KATO/DDP cells to cisplatin cytotoxicity.
KATOIII and KATO/DDP cells were treated with different concentrations of cisplatin (0–100 µM) for 48 h, and cell viability
was assessed by trypan blue cell exclusion assay. (A) Cell viability of KATOIII and KATO/DDP. (B) IC 50 value of cisplatin
in KATOIII and KATO/DDP cell line. The data are presented as means; * represents p < 0.05 when compared to control.

2.2. Identification of Candidate Genes to Promote Cisplatin Resistance in SRCGC Using
Transcriptomic Sequencing

An RNA-seq approach was used to assess differential expression across the transcrip-
tome in cisplatin-resistant SRCGC cells, KATO/DDP, and its parental cell, KATOIII. The
results indicated that there were 519 differentially expressed protein coding genes, with
174 upregulated and 345 downregulated genes when log2 fold change values were ≥1.8
and ≤−1.8 (Figure 2A). In order to identify the key deregulated genes, the top 50 up-
regulated and downregulated genes (fold change) were determined for KATO/DDP
versus KATOIII cells. The top 50 upregulated and downregulated genes are shown
in Tables S2 and S3. We then detected the expression of five randomly selected upreg-
ulated and five downregulated genes by qPCR to validate the results of the RNA sequenc-
ing (Figure 2B). The qPCR results revealed an upregulation of genes ALDOB, HSD17B2,
AKR1C1, PLAC8, and AKR1C3, and the downregulation of genes FGF21, CPXM2, TBC1D4,
FREM2, and ALDH1L2, showing the same pattern with transcriptomic results. To deter-
mine whether cisplatin resistance in KATO/DDP cells may be related to a certain biological
pathway, a GO functional enrichment analysis was conducted. In GO annotations, all en-
riched differentially expressed genes (DEGs) were classified into three categories: biological
processes, cellular components, and molecular functions. Results of the top 10 significant
pathways in biology processes are shown in Figure 3A, while the enriched genes of each
pathway are listed in Table S4. Interestingly, the AKR gene family has been associated with
the topmost significant pathways, including those associated with oxidation reduction,
digestion, and the steroid hormone metabolic process, as well as the doxorubincin and
daunorubicin metabolic processes.
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Figure 2. Identification of differentially expressed genes between KATOIII and KATO/DDP cells.
(A) Volcano diagram of differentially expressed genes between KATO/DDP and KATOIII cell lines,
showing 174 upregulated and 345 downregulated genes. (B) To validate the differentially expressed
genes from RNA sequencing, the expression level of five upregulated and downregulated genes were
examined by using qPCR.

Figure 3. Identification of cisplatin-resistance-related genes in signet ring gastric cancer by bioinfor-
matics analysis of RNA sequencing data: (A) David Bioinformatics functional annotation according
to gene ontology (GO) in biological process, molecular function, and cellular compartment; (B) top
10 GO terms of Gene Set Enrichment Analysis; (C) oxidation reduction GO term of Gene Set Enrich-
ment Analysis; (D) small molecule metabolic process GO term of Gene Set Enrichment Analysis;
(E) cofactor metabolic process GO term of Gene Set Enrichment Analysis.

Moreover, the Gene Set Enrichment Analysis results confirmed that the oxidation
reduction pathway, the small molecule metabolic process, and the cofactor metabolic pro-
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cess all belonged to the topmost significant pathways with the highest enrichment scores.
All these pathways indicated the presence of the AKR family with higher ranking matrix
scores (Figure 3B–E). Genes involved in oxidation reduction pathway, the small molecule
metabolic process, and the cofactor metabolic process are listed in Table S5. The protein–
protein interaction network was constructed from differentially expressed genes using Cy-
toscape version 3.8.2, wherein 371 nodes with 483 edges were identified. From this network,
the most significant module was detected using the MCODE Cytoscape plugin. MCODE
revealed 13 nodes and 36 edges, with the highest score 6 containing UGT1A1, UGT1A10,
CYP1A1, CBR3, HSD17B2, AKR1C1, AKR1C3, CXCL8, CXCL11, CXCL13, NMUR2, ADCY7,
and SSTR5 (Figure 4A,B). All these combined bioinformatic results indicated that AKR1C1
and AKR1C3 could be the most likely molecular markers to promote cisplatin resistance in
the KATO/DDP cell line.

1   

 
Figure 4. Protein–protein interaction network construction. (A) Protein–protein interaction network of differentially
expressed genes, constructed using Cytoscape, showing 371 nodes with 483 edges. (B) Topmost significant module in PPI
network analyzed by MCODE (score = 6).

