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Abstract 
Recent advancements in sequencing technologies have yielded numerous long-read draft genomes, promising 
to enhance our understanding of genomic variation. However, draft genomes are typically highly fragmented, 
posing significant challenges for functional genomics. We introduce GPatch, a tool that constructs 
chromosome-scale pseudoassemblies from fragmented drafts using alignments to a reference genome. 
GPatch produces complete, accurate, gap-free assemblies preserving over 95% of nucleotides from draft 
genomes. We show that GPatch assemblies can be used as references for Hi-C data analysis, whereas draft 
assemblies cannot. Until complete genome assembly becomes routine, GPatch presents a necessary tool for 
maximizing the utility of draft genomes. 
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Background 
Since the publication of the second human genome, scientists have strived to understand the functional 
consequences of genomic variation. This has been accompanied by numerous advances in sequencing 
technology that have allowed researchers to generate unprecedented amounts of data to help us reach that 
lofty goal. Building off the original methods used to sequence and assemble these early genomes, these 
methods have been adapted to efficiently identify sites of intraspecific variation within genomes and annotate 
loci with functional evidence. The synthesis of these methods allows researchers to infer which variants are 
most-likely to have functional effects, and to develop and test hypotheses about their consequences. For the 
majority of these methods, the first step in data analysis is mapping sequenced reads to a reference genome. 
Thus, the choice of a reference genome is one of the first and most important decisions that must be made in 
data analysis: one that can dramatically influence the outcome of an analysis, primarily by affecting where and 
how well sequencing reads align. Therefore, the quality of experimental results depends heavily on the quality 
and completeness of the reference genome used, and how closely its underlying sequence matches the 
genome of the sequence donor, whether it be an individual or immortalized cell line. Indeed, we expect inverse 
relationships between mapping rate and quality and divergence between the donor and reference genomes. 
Most published reference genomes to-date were constructed from multiple individuals spanning a broad range 
of genetic backgrounds, and often include haplotypes not actually observed in nature. As a result, we expect a 
variable amount of divergence between any donor and a reference genome, including both single-nucleotide 
and structural variants, potentially affecting mapping at numerous loci. Since presence of these variants in 
sequenced reads introduces mismatches, insertions, and deletions relative to the reference genome, 
decreased mapping quality, incorrect mappings, and unmapped reads may result, all of which contribute to a 
decreased ability to discern functional signatures over background noise.  
 
Ideally, we would use a complete, Telomere-to-Telomere (T2T) personal genome matched to the donor cell line 
in place of a reference genome to avoid the confounding effects of such cryptic variation. However, the 
resources needed to generate complete, high-quality reference assemblies from a single individual remains 
prohibitive for a typical individual research lab. Indeed, such efforts have been mostly confined to large, 
consortium-based projects (1–5) and, thus far, these efforts have produced only two truly chromosome-scale 
genomes: T2T-CHM13 (5) and T2T-HG002 (5,6). These efforts were enabled by recent advances in long-read 
sequencing methods, such as Pacific Biosciences (PacBio) HiFi and Oxford-Nanopore (ONT) sequencing. 
Long reads have the advantage of being able to span many repetitive regions of the genome, which are 
problematic to assemble when their length exceeds the read length (7–10), thus enabling gaps to be closed 
between contigs on either side of a repeat locus. These methods have made it cost-effective to routinely 
achieve sequence fragments exceeding the length of most genomic repeat regions at sufficient sequencing 
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depths for de-novo genome assembly. However, to date, assembling these fragments into truly T2T genomes 
has required a combination of deep sequencing and additional data sources to assemble the entire genome 
into complete chromosomes. T2T-HG002, for example, achieved this milestone using a combination of HiFi 
data at 120X depth and ONT data at 710X (3,6), while, for T2T CHM13, 30X HiFi and 120X ONT sequencing 
data, in combination with additional strand-seq, Hi-C, and BioNano optical map data were required (5). Such 
resources are beyond the reach of most individual labs. However, another group was recently able to 
fully-assemble 63.3% of chromosomes across 28 diploid genomes (1) using more attainable sequencing 
depths of 45.7X for HiFi and 60.5X for ONT. These assemblies are not truly T2T, with an average assembly 
containing only 14 complete chromosomes and a variable number of unassigned contigs. Meanwhile, several 
large consortia, including groups from the 1000 Genomes Project (1KG) (2), Human Genome Structural 
Variation Consortium (HGSVC) (4), and Human Pangenome Reference Consortium (HPRC) (11), have 
collectively produced hundreds of publicly-available draft personal genomes, derived primarily from 
immortalized lymphoblastoid cell lines (LCLs), using various combinations of sequencing methods and depths. 
Unfortunately, these genomes all exist as sets of hundreds to thousands of unassigned contigs, making them 
unsuitable for use as reference genomes for most applications. 
 
The fragmented nature of currently-available long-read personal genomes presents a problem for many 
functional genomics assays, particularly those relying on long-range interactions within the genome. The 
most-notable of these involve chromatin conformation capture, such as Hi-C. Indeed, Hi-C processing 
pipelines are not designed for fragmented genomes, relying on contiguity across entire chromosomes to detect 
cis-interactions between distant loci. In this case, genome fragmentation both hinders detection of features 
artificially split across contig boundaries, inflates the number of intrachromosomal (trans) contacts, and 
prevents construction of complete contact matrices. Furthermore, fragmentation also complicates comparisons 
between genomes since contigs in different assemblies are named independently, and are typically not related 
to chromosomes of origin. This poses challenges both in comparison of sequence content and annotations 
across genomes, as well as in annotating features of interest within individual assemblies and determining their 
locations relative to one another. Furthermore, since many genomics operations, such as Hi-C matrix 
construction and normalization, scale in resource requirements proportionally to the number of reference 
contigs, certain analyses are intractable using a fragmented draft genome. Thus, methods for assembling 
fragmented draft genomes into chromosome-scale pseudoassemblies are necessary. There are two common 
approaches for doing so: reference-free, and reference-guided methods. 
 
Reference-free scaffolding methods often use mappings to supplementary datasets, such as optical, physical, 
or linkage maps (12,13), or long-range interaction data, such as Hi-C or linked reads, to arrange contigs into 
single molecules. These methods rely on overlaps between contigs and the map(s) used, thus they will leave 
out contigs lacking overlaps. Thus, there is no guarantee that these methods will yield complete, 
chromosome-scale scaffolds. Furthermore, the length and sequence for gaps between scaffolded contigs 
remains unknown since the maps used lack information to impute the content of sequence gaps. Finally, these 
methods all incur the extra cost of having to generate or obtain the necessary genomic maps or long-range 
interactions datasets, which is likely to deter most individual research labs. 
 