2.3. Verification of Cisplatin Resistance Related Genes in KATO/DDP Cell Line

Previous studies have reported that cisplatin resistance was associated with the im-
pairment in drug transporters and DNA repair proteins. Consequently, we first determined
the expression levels of major DNA repair genes such as XRCC1 and ERCC1, and drug
transporters such as MRP1 and MDR1, which are known to be associated with drug resis-
tance. The results indicated that there were no differences in expression values between
the KATOIII and KATO/DDP cell lines in qPCR (Figure 5A). According to previously pub-
lished reports, AKR family members are considered important genes in promoting drug
resistance in the KATO/DDP cell line. The expression levels of AKR1C1, 1C2, 1C3, 1B1, and
1B10 genes were compared to those of KATOIII and KATO/DDP using qPCR. As shown
in Figure 5B, AKR1C3 and AKR1C1 exhibited the highest fold-change difference between
KATOIII and KATO/DDP at 6.2- and 5.6-fold, respectively, while the fold-change difference
of AKR1C2 was 2.2. The expression levels of AKR1B1 and 1B10 indicated that there were
no differences between KATOIII and KATO/DDP. This suggested that AKR1C1 and 1C3
were dramatically overexpressed in resistance phenotype KATO/DDP when compared to
sensitive phenotype KATOIII cells. Moreover, AKR1C3 exhibited the highest expression
level among members of the AKR family in KATO/DDP using qPCR (Figure 5C). In the
subsequent step, we attempted to endorse differences in the protein expression levels of
AKR1C1 and AKR1C3 between the KATOIII and KATO/DDP cell lines using Western
blot analysis. As shown in Figure 5D–F, the expression levels of AKR1C1 and 1C3 were
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increased by cisplatin treatment in KATO/DDP cells, whereas the expression levels of both
proteins in KATOIII cells after treatment with cisplatin did not change. All these combined
results indicated that AKR1C1 and AKR1C3 are the most presiding molecules in promoting
cisplatin resistance in the KATO/DDP cell line.

Figure 5. Determination of cisplatin resistance related genes in SRCGC. (A) Fold-change difference in expression of
known drug-resistance-related genes between KATO/DDP and KATOIII gastric cancer cell lines by qPCR. (B) Fold-change
difference in expression of aldoketoreductase family between KATO/DDP and KATOIII gastric cancer cell line by qPCR.
(C) Relative expression of aldoketoreductase family in KATO/DDP cell line. (D) KATO/DDP and KATOIII gastric cancer
cell lines were treated with different concentration of cisplatin (0–10 µM) for 24 h. The expression levels of AKR1C1
and AKR1C3 were detected by Western Blot analysis. (E) Quantitative representation of AKR1C1 protein expression by
Western blot. (F) Quantitative representation of AKR1C3 protein expression by Western blot analysis. Data are presented in
mean ± SD; ** represents p < 0.01.
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2.4. Inhibition of AKR1C1 and AKR1C3 in Resensitizing the Cisplatin Cytotoxicity

In order to verify that AKR1C1 and AKR1C3 were the most promising factors in
promoting cisplatin resistance in SRCGC, AKR1C1 and AKR1C3 were specifically inhibited
by 3-bromo-5-phenylsalicylic acid (5PBSA) and ASP9521, respectively. KATO/DDP cells
were treated with different concentrations of cisplatin (0–100 µM) with or without an
AKR1C1 or AKR1C3 inhibitor. When KATO/DDP cells were treated with cisplatin at
25 µM together with ASP9521 at 5 and 10 µM, there was a significant reduction in cell
viability, from 77 ± 1.1% to 48 ± 1.0% and 45 ± 2.0%, respectively. The same results
were also found in KATO/DDP cells that had been treated with cisplatin together with
5PBSA at 10 µM (Figure 6A,B). Cisplatin often exerts cytotoxicity by inducing apoptosis in
various tumor cells, including those associated with gastric cancer. Next, we investigated
whether the enhancement activity of AKR1C inhibitors on cisplatin-induced cell death
was associated with apoptosis by employing an annexin V-PI staining assay. The results
indicated that treatment with cisplatin alone at 25 µM induced apoptosis population in
KATO/DDP cells from 7.6% to 13%. However, cotreatment with ASP9521 or 5PBSA at
10 µM, and cisplatin at 25 µM, induced the apoptotic population to a degree that was
similar to the treatment with cisplatin alone (Figure 6C,D). To confirm whether apoptosis
was the main cause of AKR1C inhibitors enhancing cisplatin-induced cell death, levels of
the apoptotic signaling pathway proteins were investigated by including cleaved caspase-3
and Bax. As shown in Figure 6E, a combination treatment did not change the level of
cleaved caspase-3 and Bax when compared with cisplatin alone. Although there was a
significant reduction in the percentage of cell viability in combination treatment of cisplatin
and AKR1C inhibitors when compared to cisplatin alone, no significant changes were
observed in apoptosis assay and apoptosis markers between cisplatin alone and cisplatin
treated together with AKR1C inhibitors. The data suggested that the cell death induced by
the inhibition of AKR1C1 and AKR1C3 was independent of the apoptosis pathway, and
utilized an alternative pathway to promote cell death.

2.5. Inhibition of AKR1C1- and AKR1C3-Induced Cell Death via Autophagy

Cisplatin-induced cell death occurred via the apoptosis pathway, but also stimulated
autophagy cell death. Therefore, we investigated whether the enhancement activity of the
AKR1C1 and 1C3 inhibitors on cisplatin-induced cell death was involved with autophagy.
Autophagy vacuoles were labeled by monodansylcadaverine (MDC) fluorescent staining
and detected using a fluorescent microscope. As shown in Figure 7A,B, the formation
of autophagic vacuoles in KATO/DDP cells for the combined treatment of cisplatin and
ASP9521 or 5PBSA were increased from 33± 1.3% to 51± 3.3% and 52± 1.2%, respectively,
when compared to cisplatin alone. To further confirm that AKR1C1 and 1C3 inhibitors
mediated cisplatin-induced KATO/DDP cell death via the autophagy pathway, the ex-
pression level of LC3B-II, a credible marker of autophagosome, was assayed by Western
blot analysis. As shown in Figure 7C,D, there was an increase in the expression of LC3B-II
in combination treatment with cisplatin and ASP9521 or 5PBSA when compared to the
treatment with cisplatin alone.
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Figure 6. AKR1C1 and AKR1C3 regulated cisplatin-induced KATO/DDP cell death. (A) Cell viability of KATO/DDP
cells treated with cisplatin (0–100 µM) with or without ASP9521 at 5 µM and 10 µM by trypan blue cell exclusion assay.
(B) Cell viability of KATO/DDP cells treated with cisplatin with or without 5PBSA at 5 µM and 10 µM by trypan blue cell
exclusion assay. (C) KATO/DDP cells were treated with cisplatin with or without ASP9521 or 5PBSA at 10 µM for 24 h,
and we analyzed the apoptosis assay by flow cytometer. (D) Quantitative representation of % of apoptosis analyzed by
flow cytometer. (E) KATO/DDP cells were treated with cisplatin with or without ASP9521 or 5PBSA at 10 µM for 24 h, and
apoptosis markers were detected by Western blot analysis. (F) Quantitative representation of apoptosis marker cleaved
caspase 3 by Western blot analysis. Data are presented in mean ± SD; * represents p < 0.05 and ** represents p < 0.01.
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Figure 7. Inhibition of AKR1C1 and AKR1C3 induced cell death via autophagy. KATO/DDP cells were treated with
cisplatin with or without ASP9521 or 5PBSA at 10 µM for 24 h. (A) Autophagic vacuoles were stained with MDC dye
and visualized under a fluorescent microscope. (B) Graphical representation of % of MDC-positive cells in KATO/DDP
cells. (C) Western blot analysis of autophagy marker. (D) Quantitative representation of autophagy marker by Western blot
analysis. Data are presented as mean ± SD; * represents p < 0.05 and ** represents p < 0.01.

To verify that autophagy played a major role in the process wherein AKR1C1 and 1C3
inhibitors enhanced cisplatin-induced cell death, KATO/DDP cells were cotreated with
3MA (autophagy inhibitor), cisplatin, and AKR1C1 or 1C3 inhibitors for 48 h. Subsequently,
the degree of cell viability was analyzed. As shown in Figure 8A,B, cell survival was
increased by up to 66 ± 2.3% when cells were treated with 3MA together with ASP9521
and cisplatin. In addition, cell survival also increased by up to 68 ± 1.4% in cells treated
with 3 methyl adenine (3MA) together with 5PBSA and cisplatin, according to the pattern
observed in the resistance phenotype. Furthermore, we assessed the outcome of 3MA by
using MDC autophagy vacuole staining. We confirmed that there was a reduction in the
autophagic vacuole to 18 ± 0.56% and 17 ± 0.85% in cells treated with 3MA in conjunction
with cisplatin and ASP9521 or 5PBSA when compared to cisplatin in conjunction with
ASP9521 or 5PBSA (Figure 8C,D). Taken together, inhibition of AKR1C1 and 1C3 increased
the formation of autophagic vacuoles, as well as LC3B-II formation and promotion of cell
death. This suggested that AKR1C1 and 1C3 inhibition regulated the cisplatin-induced
KATO/DDP cell death via the autophagy pathway.
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Figure 8. Verification of autophagy as a major pathway of AKR1C1- and 1C3-regulated cell death. (A) KATO/DDP cells
were treated together with cisplatin and ASP9521 with or without 3MA at 0.5 mM. Cell viability was assessed by using
trypan blue cell exclusion assay. (B) KATO/DDP cells were treated together with cisplatin and 5PBSA with or without 3MA
at 0.5 mM, and cell viability was assessed by using trypan blue cell exclusion assay. (C) KATO/DDP cells were treated
together with cisplatin and ASP9521 or 5PBSA at 10 µM with or without 3MA at 0.5 mM. Autophagic vacuoles were stained
with MDC dye and visualized under fluorescent microscope. (D) Graphical representation of % of MDC-positive cells in
KATO/DDP. Data are presented as mean ± SD; ** represents p < 0.01.