By contrast, reference-guided approaches utilize sequence alignments to a complete reference genome rather 
than external data to assemble contigs into chromosome-scale scaffolds. Reference-guided scaffolding 
assembles contigs into pseudomolecules by arranging them along chromosomes based on their aligned 
positions, with intervening gaps filled with N characters. A handful of methods exist for reference-based 
scaffolding (14–21). However, since these methods all leave N-gaps in scaffolded sequences and often do not 
impute gap length, their ability to serve as drop-in substitutes for a reference genome is limited. 
Reference-guided patching goes a step further by filling N-gaps with sequence imputed from the corresponding 
loci in the reference genome, thus yielding contiguous, gap-free, chromosome-scale pseudoassemblies. These 
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assemblies contain a complete representation of their source genome, augmented with missing regions from 
the reference assembly, and can, in theory, be used interchangeably with a reference assembly. We are aware 
of only one publicly-available tool for reference-based patching: RagTag Patch (22), an extension of RaGOO 
(23). However, RagTag patch is presented as a beta release that has not been rigorously tested or presented 
in the published literature, and has not been substantively updated since October 2021. 
 
Here we present GPatch, a utility that presents a straightforward, intuitive, and flexible approach to 
reference-guided patching. We show that GPatch is able to faithfully assemble full-length, chromosome-scale 
pseudoassemblies from long-read assemblies with varying degrees of fragmentation, producing 
pseudochromosomes that accurately represent the structure of their target chromosomes. In particular, we 
demonstrate that GPatch faithfully produces complete, chromosome-scale pseudoassemblies given only a 
draft genome and a reference assembly, something that RagTag Patch could not replicate. We show that 
GPatch assemblies compare favorably with the T2T-CHM13 reference assembly in terms of contiguity and 
Hi-C read mapping rates and quality, while incorporating over 95% of nucleotides from the draft assembly. 
Notably, we were able to construct and normalize Hi-C matrices and call loops using a GPatch assembly, 
whereas the unpatched source assembly could not be successfully processed. From these matrices, we were 
able to recover loop predictions spanning contig boundaries in the draft genome, and those that are anchored 
by sequences not appearing in T2T-CHM13, demonstrating the advantages of using the GPatch genome over 
either the draft assembly or the T2T-CHM13 reference assembly. Thus, we conclude that GPatch is a valuable 
tool to facilitate the use of long-read draft genomes in everyday computational analyses, particularly where 
genomic fragmentation would hinder data analysis and interpretation. 
 
Results 
The GPatch Algorithm 
GPatch (Fig. 1) is designed to simultaneously scaffold contigs based on alignments to a reference genome and 
fill intervening gaps with reference sequence to yield a chromosome-scale pseudoassembly. GPatch takes an 
alignment of contigs from a draft assembly to a reference genome assembly, such as T2T-CHM13, in BAM 
format (Fig. 1A). This file need not be sorted nor indexed, and can be produced using any aligner, but we 
strongly recommend minimap2 (24). Initially, GPatch isolates all primary alignments passing the chosen 
mapping quality threshold (default 30) from the input BAM.  Next, 5’ and 3’ breakpoints in the reference 
sequence are inferred for each alignment by padding start and end coordinates with the lengths of any 5’ or 3’ 
soft-clipped regions found in the alignment’s CIGAR string. Alignments are then sorted by position and filtered 
to remove nested alignments. Optionally, alignments can be filtered to exclude alignments falling entirely within 
blacklist regions. The final, filtered, position-sorted alignments (Fig. 1B) are then processed with the core 
GPatch algorithm (Fig. 1C-F). 
 
The core GPatch recurrence loops over chromosomes in the reference assembly. We first retrieve all 
alignments falling on a given chromosome from the final sorted BAM file (Fig. 1B). The patched chromosome 
sequence is initialized as an empty string and a tracker for the current position within the reference sequence, 
r, is set to zero. We then loop over contig alignments, alternately incorporating contigs and, as needed, 
patches, until all contigs have been incorporated into the patched sequence and the end of the reference 
chromosome is reached. For each sorted contig, we first compare the 5’ contig breakpoint, p, to r. If p > r, we 
add a patch spanning the reference interval from r to p to the chromosome sequence, followed by the 
complete, unmodified contig sequence (Fig. 1C). If p == r, contig mappings are bookended, thus no patch from 
the reference is necessary and the unmodified contig sequence is appended to the chromosome string (Fig. 
1D). If p < r, there is an overlap between neighboring contig mappings and no patch is necessary. Contigs will 
either be bookended directly, or optionally, the 5’ end of the overlapping contig can be trimmed at the 3’ 
breakpoint of the preceding contig. This process is repeated until all contigs have been placed (Fig. 1E). To 
terminate the patched sequence, we compare r to the length of the reference chromosome and, if necessary, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2025. ; https://doi.org/10.1101/2025.05.22.655567doi: bioRxiv preprint 

https://paperpile.com/c/eIHNRE/aEFR
https://paperpile.com/c/eIHNRE/bmBD
https://paperpile.com/c/eIHNRE/zRvq
https://doi.org/10.1101/2025.05.22.655567
http://creativecommons.org/licenses/by-nc-nd/4.0/


incorporate a final patch to reach the 3’ terminus of the reference chromosome (Fig. 1F). The patched 
chromosome record is then written to output in FASTA format, while coordinates of contigs and patches are 
written to their own files, in BED format (Fig. 1G). By checking whether the first and last contigs encompass the 
5’ and 3’ termini of the reference chromosome and applying terminal patches as needed, we ensure that the 
algorithm always produces complete chromosomes. Importantly, BED coordinates for all contigs and patches 
both document the exact composition of the patched genome and render the patching process fully-traceable. 
Excluding alignment time, this process can be completed in about 6-20 minutes for a typically-sized 
mammalian genome. 
 