2.6. AKR1C1 and 1C3 Mediated Chemo-Resistance in KATO/DPP by Regulating Redox
Homeostasis

Recent reports have postulated that cisplatin increased the generation of intracellular
ROS, which then caused damage to DNA, proteins, and lipids, leading to cell death.
Human AKR1C isoforms were involved in the reduction of 4-hydroxynonenal (HNE), a
reactive aldehyde derived from lipid peroxidation, into its less-toxic alcohol 4-hydroxy-2-
nonenol form. To further clarify the underlying mechanisms of AKR1C1- and 1C3-mediated
cisplatin-resistance in SRCGC, intracellular ROS levels were determined using a DCF-DA
ROS assay. As shown in Figure 9A, there was a significant increase in intracellular ROS
after being treated for 1 h with cisplatin at 25 µM in KATO III cells. In contrast, there were
no significant changes in AKR1C1 and AKR1C3 overexpressing KATO/DDP. Moreover,
when KATOIII cells were treated together with cisplatin and N-acetyl cysteine (NAC) 2 mM,
cell viability increased back to 65 ± 2.1% from 46 ± 1.0% when compared to treatment
with cisplatin alone (Figure 9B). These results indicated that cisplatin induced KATO III
cell death, at least on the part of intracellular ROS generation. To further investigate
the underlying mechanisms of AKR1C1- and AKR1C3-mediated cisplatin resistance in
KATO/DDP, the intracellular ROS levels were determined after treatment with AKR1C1 or
1C3 inhibitors. As shown in Figure 9C, when KATO/DDP cells were treated together with
cisplatin and ASP9521 or 5PBSA, there was a significant increase in ROS generation after 1 h
of cisplatin treatment. Alternatively, KATO/DDP cells could be treated with cisplatin and
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ASP9521 or 5PBSA with or without NAC. As shown in Figure 9D, cell viability dramatically
increased from 48 ± 2.1% to 65 ± 0.69% in cells treated with NAC together with cisplatin
and ASP9521 when compared to the combination treatment of cisplatin and ASP952. A
similar pattern was observed in NAC treated with cisplatin and 5PBSA at 65 ± 2.8%.

Figure 9. Role of intracellular ROS in AKR1C1 and 1C3 mediating chemo-resistance in signet ring gastric cancer cells.
(A) Intracellular ROS level in KATOIII and KATO/DDP cell lines after 1 h treated with cisplatin was detected by DCF-DA
ROS assay. (B) KATOIII cells were treated with cisplatin with or without NAC for 48 h at 37 ◦C. Cell viability was assessed
by using trypan blue cell exclusion assay. (C) Intracellular ROS level in KATO/DDP cells after treatment with cisplatin and
ASP9521 or 5PBSA. KATO/DDP cells were pretreated with ASP9521 or 5PBSA at 10 µM for 3 h and added with cisplatin
at 25 µM. Intracellular ROS was measured by DCF-DA ROS assay after 1 h of cisplatin treatment. (D) Cell viability of
KATO/DDP cells treated with cisplatin and ASP9521 or 5PBSA with or without NAC. Data are presented as mean ± SD;
* represents p < 0.05 and ** represents p < 0.01.

These outcomes indicated that cisplatin could induce the cell death in KATO cells
by generation of intracellular ROS. Moreover, AKR1C1 and AKR1C3 overexpressing
KATO/DDP showed a reduction in the generation of intracellular ROS, and while in-
hibition of these enzymes could regenerate intracellular ROS, this in turn promoted cell
death and reversed the resistance property.

3. Discussion

In the clinical management of gastric cancer, cisplatin combination regimes have been
used as a first-line chemotherapeutic agent [15], while there has been an emergence in drug
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resistance even with the best treatment. Much effort has been put into understanding the
mechanisms of cisplatin chemoresistance; however, the underlying mechanisms are not
fully understood, especially regarding SRCGC. In our previous study, we developed a
model to acquire cisplatin resistance in KATOIII signet ring cell gastric carcinoma patients
by stepwise treatment with cisplatin for a period of 9 months [16]. Again, in this study we
found that the resistance index of KATO/DDP exhibited a 7-fold change, which confirmed
that this cell presented a significantly greater tolerance to higher cisplatin concentrations
when compared to the parental counterparts. Next, we used transcriptomic sequencing
strategy to identify the DEGs and to conduct in-depth studies on the mechanisms of
cisplatin resistance in SRCGC.

The RNA-seq analysis showed 519 differentially expressed genes between KATOIII
and KATO/DDP. Among the topmost significant pathways in the David functional anno-
tation biological process, five pathways, namely oxidation reduction, digestion, steroid
metabolic process, and daxorubincin and daunorubincin metabolism, showed the presence
of AKR1C1 and AKR1C3 genes. Moreover, AKR genes were also involved in the top
three pathways associated with Gene Set Enrichment Analysis, including the oxidation
reduction pathway, the small molecule metabolic process, and the cofactor metabolic
process. We also constructed the protein–protein interaction network, which identified
13 genes (UGT1A1, UGT1A10, CYP1A1, CBR3, HSD17B2, AKR1C1, AKR1C3, CXCL8,
CXCL11, CXCL13, NMUR2, ADCY7, and SSTR5) in the strongest interacting network.
Our MCODE results correlated with those of a study conducted by Ebert et al. that in-
dicated that the activation of phase I metabolism by CYPs generated metabolites and
ROS. These metabolites and ROS were capable of inducing Nrf2-regulated antioxidant
response genes such as CBR3 and AKRs [17]. Furthermore, CYP1A1, AKR1C1, AKR1C3, and
CBR3 were contained in the most significant module analyzed by MCODE. All these com-
bined bioinformatic results indicated that the AKR1C1 and AKR1C3 genes are promising
molecules in the development of cisplatin resistance in SRCGC.

Previous studies have reported that the drug transporter genes MRP1 and MDR1
mediated the development of platinum drug resistance in lung cancer cells [18,19]. More-
over, nucleotide excision repair and base excision repair mechanisms are also said to be
able to protect against the cytotoxicity of cisplatin in cancer cells [20]. Accordingly, the
expression levels of MRP1, MDR1, ERCC1, and XRCC1 genes have been determined. No
significant fold-change differences were observed between KATOIII and KATO/DDP. High
expression levels of AKR family members have been reported to be able to promote drug
resistance in cancer cells. Here, we found that AKR1C3 and AKR1C1 exhibited the highest
degree of fold-change differences among the AKR family, while AKR1C3 exhibited the
highest expression in KATO/DDP. Our Western blot results also supported the finding that
AKR1C1 and AKR1C3 were overexpressed in KATO/DDP when compared to KATOIII.
These results suggested that AKR1C1 and AKR1C3 are the most important molecules in
cisplatin resistance. This determination was supported by the outcomes of previous studies,
which found that AKR1C1 and AKR1C3 could catalyze the inactivation of doxorubicin
cytotoxicity and the induction of both enzymes to significantly mitigate the cytotoxicity of
danorubicin in leukemic U937 cells [8]. Moreover, the involvement of upregulated AKR1C1
and 1C3 in oxaliplatin-resistant gastric cancer cells has been reported [21].

Members of the AKR family could metabolize certain endogenous substrates, such
as prostaglandins, steroids, and xenobiotics, in a NADPH-dependent manner. Members
of the AKR1C subfamily are emerging as important mediators of cancer pathogenesis.
Among them, AKR1C1 and AKR1C3 have been reported to be upregulated in human
tumors and identified as prognostic markers for various forms of cancer, including breast,
colon, bladder, and prostate cancers [22–24]. In the study of colon cancer, specific inhibitors
of AKR1C1 and AKR1C3 or knockdowns of the genes in the resistant cells were used to
resensitize the cells to cisplatin toxicity [25]. Accordingly, these outcomes were consistent
with our results, which found that the inhibition of AKR1C3 or AKR1C1 activity could
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enhance the cytotoxicity of cisplatin in KATO/DDP cells. This would suggest that AKR1C1
and AKR1C3 are promising factors in promoting cisplatin resistance in SRCGC.