Analysis of Simulated Data 
To evaluate the performance and accuracy of GPatch, we generated four simulated draft genomes of varying 
difficulties. We selected two publicly available genomes on which to model our simulated data: NA12878 from 
the HGSVC consortium (25), representing a highly-fragmented genome consisting of thousands of contigs, and 
HG002 from the HPRC consortium (11), representing a highly-contiguous genome consisting of hundreds of 
contigs (Additional File 1: Table S1). For each genome, the T2T-CHM13 reference genome was fragmented 

into a set of simulated contigs matching the length 
distribution of the model assembly randomly tiling each 
reference chromosome. This yielded the “no-indel” sets for 
NA12878 and HG002 pseudoassemblies which contain no 
structural or nucleotide-level variation relative to the 
reference assembly (Additional File 1: Table S2). These 
datasets represent an idealized case where the reference 
assembly contains a perfect alignment match for every 
contig in the respective draft assembly. To present a more 
realistic scenario, we used SURVIVOR (26) to randomly 
introduce 5,000-10,000 indels and 
single-nucleotide-variants at a 1% rate, starting with the 
no-indel pseudoassemblies, which we call the SURVIVOR 
datasets (Additional File 1: Table S2). As a basis for 
comparison, all contigs from the SURVIVOR dataset were 
concatenated into a pseudoassembly according to their 
known order in the T2T-CHM13 genome. For simplicity, we 
apply the term “target genome”, which is used as the 
baseline for comparison with patched genomes, to either 
the complete T2T-CHM13 sequence, for the no-indel set, 
or to the concatenated SURVIVOR genome. All four 
datasets were processed with both GPatch and RagTag 
Patch to produce patched genomes. For both methods, we 
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found that the completeness of the patched assembly relied heavily on the choice of aligner and alignment 
parameters used to create and filter the initial alignment. Therefore, we used minimap2 as the aligner for both 
GPatch and RagTag patch and fixed alignment parameters across both methods. For each method, we 
separately optimized the patching parameters to achieve an optimal tradeoff between maximizing contig 
capture and placement accuracy. 
 
We selected a set of metrics by which to compare patched genome accuracy and completeness, using 
comparisons of contig order, orientation, and placement in the patched genome to their known values in the 
target genome, and direct sequence comparisons between the patched and target chromosome sequences. 
Assembly completeness was evaluated using the fraction of contigs and nucleotides from the draft genome 
that are placed in the patched genome and the percentage of adjacent contig pairs from the target genome 
recovered in the patched genome. Ordering and orientation accuracy were evaluated in three ways. First, 
ordering edit distance was defined as the Levenshtein distance between the true and observed vectors of 
contig IDs along each chromosome from the patched and target genomes. This measures departures from the 
true contig ordering, including the effect of dropped contigs. Second, pair recall is defined as the fraction of 
correct adjacent pairs from the target genome recovered in the patched genome, offering another view of 
contig-completeness including the effects of dropped contigs. Third, we define the switch error rate as the 
fraction of contigs placed out-of-order in the patched sequence relative to the target sequence, calculated as 
half the Levenshtein distance between the observed and sorted contig ID vectors from the patched sequence, 
offering a view of ordering accuracy that is not affected by dropped contigs. Finally, we used bag distance to 
approximate the edit distance between the patched chromosome sequences and their counterparts in the 
target genome. Dot plots were used to visualize any departures in collinearity between the patched and target 
sequences. 
 
GPatch performed exceptionally well on the no-indel dataset, placing 98.02% of NA12878 and 98.62% of 
HG002 contigs, and capturing 99.87% and 99.99% of nucleotides from their respective pseudoassemblies 
(Fig. 2A), with 100% of contigs placed with the correct chromosome, order, and orientation. We observed 
ordering edit distances less than 2% for both sets (Fig. 2B) and pair recall of 97.40% for NA12878 and 97.58% 
for HG002, respectively, indicating a low rate of dropped contigs in the patched genome. Remarkably, we were 
able to recover the exact sequence for all target chromosomes in the patched genome, as evidenced by 
identical N50, identical MD5sums, and an average normalized bag distance of 0 between patched and target 
genomes (Fig. 2C). Furthermore, GPatch achieved 100% pair-accuracy (Fig. 1E) and a 0% switch error rate 
(Fig. 1F), placing all contigs in their correct relative order. This was clearly visible in dot-plots against 
T2T-CHM13, where we observed a near 1:1 correspondence between patched and target genomes (Additional 
File 2: Fig. S1-S2). Where patch sequences occurred, they were relatively short and tended to fall near/within 
telomeres and pericentromeric regions (Additional File 2: Fig. 3A-B). 
 
By contrast, RagTag patch performed poorly despite extensive optimization of patching parameters and 
experimentation with alternate aligners. With default patching parameters, RagTag Patch dropped most contigs 
from the output assembly, producing a small set of incomplete scaffolds and falling well short of yielding the 
desired complete patched assembly. Optimizing input parameters improved performance marginally but the 
best performance was about 47% contig placement (Additional File 1: Table S3). We also noted there is not a 
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1-to-1 relationship between reference chromosomes and scaffolds in the RagTag patch results. First, entire 
chromosomes were omitted from the patched genome, with scaffolds recovered for only nine chromosomes in 
NA12878 and twelve in HG002, many of which were truncated and/or contained large, likely-spurious, 
rearrangements relative to T2T-CHM13 (Additional File 2: Fig. S4-S5). Second, we noted that, in NA12878, 
chromosomes 5, 12, and X were each split into three separate scaffolds. Third, we observed that three pairs of 
chromosomes in the HG002 results (14-21; 3-19; 4-15) were incorrectly joined into hybrid scaffolds. Finally, we 
noted that scaffolds always begin and end with a contig sequence, such that scaffolds are always 5’ and/or 3’ 
truncated in the event that contig sequence does not capture the entirety of the telomere. In all, RagTag 
patched assemblies captured only 43.07% of contigs for NA12878 and 47.39% for HG002, representing only 
37.16% and 53.41% of their target genomes, respectively (Fig. 2A). Likewise, pair recall of 34.60% for 
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NA12878 and 60.0% for HG002 (Fig. 2D), and ordering edit distances of 64.93% and 71.91%, respectively, 
(Fig. 2B) indicate a high rate of dropped contigs. Furthermore, the combination of pair accuracies of only 
72.86% and 45.95% (Fig. 2E), switch error rates of 13.20% and 15.97% (Fig. 2F) for NA12878 and HG002, 
respectively, indicate relatively high rates of contigs being placed in the wrong relative order when compared to 
their neighbors in the target genome. Normalized bag distances of 51.65% and 19.25% (Fig. 2C) suggest 
large-scale sequence differences between the patched and target genomes. Interestingly, dot-plots between 
the patched genomes and T2T-CHM13 show that RagTag Patch was able to successfully scaffold three 
chromosomes from NA12878 and nine from HG002 achieving close similarity with their respective targets 
(Additional File 2: Fig. S4-S5). 
 
To evaluate the effects of nucleotide-level and structural variation relative to the reference assembly on 
patching, SURVIVOR assemblies for NA12878 and HG002 were processed with GPatch and RagTag patch 
using the alignment and patching parameters optimized for the no-indel set. GPatch maintained its high 
performance even in the presence of variation, localizing 96.88% of NA12878 and 96.15% of HG002 contigs, 
representing 99.83% and 99.96% of their respective input genomes (Fig. 2G) and recovering 95.29% and 
93.60% of adjacent contig pairs (Fig. 2J), with ordering edit distance remaining below 5% in both patched 
assemblies (Fig. 2H). Placement accuracy remained high, with 99.99% of NA12878 and 100% of HG002 
contigs placed on the correct chromosome and strand, and pair-accuracy exceeding 97% (Fig. 2K) and 
negligible switch error rates (Fig. 2L) for both patched assemblies. Likewise, average normalized bag 
distances of 0.24% for NA12878 and 0.04% for HG002 (Fig. 2I) indicate minimal sequence content divergence 
from the target genome. Regardless, dot-plots show nearly one-to-one correspondence between patched and 
target genomes (Additional File 2: Fig. S6-S7). In contrast to the no-indel set, while still relatively short 
compared to contig lengths, patches were distributed more broadly and randomly across chromosomes 
(Additional File 2: Fig. 3C-D). Not surprisingly, we observed many more patches in the NA12878 genome 
compared to HG002, which we attribute to more uncertainty in the alignment of shorter contigs to the reference 
genome, particularly in repetitive regions. We were unable to obtain results for comparison from RagTag patch, 
which consistently failed to scaffold any contigs from either SURVIVOR pseudoassembly, despite extensive 
optimization of input parameters, and even when allowing RagTag patch to use its preferred aligner, nucmer 
(27). 
 
Patching NA12878 and HG002 Draft Genomes 
To evaluate GPatch’s ability to construct chromosome-scale assemblies from biological data, we patched the 
same contig-scale assemblies for NA12878 and HG002 used to model contig-length distributions in our 
simulation analysis. This represents a highly-fragmented assembly, NA12878, comprised of 10,406 contigs 
with a median length of 16,248bp, and a highly contiguous assembly, HG002, comprised of 762 contigs with a 
median length of 40,201bp. Contigs were initially mapped to T2T-CHM13 with minimap2 (24), and resulting 
BAM files were processed with GPatch using optimized parameter values from our simulated data analysis. 
Patched genomes were evaluated for completeness using contig placement (Fig. 3A), the fraction of 
nucleotides from the input assembly localized in the patched genome (Fig. 3B), and for composition using the 
fraction of nucleotides in the patched assembly derived from contigs (Fig. 3C), with the goals of maximizing the 
rates for each metric. We also used recently-published chromosome-scale assemblies for both NA12878 
(T2T-NA12878) (1) and HG002 (T2T-HG002) (25) as target assemblies for direct sequence comparison via 
dot-plots. 
 
We were surprised to find that only 22.02% of HGSVC NA12878 contigs, and 18.77% of HPRC HG002 contigs 
were placed in their respective patched genomes (Fig. 3A). However, there was a distinct bias toward 
placement of longer contigs, with the median lengths of placed contigs for NA12878 (20,362bp) and HG002 
(302,129bp) being significantly longer than unplaced contigs (NA12878: 15,609bp, p-value=3.71e-157, HG002: 
32,233bp, p-value=2.25e-61, Wilcoxon Rank-Sum tests). As a result, patched assemblies still captured the 
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majority of nucleotides in each input assembly: 94.25% for NA12878, and 95.13% for HG002 (Fig. 3B). 
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Likewise, patched assemblies consisted primarily of contig-derived nucleotides: 88.9% for NA12878 and 
97.85% for HG002 (Fig. 3C). As expected, patched assemblies substantially increased in N50 relative to their 
respective draft genomes, approaching values observed for the T2T-CHM13 reference assembly and their 
respective target genomes (Additional File 1: Table S4). 
 
Consistent with our expectations, we observed that the longer contigs in the HG002 assembly yielded better 
performance in terms of nucleotide localization and contig coverage in the patched genome, with the GPatch 
HG002 genome containing fewer and smaller patches than GPatch NA12878 (Fig. 3D-E). Indeed, GPatch 
HG002 chromosomes 1, 8, and 12 contained only contig sequence with no intervening patches (Fig. 3E). In 
both patched genomes, patches tended to concentrate in/near telomeres, pericentromeric regions, and 
acrocentric short arms, in some cases contributing the majority of sequence in these regions. This likely 
reflects the repetitive nature of these regions, which tend to harbor shorter contigs and have reduced mapping 
ability relative to non-repetitive regions. 
 
In order to evaluate large-scale genome structure, we compared patched genomes to the T2T-CHM13 
reference genome and respective chromosome-scale target genomes using dot-plots (Fig. 3F-I). Both patched 
genomes were found to be highly collinear with T2T-CHM13 (Fig. S3F, S3H, Additional File 2: Fig. S8-S9), with 
most departures associating with pericentromeric regions (Fig. 3H). Aside from these regions, we observed 
large-scale structural differences between GPatch NA12878 and T2T-CHM13 on six chromosomes (Fig. 4A, 
Additional File 2: Fig. S8), however, no comparable divergence was noted between GPatch HG002 and 
T2T-CHM13 (Additional File 2: Fig. S9). All the divergent loci noted in NA12878 included at least one 
breakpoint within a placed contig, suggesting they represent either true structural variants or misjoins in the 
source assembly rather than artifacts of the patching process. Dot plots of patched genomes against their 
respective target genomes showed similar patterns, largely recapitulating those obtained from comparisons 
with the T2T-CHM13 reference (Fig. 3G, 3I, Additional File 2: Fig. S10-S11). This suggests that patched 
genomes indeed recapitulate their target genomes, at least at large-scale. Indeed, in some cases, we 
observed closer correspondence between the patched and target genomes than with the T2T-CHM13 
reference, as in HG002 chr1 (Fig. 3H-I).  
 