The antitumor activity of cisplatin is a complex process in which several pathways are
involved, leading to cell cycle arrest, apoptosis, ferroptosis, and autophagy, depending on
the treatment conditions and the cell type [26–28]. Cisplatin-induced cell death via apopto-
sis is the predominant pathway. The previous study indicated that knockdown AKR1C3
in esophageal adenocarcinoma cells exhibited greater apoptosis upon receiving cisplatin
treatment. Therefore, we investigated whether the enhancement activity of AKR1C1 and
1C3 inhibitors on cisplatin-induced cell death was associated with apoptosis. Surprisingly,
we found no significant differences in percent cell apoptosis between treatments involving
cisplatin alone and cisplatin combined with ASP9521 or 5PBSA. Moreover, KATO/DDP
cells treated with cisplatin alone induced the expression of cleaved caspase-3. However,
a combination treatment did not change the levels of cleaved caspase-3 and Bax when
compared with cisplatin alone. The data suggested that cell death induced by AKR1C1
or AKR1C3 inhibitors was independent of the apoptosis pathway. Based on previous
studies, AKR1C activity was inhibited along with the expression of sensitized cancer cells
to chemotherapeutic drugs via the autophagy pathway [29,30]. Thus, AKR1C1 and 1C3 in-
hibitors were used to examine whether they could enhance cisplatin-induced KATO/DDP
cell death via autophagy. The expression level of LC3BII, an autophagy marker, showed
increased expression levels in cisplatin treatment in conjunction with AKR1C1 and 1C3
inhibitors when compared to cisplatin alone. A previous study indicated that mono plat-
inum could induce cell death in human ovarian carcinoma by activating autophagic cell
death [31], which was consistent with our results. This outcome was confirmed through
the use of MDC dye for the purposes of autophagy vacuole staining. It was found that an
increase in the formation of autophagic vacuoles was detected in cisplatin and the inhibitor
combination group when compared to cisplatin alone. To confirm that autophagy is a
major process of AKR1C1 and 1C3 inhibitors in the enhancement of cisplatin-induced
KATO/DDP cell death, we used 3MA as an autophagy inhibitor. The obtained results
indicated that when KATO/DDP cells were treated together with cisplatin, ASP9521 or
5PBSA, and 3MA, a reversal was observed in the cytotoxicity of the combination treatment
of cisplatin and AKR1C1 or the 1C3 inhibitors. This result correlated with the formation
of autophagic vacuoles. In experiments in which cisplatin was combined with AKR1C
inhibitors and 3MA, there was a significant reduction in the formation of autophagic
vacuoles when compared to cisplatin treated in conjunction with AKR1C inhibitors.

Cisplatin is one of the most frequently used cytotoxic agents in the treatment of
gastric cancer. The traditional mechanism of cisplatin involves the formation of inter-
and intrastrand chain cross-linking of DNA for the induction of p53, cell cycle arrest,
and apoptosis. More recently, it has been shown that ROS generated by cisplatin could
increase lipid peroxidation [32]. The metabolized products of lipid peroxidation can be
decomposed to yield a wide range of cytotoxic products, most of which are known to
be aldehydes such as malonaldehyde, hexanal, and 4-HNE [33,34]. The AKR1C family
can reduce 4-HNE to the nontoxic 1,2-dihydroxynonene, which would play an important
role in the detoxication of this reactive aldehyde [33,35]. In the previous study, it was
reported that the AKR1C family was involved in oxaliplatin resistance by neutralizing
ROS generated by oxaliplatin [21]. Moreover, the inhibition of AKR1C3 expression has
been reported to promote an increase in ROS and a reversal of drug resistance to cisplatin
in patients diagnosed with colon cancer [25]. Therefore, we determined the appropriate
levels of ROS in both KATOIII and KATO/DDP cell lines. The ROS levels increased
significantly after cisplatin treatment in KATOIII cells, but not to a significant degree in
the AKR1C1 and 1C3 overexpression of KATO/DDP cells. Upon inhibition of AKR1C1
and 1C3 in KATO/DDP cells, ROS increased to a significant level after cisplatin treatment.
This indicates that cisplatin could induce ROS generation in KATO cells in a way that was
dependent upon the activity of AKR1C1 and 1C3. Nrf2 is a transcriptional factor that is
activated by modification of Cys thiols in Keap1 in response to activators such as ROS,
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electrophiles, and nitrogen radicals [28,36]. Moreover, a previously published report stated
that AKR1C3 is said to be a direct target of Nrf2 and plays an essential role in redox balance.
To confirm that ROS generation could induce cell death in KATO cells, KATOIII cells were
treated in conjunction with cisplatin and NAC. This resulted in an increase in cell survival
when compared to treatments with cisplatin alone.