Automated Misjoin Correction 
When examining dot plots of the GPatch NA12878 against T2T-CHM13, we noted large-scale rearrangements 
on chromosomes 3, 7, 9, 12, 17, and 22 (Fig. 4A, Additional File 2: Fig. S8). Since these same rearrangements 
were present in dot-plots between GPatch NA12878 and full-length chromosomes from a recently-published 
chromosome-scale NA12878 assembly (1) (Fig. 4B, Additional File 2: Fig. S9), we were able to exclude the 
possibility that these reflect genuine structural variants in NA12878. Therefore, these rearrangements must 
reflect misjoins in the HGSVC NA12878 assembly. Since these events are likely to negatively affect 
performance when using patched genomes as a reference for downstream analysis, we developed a method 
to break contigs at the coordinates of likely misjoins prior to realignment and patching with GPatch.  
 
When applied to the HGSVC NA12878 genome, we identified 22 loci on nine chromosomes representing likely 
misjoins. After one round of contig-breaking, we observed no grossly-visible rearrangements on all 
chromosomes, except chromosome 9, when compared to T2T-CHM13 (Fig. 4C, Additional File 2: Fig. 10), and 
full-length NA12878 chromosomes (Fig. 4D, Additional File 2: Fig. S11). A second-round of contig-breaking 
identified two additional loci on chromosome 9 that appeared to originate from a contig that was absent from 
the initial patched assembly. The final patched genome, after two rounds of contig-breaking, had no 
grossly-visible rearrangements when compared to either T2T-CHM13 or full-length NA12878 chromosomes 
(Additional File 2: Fig. S12-S13). Overall, contig-breaking appeared to improve the quality of the patched 
NA12878 assembly, as indicated by improved metrics for the percentage of NA12878 nucleotides recovered in 
the patched genome and the fraction of the patched genome derived from contigs after each contig-breaking 
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iteration (Additional File 1: Table S4). This suggests that contig-breaking at likely misjoins is beneficial for 
overall patching performance. 
 
Although we did not observe any large-scale rearrangements in GPatch HG002 (Additional File 2: Fig. 
S16-S17) comparable to those we saw in GPatch NA12878 (Additional File 2: Fig. S14-S15), our script did 
detect 48 potential misjoins based on the alignment to T2T-CHM13. However, breaking contigs at the 
corresponding loci actually decreased performance relative to the initial patched genome as indicated by drops 
in both the fraction of contig nucleotides captured and contig nucleotide coverage (Additional File 1: Table S4) 
while dot-plots against T2T-CHM13 and T2T-HG002 remained largely unchanged (Additional File 2: Fig. 
S16-S17). Furthermore, contig-breaking caused the patched genome to grow in size, mostly reflecting a 38.5% 
increase in patch nucleotide content. We conclude that contig-breaking is not beneficial when alignments 
between the patched genome and the reference do not reveal any large-scale divergence. Therefore, caution 
should be exercised when applying contig-breaking, paying particular attention to its effects on contig 
nucleotide recovery and patched genome size and composition. 
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Patched Genomes Recapitulate Hi-C Patterns in 
T2T-CHM13 
To show that GPatch assemblies are interchangeable with 
polished reference assemblies in genomic analyses, we 
obtained publicly available Hi-C sequencing data for 
NA12878 (28) and processed it through the loop-calling 
stage using the 4D-Nucleome Hi-C analysis pipeline (29) 
using GPatch NA12878 as the reference genome. For 
comparison, we analyzed the same dataset using the 
T2T-CHM13 assembly, and the unpatched HGSVC 
NA12878 assembly (Additional File 1: Table S5), using the 
same Hi-C data and analytical pipeline. At the mapping 
level, we noted similar rates of overall read mapping 
(99.44% and 99.45%, respectively) and mate mapping 
(98.94% and 98.95%, respectively) between GPatch 
NA12878 and T2T-CHM13. However, GPatch NA12878 
actually outperformed HGSVC NA12878 (% Mapped = 
99.09%, % Mate Mapped = 98.35%). Notably, reads where 
the mate maps to a different chromosome occurred at a 
~53% higher rate in HGSVC NA12878 (39.35%) than in 
either GPatch NA12878 or T2T-CHM13 (25.74% and 
25.83%, respectively). This disparity remains evident when 
mapped reads are decomposed to individual pairs of 
genomic contact loci, with 35.37% of read pairs split across 
contigs in HGSVC NA12878 compared to 20.95% in 
GPatch NA12878 and 21.01% in T2T-CHM13. While many 
of these likely represent legitimate interchromosomal 
contacts, some reflect “cryptic” intrachromosomal contacts 
which cannot be recovered in the draft genome because 

their anchor loci are split between different contigs. GPatch allows many of these cryptic contacts to be 
recovered. 
 
Pairs files for T2T-CHM13 and Patched NA12878 were assembled into Hi-C matrices and normalized with 
Juicer Tools (30). However, for HGSVC NA12878, matrix construction failed with an out-of-memory error, 
having exhausted all available RAM (1.5TB) on a memory-optimized compute node. Hi-C matrices were 
plotted as heat maps for visual comparison (Additional File 2: Fig. S18-S19). We observed very few 
grossly-visible differences between heat maps prepared using GPatch NA12878 and T2T-CHM13, with GPatch 
NA12878 heat maps largely recapitulating patterns seen with T2T-CHM13 (Fig. 5, Additional File 2: Fig. 
S18-S19). These results suggest that GPatch assemblies can substitute for a polished reference assembly 
while being composed mostly of sequence derived from the draft assembly, whereas the unpatched draft 
assembly cannot serve interchangeably as a reference assembly. 
 
GPatch Enables Recovery of Cryptic Loops from the HGSVC NA12878 Genome 
Hi-C matrices for both T2T-CHM13-mapped and Patched NA12878-mapped data were processed with hiccups 
(30) to produce chromatin loop predictions at 5kb and 10kb resolution. At both resolutions, we found 
comparable numbers of loops at comparable average sizes at using both data mapped to GPatch NA12878 
and T2T-CHM13 (Additional File 1: Table S5), showing that the GPatch genome is, again, able to recapitulate 
results produced using a polished reference assembly. However, we did identify notable differences between 
the GPatch NA12878 and T2T-CHM13 data. First, we observed many loops at both resolutions for which the 5’ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2025. ; https://doi.org/10.1101/2025.05.22.655567doi: bioRxiv preprint 

https://paperpile.com/c/eIHNRE/jj2m
https://paperpile.com/c/eIHNRE/GF0x
https://paperpile.com/c/eIHNRE/gmbR
https://paperpile.com/c/eIHNRE/gmbR
https://doi.org/10.1101/2025.05.22.655567
http://creativecommons.org/licenses/by-nc-nd/4.0/


and 3’ anchors map to different contigs in HGSVC NA12878 assembly. We call these cryptic loops, since they 
would be impossible to recover in data mapped directly to HGSVC NA12878. We recovered 126 cryptic loops 
(~1.29% of all loops) at 5kb resolution, and 599 cryptic loops (~2.99% of all loops) at 10kb resolution, 
demonstrating that GPatch allows recovery of genomic features that would otherwise be missed using an 
unpatched draft assembly. 
 
In order to directly compare loop predictions from GPatch NA12878 with those from T2T-CHM13, we first lifted 
over GPatch NA12878 loop anchor loci at both resolutions to the T2T-CHM13 coordinate frame. These were 
then intersected with T2T-CHM13 loop anchors using BEDtools (31). Lifted and intersected data were then 
used to reconstruct individual loops in order to determine the number of fully-shared, partially-shared, and 
NA12878-only loops (Additional File 1: Table S5). In total, we observed 88.86% of GPatch NA12878 loops at 
5kb resolution and 95.21% of loops at 10kb resolution that shared at least one anchor with T2T-CHM13. This 
leaves a substantial fraction of loops for which neither loop anchor is shared with T2T-CHM13 data, with ~95% 
of these existing in sequence that is physically present in both assemblies. Notably, we detected 66 loops at 
5kb resolution and 137 loops at 10kb resolution for which at least one anchor is in sequence unique to GPatch 
NA12878. This included four 5kb loops and five 10kb loops for which neither anchor could be mapped to 
T2T-CHM13. Thus, GPatch assemblies allow recovery of genomic features that would otherwise be missed 
when using a reference assembly. 
 
Discussion 
The combination of long-read sequencing and advanced algorithms for de-novo genome assembly have 
yielded an abundance of publicly-available draft personal genomes. By capturing donor-specific variations 
relative to polished reference assemblies, these genomes carry the promise of increased sensitivity and 
specificity when used as the reference assembly for downstream genomic analysis. However, these draft 
genomes exist as sets of hundreds to thousands of individual contigs, which are typically not assigned 
chromosomal identity. This presents several challenges that, ultimately, render these draft genomes unsuitable 
to replace a polished reference assembly for most genomic assays, particularly those targeting spatial 
relationships between genomic loci. Until de-novo assembly software and/or long-read sequencing advance to 
the point where complete, T2T assemblies can be reasonably built in-house within a typical research lab, these 
challenges will limit the utility of long-read draft genomes. At present, this remains impractical and methods are 
needed to bridge the gap between long-read draft genomes and polished reference assemblies. Here we 
present GPatch, which utilizes alignments to a polished reference assembly to order and orient contigs from 
draft genomes into complete, chromosome-scale pseudoassemblies. 
 
We have demonstrated that GPatch faithfully produces chromosome-scale pseudoassemblies given a 
fragmented draft assembly and a polished reference assembly. The resulting patched genomes consistently 
capture over 95% of nucleotides from their source draft assemblies, are composed of 89-98% contig 
sequence, and are highly collinear with both the reference and target genome assemblies, in both simulated 
and biological data analyses. GPatch outperformed the only competing software of which we are aware, 
RagTag Patch, in all metrics we tested. RagTag Patch performed poorly even on simulated data containing no 
indels, often partially-scaffolding chromosomes, splitting chromosomes across multiple scaffolds, and 
frequently dropping chromosomes from the output. Furthermore, RagTag Patch output is difficult to interpret 
since it does not name scaffolds according to their corresponding reference chromosomes, necessitating 
further steps to establish chromosomal identities. Last, since RagTag Patch will only terminate a scaffold with a 
contig, resulting scaffolds will always be incomplete in cases where contigs do not completely encompass the 
telomeres. GPatch answers all these shortcomings. By looping over reference chromosomes and tracking 
whether contig alignments extend to the ends of telomeres, the GPatch algorithm guarantees inclusion of 
full-length, gapless scaffolds for all reference chromosomes in the output, with all mapped contigs assigned 
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unambiguously to a chromosome. Therefore, GPatch assemblies are complete in scope and can be used 
interchangeably with published reference genome assemblies. 
 
The largest potential drawback of GPatch is its reliance on contig alignments to a reference genome. We have 
shown that alignment quality and completeness significantly impact the content of GPatch assemblies. Indeed, 
alignment quality is the primary reason contigs are dropped from GPatch genomes, with many dropped contigs 
mapping to genomic regions that are traditionally difficult to align within, such as pericentromeric and telomeric 
repeat arrays. This implies that donor-specific variation within these regions is likely to be missed in GPatch 
alignments, thus perpetuating reference bias. It is important to note that this limitation is not unique to GPatch, 
but will, by definition, be shared by any reference-guided approach to genome patching. However, no 
currently-available software can scaffold a typical draft genome de-novo in the absence of extremely deep 
long-read sequencing and/or additional data that are typically unattainable for individual researchers. 
Furthermore, these approaches are typically much slower than reference-guided approaches and yield 
genomes containing unresolved N-gaps that reduce mappability. Therefore, de-novo approaches do not 
currently offer a satisfactory solution. Accepting a degree of reference bias seems, at present, to be a 
necessary compromise in utilizing draft genomes to their full potential. GPatch answers the noted 
shortcomings of de-novo scaffolding, yielding complete, chromosome-scale pseudoassemblies that we show 
can be used in place of a polished reference assembly, albeit with the inevitable inclusion of some reference 
bias. 
 