Furthermore, the inhibition of ROS generation by NAC in cisplatin combined with
the ASP9521 or 5PBSA group could significantly mitigate the cytotoxicity of cisplatin to
increase KATO/DDP cell survival. According to previous reports, intracellular ROS may
enhance ER stress and promote autophagic cell death under certain conditions [37]. In
a study conducted by Chen et al., induction of oxidative stress in the U87 and HeLa cell
lines promoted autophagic cell death independently of apoptosis, while blocking ROS
generation to effectively reverse cell death induced by autophagy [38]. Moreover, curcumin
treatment increased intracellular ROS levels in human colon cancer cells and enhanced
nonapoptotic cell death through the upregulation of LCIIIB [39]. These data may support
our finding that inhibition of AKR1C1 and AKR1C3 may abolish the ROS neutralizing
action by aldoketoreductase-overexpressing cells, restore the accumulation of ROS, and
promote cell death via autophagy in cisplatin resistance in SRCGC.

4. Materials and Methods
4.1. Chemicals and Reagents

Dulbecco’s Modified Eagle Medium (DMEM), trypsin, and penicillin–streptomycin
were supplied from Gibco (Grand Island, NY, USA). Fetal bovine serum (FBS), RIPA
buffer, protease inhibitors, and Coomassie Plus™ Protein Assay Reagent were obtained
from Thermo Scientific Company (Waltham, MA, USA). Apoptosis annexin V and PI was
purchased from Biolegand (San Diego, CA, USA). Nucleozol RT reagent was purchased
from Takara Bio (Mountain View, CA, USA). Maxima SYBER Green qPCR Master Mix
and RevertAid First Strand cDNA Synthesis Kit were purchased from Thermo Scientific
(Waltham, MA, USA). Acryalmide solution was purchased from Himedia (L.B.S.Marg,
Mumbai, India). Antibodies specific to AKR1C1, AKR1C3, caspase-3, Bax, and LC3B were
purchased from Abclonal (Woburn, MA, USA). Nitrocellulose membrane and ECL reagent
were supplied by GE Healthcare (Little Chalfont, UK). The 3MA, DCF-DA, and cisplatin
were obtained from Sigma (St. Louis, MO, USA).

4.2. Cell Line and Culture Condition

The KATOIII human gastric cancer cell line was purchased from American Type
Culture Collection (Manassas, VA, USA). The cells were cultured in DMEM containing
10% FBS and 1% (v/v) penicillin and streptomycin. These cultured cells were maintained
at 37 ◦C in a 95% humidified atmosphere and 5% CO2 conditions.

4.3. Establishment of Cisplatin Resistance Gastric Cancer Cell Line

In order to establish a cisplatin-resistant gastric cancer cell line with the same genetic
background, the parental KATOIII gastric cancer cell lines were stepwise treated with
cisplatin concentration from 0.5 to 3 µM over 9 months, and this cell line was termed
KATO/DDP [16]. The resistance ratio was determined by dividing the IC50 of the resistance
cell line to the IC50 of the sensitive ones. Then, the resistance phenotype was maintained
by 3 µM concentration of cisplatin, and these cells were cultured in drug-free media for at
least two passages before each experiment.

4.4. Cell Viability Test

Gastric cancer cells KATOIII and KATO/DDP cells (1.2 × 105) were plated in 12_well
plates and treated with different concentrations of cisplatin (0–100 µM) or AKR1C inhibitors
or 3MA or NAC at 37 ◦C for 48 h. After 48 h, the cells were collected and resuspended in
incomplete media and stained with 0.4% trypan blue dye. The cell viability was assessed
by trypan blue staining, and the percentage of cell viability was calculated and compared
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to that of the control. The IC50 value was defined as the required concentration of cisplatin
that was required for 50% cell death.

4.5. RNA Isolation, Transcriptomic Sequencing, and Analysis

Total RNA was extracted by Nucleozol RT reagent according to the manufacturer’s
instructions, and RNA degradation and contamination was checked by Clorox-denatured
1% agarose gel electrophoresis. RNA sequencing was conducted by Novogene Co., Ltd.
using the illumina Hiseq 2000 platform. The quality control (QC) of raw reads was
checked, and the raw fastq data were analyzed by using CLC genomic work bench ver-
sion 21. The differentially expressed genes were also analyzed with the CLC Genomics
Workbench plugin.

Overexpressed genes were validated using qPCR and Western blot analyses comparing
parental and cisplatin-resistant cell lines. The sequencing data were submitted to the
National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA)
under accession number GSE186205. For gene functional annotation, the differentially
expressed genes were analyzed by using Gene Set Enrichment Analysis version 4.1.0,
David Bioinformatics Resource functional annotation tools version 6.8, and Cytoscape
version 3.8.2.