We further demonstrate that GPatch assemblies, when aligned back to the reference genome, can highlight 
misjoins within contigs from the draft assembly. These typically appear as large-scale rearrangements visible in 
dot-plots between the GPatch assembly and the reference genome. The GPatch github repository includes a 
set of scripts designed to identify the boundaries of such events within an alignment of a GPatch genome to 
the chosen reference assembly and break affected contigs at the corresponding breakpoint(s), allowing the 
resulting contig fragments to align independently within the reference genome. We show that, after 
contig-breaking, assemblies that harbor misjoins perform better within GPatch than their original assemblies, 
incorporating more contig sequence and less patch sequence compared to patched genomes built directly 
from a draft assembly, and are highly collinear with both the chosen reference and target assemblies. It is 
important to note that contig-breaking has the potential to obscure genuine structural variants, thus increasing 
reference bias. For this reason, we recommend caution when choosing whether to perform contig-breaking 
and secondary patching, with careful consideration of dot-plots as a necessary step in deciding whether to 
employ it. We note that the tendency to overcorrect can be minimized by careful choice of parameters in the 
breakpoint-identification step, in particular the minimum rearrangement size for breakpoint flagging. 
Importantly, if known structural variants are present in a draft genome, contig-breaking at these loci can be 
prevented by simply removing the corresponding records from a text file. 
 
Finally, we show definitively that GPatch assemblies can substitute for polished reference genomes in Hi-C 
data analysis without sacrificing alignment rates or quality. Indeed, the GPatch NA12878 assembly achieved 
mapping and pairs-construction performance comparable to or better than either the T2T-CHM13 reference or 
the unpatched HGSVC NA12878 assemblies. By contrast, we demonstrate that unpatched draft assembly for 
HGSVC NA12878 could not be used in place of reference genome, with Hi-C analysis failing at the matrix 
construction stage. Importantly, even if matrix construction had succeeded for HGSVC NA12878, the 
challenges related to interpreting over 10,000 individual contact matrices cannot be overstated. Furthermore, 
since cis- and trans-interactions are conflated among these matrices, and since many cis-interactions are 
artificially split across contigs, loop calling and other spatially-based analyses will be negatively affected, 
leading to cryptic loops that cannot be detected even if the computational analysis could be completed. We 
show that GPatch allows us to recover a large number of these cryptic loops, which would otherwise be 
obscured since their 5’ and 3’ anchors are split between different contigs within the unpatched genome. 
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Surprisingly, while up to 95% of loops we identified were at least partially-conserved (i.e., at least one anchor is 
shared between a GPatch NA12878 loop and a T2T-CHM13 loop), a surprisingly large number of loops 
included at least one anchor not shared with T2T-CHM13. Most of these are within sequence that is present in 
both genome assemblies, suggesting that these differences likely stem from differences in fine-mapping of 
reads within each assembly. That such small-scale differences can influence such a large number of loop 
predictions is striking, speaking to the importance of the “missing” variation captured in the GPatch NA12878 
assembly but missing from T2T-CHM13 in its effects on nucleotide-level read mapping. While we cannot 
speculate on the biological consequences of such variation, GPatch makes it accessible to a broad range of 
downstream genomic methods, allowing us to gain critical information toward understanding the consequences 
of intraspecific variation. 
 
Conclusions 
Draft genomes based on long-read sequencing are becoming increasingly available. While these genomes 
offer the attractive prospect of matching the reference assembly to the sequence donor for an assay, their 
fragmented nature presents significant obstacles to their use in functional genomics assays. In particular, 
assays based on spatial relationships between loci are unduly affected by genome fragmentation. Fragmented 
draft genomes present problems in both data-analysis, where many methods quickly become computationally 
intractable as the number of contigs increases, and interpretation, with the extreme example of interpreting 
over 10,000 individual Hi-C contact matrices had matrix construction for HGSVC NA12878 succeeded. GPatch 
overcomes these challenges, reducing a large number of individual contigs into a complete set of 
fully-assembled pseudochromosomes, given only a draft assembly and a reference genome. We show that 
GPatch assemblies are functionally interchangeable with polished reference genomes while incorporating over 
95% of nucleotides from the source draft genome and achieving contiguity measures comparable to the 
reference assembly. These features enable their use in assays that would otherwise not be practical using the 
unpatched draft genome. Notably, we were able to utilize a GPatch genome as the reference assembly for 
Hi-C data analysis and loop prediction, whereas the same analysis using the unpatched draft genome failed, 
despite generous resource allocations. We demonstrate that GPatch is robust to varying levels of genome 
fragmentation, and, more importantly, that it performs well on assemblies built using only resources already 
within the reach of many individual researchers. We conclude that, until it becomes realistic for individual labs 
to routinely build polished T2T genomes from scratch, methods for reliably assembling contigs into 
chromosome-scale pseudoassemblies are necessary to make the most of newly-available draft genomes. 
GPatch achieves this milestone, thus bridging the gap between draft genomes and polished reference 
assemblies. 
 
Methods 
Data Simulation 
We initially selected two genomes from which to model the contig-length distribution: NA12878 from the 
Human Genome Structural Variation Consortium (HGSVC NA1287) (4), and HG002 from the Human 
Pangenome Reference Consortium (3) (Additional File 1: Table S1: Data Sources). Genomes were 
downloaded in FASTA format and the lengths of all contigs therein were extracted using awk and stored in text 
files. These were then supplied to a custom Python script, along with the T2T-CHM13 genome assembly, to 
break each T2T-CHM13 chromosome into a set of pseudocontigs. Briefly, we loop over reference 
chromosomes, initially setting a position tracker (p) to zero to mark the start of a chromosome. Next, we draw a 
length (l) from the contig-length distribution of the model assembly. We then extract a fragment of length l from 
the current chromosome sequence and store it as a FASTA record in the output file. Finally, we set p equal to 
the end position of the extracted sequence fragment. We continue drawing values of l and extracting 
pseudocontigs of corresponding lengths until we reach the end of the chromosome. This process is then 
repeated until all reference chromosomes are exhausted. The end result is a pseudoassembly consisting of 
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contigs closely matching the length distribution from the model assembly. In addition to the FASTA output, the 
script also produces a BED file documenting the coordinates of all pseudocontigs within the reference genome. 
 
Indel simulation with SURVIVOR 
Starting with the NA12878 and HG002 pseudoassemblies described in the Data Simulation section, we 
produced pseudoassemblies containing 5,000-10,000 random indels and single-nucleotide variants at a 1% 
rate using the SURVIVOR software package (26). As contigs with lengths less than a fixed 10kb threshold are 
silently dropped from SURVIVOR output, we had to post-process the SURVIVOR FASTA output to add-back a 
small number of short contigs in each assembly using a custom script. Since indels within the SURVIVOR 
output genome change the coordinate system of the pseudoassembly, we could not use the unmodified 
reference genome, nor pseudocontig BED coordinates based on the T2T-CHM13 reference, as the target 
genome for comparison. Accordingly, we produced complete target genomes from the SURVIVOR-mutated 
assemblies by concatenating contigs into complete chromosomes based on their known order in T2T-CHM13. 
BED coordinates for each contig in the frame of the target genome were stored to facilitate position-based 
comparisons between the patched and target genomes. 
 