4.6. RNA Isolation, Reverse Transcription, and Quantitative PCR

Total RNA was extracted by Nucleozol RT reagent according to the manufacturer’s
instructions. Complementary DNA was synthesized by using the Revert Aid First Strand
cDNA Synthesis Kit (Thermo Scientific, Loughborough, UK). The quantitative reverse
transcription polymerase chain reaction was carried out by Maxima SYBER Green qPCR
Master Mix (Thermo Scientific, Loughborough, UK) with the applied biosystem 7500 Fast
platform. The relative expression of the genes was analyzed by 2−∆∆CT. The primer
sequences used in this study are listed in Table S1.

4.7. Western Blotting Analysis

The treated cells were extracted by a RIPA lysis buffer containing protease inhibitors
(1 mM PMSF, 10 µg/mL leupeptin, 10 µg/mL aprotinin) for 20 min on ice. The insoluble
matter was removed by centrifugation at 12,000 rpm for 15 min at 4 ◦C, the supernatant
fraction was collected, and the protein concentration was determined by using a Bradford
protein assay. Total protein extracted from the cells was separated by 10% and 12% SDS
polyacrylamide gel electrophoresis and then transferred to the nitrocellulose membrane.
The membrane was then incubated with the desired primary antibody overnight at 4 ◦C.
The secondary antibody at 1:10,000 was incubated for 2 h at room temperature, and the
results were visualized by a chemiluminescent detection system and then exposed to X-ray
film (GE Healthcare Ltd., Little Chalfont, UK).

4.8. Intracellular ROS Measurement

Intracellular ROS was measured by a DCF-DA (2′,7′-dichlorofluorescin diacetate)
assay. A total of 4 × 105 cells were treated with various concentration of cisplatin with or
without AKR1C1 and 1C3 inhibitors for 1 h and stained with a 5 µM final concentration
of DCF-DA for 30 min at 37 ◦C. The cells were washed with PBS and then lysed by
90% Dimethyl sulfoxide, and the fluorescence intensity was measured against 485/525 by
fluorescent plate reader.

4.9. Apoptosis Assay

KATO/DDP cells (2 × 105) were treated with cisplatin with or without AKR1C1 and
1C3 inhibitors and incubated at 37 ◦C for 24 h. After 24 h, the cells were collected and
washed with PBS and then stained with annexin V and PI for 30 min at 37 ◦C, and analyzed
with the BD FACScanTM flow cytometer (BD Biosciences, San Jose, CA, USA).
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4.10. Monodensylcadaverine Staining

The KATO/DDP cells (2 × 105) were treated with cisplatin with or without AKR1C1
and 1C3 inhibitors and 3MA and incubated for 24 h. Then, the cells were washed with
ice-cold PBS, and stained by MDC dye for 30 min at 37 ◦C. The cells were washed with
PBS twice to remove the excess MDC. The cells were then visualized with a fluorescence
microscope (Carl Zeiss AG, Jena, Germany) at an excitation wavelength of 460–500 nm and
an emission wavelength of 512–542 nm.

4.11. Statistical Analysis

Each of the experiments was conducted in triplicate. Statistical analysis was performed
using SPSS (version 22). Data were expressed as mean ± SD with the number of individual
experiments described in the figure legends. For comparisons between the means of two
variables, unpaired student’s t-test was used. For comparisons among multiple variables,
one-way ANOVA was used. The statistical significance of differences was considered
significant when the p-value was <0.05.

5. Conclusions

Our research determined that AKR1C1 and AKR1C3 could play a dominant role in
promoting drug resistance by neutralizing the ROS generated by cisplatin. Meanwhile,
the inhibition of AKR1C3 and 1C1 effectively upregulated ROS generation, increased the
cytotoxicity of cisplatin, and promoted autophagic cell death, while reversing the cisplatin
resistance property in signet ring gastric carcinoma patients as a unique biological behavior.
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Abbreviations

3-MA 3-Methyladenine
5PBSA 3-Bromo-5-phenylsalicylic acid
AKR Aldoketoreductase
AKR1C1 Aldoketoreductase1C1
AKR1C3 Aldoketoreductase1C3
CYPs Microsomal cytochrome P450 enzymes
DCF-DA 2’,7’-Dichlorofluorescin diacetate
DEGs Diffrentially expressed genes
DMEM Dulbecco’s Modified Eagle Medium
FBS Fetal bovine serum
GO Gene ontology
HNE 4-Hydroxynonenal
MDC Monodansylcadaverine
NAC N acetyl cysteine
NCBI National center for biotechnology information
Nrf2 Nuclear factor erythroid related factor 2
PBS Phosphate-buffered saline
QC Quality Control
ROS Reactive oxygen species
SRA Sequence read archive
SRCGC Signet ring cell gastric carcinoma
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