Patching Simulated Data with GPatch 
BASH shell scripts were used to automate alignment and patching of the simulated NA12878 and HG002 
genomes, along with realignment to the target genome and dot-plot construction with R, as described in Dot 
Plot Construction below. Pseudoassemblies were first aligned to the T2T-CHM13 reference genome (5) with 
minimap2 (24) using parameters: `minimap2 <reference_genome> <pseudoassembly> -x asm20 -t 24 -a`. The 
‘-x asm20’ argument was used to increase the aligner’s tolerance for large gaps, while the -a argument toggles 
SAM output format and base-alignment within the minimap2 algorithm. SAM output was converted to BAM 
format on-the-fly by piping minimap2 output into SAMtools view (32). The resulting BAM and the T2T-CHM13 
reference genome were then supplied to GPatch, with parameters `GPatch.py -q <$prefix.pseudocontigs.bam> 
-r <reference_genome> -x <prefix> -d -m 10 -t` where -d causes GPatch to drop reference contigs without 
alignments from the output, -m 10 sets the mapping quality threshold for contig alignments to 10, and -t 
indicates that overlapping contig alignments should not be 5’ trimmed. Statistics on patched assembly length, 
contig content, genome completeness, and accuracy were then assembled into text files using a combination 
of awk and custom Python scripts.  
 
Patching Simulated Data with RagTag Patch 
BASH shell scripts were used to automate processing of simulated NA12878 and HG002 genomes with 
RagTag Patch, along with realignment for dot-plot production in R. After extensive optimization with the goal of 
maximizing contig recall in the results, we ran RagTag Patch with the following parameters: ‘ragtag.py patch 
--aligner minimap2 --mm2-params "-x asm20 -c -t 24" -o $OUT_DIR -f 100 -s 10000 <pseudoassembly> 
<reference_genome>’. As part of its preprocessing steps, RagTag patch renames all sequences from the 
query and target genomes, ostensibly to avoid naming collisions in the patching process. RagTag Patch also 
includes all unscaffolded contigs in the output, along with any patched results. These features made it difficult 
to evaluate RagTag Patch results and compare them to GPatch. To ease interpretation and comparisons with 
GPatch results, we utilized a custom script to filter unscaffolded contigs from RagTag Patch fasta output and 
rename scaffolds according to their corresponding reference chromosomes. We used a second script to 
process the agp-formatted data on contig-placement within scaffolds, converting it into a BED format 
compatible with GPatch output. Statistics on patched assembly length, contig content, genome completeness, 
and accuracy were then assembled into text files using the same set of awk commands and scripts used for 
the GPatch results.  
 
Dot Plot Construction 
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For all patched genomes, we produced dot-plots in comparison to the corresponding target genome using the 
‘pafr’ R package (https://dwinter.github.io/pafr/). We first aligned the patched genome to its respective target 
genome with minimap2 (24), with parameters ‘minimap2 -x asm20 -t 24 <reference_fasta> <patched_fasta>’. 
PAF-formatted output was read into R with pafr’s ‘read_paf’ function, after which we used pafr’s dotplot 
function to produce dotplots, in PDF format, for all autosomes and the X and Y chromosomes. 
 
Ideogram Construction 
We utilized the PhenoGram web application (https://visualization.ritchielab.org/phenograms/plot) to produce 
ideograms illustrating the locations of patches within GPatch results. We first used awk to reconfigure the patch 
coordinates from GPatch’s patches.bed into the text format used by PhenoGram. This was supplied as the 
input file for PhenoGram. We supplied the chrom.sizes file for T2T_CHM13, augmented with telomere 
locations obtained from the UCSC Table Browser (33), as the genome. We additionally selected “Standard 
Algorithm” for “Phenotype Spacing”, and checked the “Chromosome only” box to toggle printing only the 
ideogram without accompanying annotations. Resulting images were stored in PNG format and further 
processed locally to desaturate and improve contrast. 
 
Patching Biological Data with GPatch 
BASH shell scripts were used to automate the GPatch patching process for the HGSVC NA12878 and HPRC 
HG002 genomes. Initial alignment of each genome to the T2T-CHM13 reference genome was performed with 
minimap2 using parameters `minimap2 <reference_genome> <contig_assembly> -x asm20 -t 24 -a`, with 
output piped into SAMtools view to convert SAM output to BAM. Resulting BAM files were processed with 
GPatch using parameters `GPatch.py -q <$prefix.pseudocontigs.bam> -r <reference_genome> -x <prefix> -d 
-m 10 -t` where -d causes GPatch to drop reference contigs without alignments from the output, -m 10 sets the 
mapping quality threshold for contig alignments to 10, and -t indicates that overlapping contig alignments 
should not be 5’ trimmed. Statistics on patched assembly length, contig content, and genome completeness 
were then assembled into text files using a combination of awk and custom python scripts. Finally, dot plots 
were prepared according to steps outlined in the Dot Plot Construction methods section to compare the initial 
patched genome to the T2T-CHM13 reference, and to matched target genomes, T2T-NA12878 (1) and 
T2T-HG002 (25) . 
 
Automated Contig-Breaking 
PAF alignments generated during dot-plot preparation in Patching Biological Data with GPatch were further 
processed with a custom python script, included in the GPatch GitHub repository, to identify large-scale 
rearrangements within the patched genome that represent likely misjoins in the draft assembly. These misjoins 
can be between different regions of the same chromosome or between different chromosomes, and may 
represent any class of structural variant. These were identified as alignments or clusters of partial-alignments, 
within a maximum specified distance of each other that are inverted, translocated, or duplicated in the patched 
genome relative to the reference genome. To locate these, we looped over contigs in the input assembly, first 
retrieving all overlapping partial alignments based on their coordinates in the patched genome. Partial 
alignments were then clustered based on their chromosome, strand, and mapped position (i.e., position in the 
reference/target genome) such that partial-alignments within a maximum distance from each other, on the 
same chromosome and strand (including overlapping and nested alignments), are merged into a single 
interval. Merged intervals were then filtered to identify clusters representing inversions, duplications, and 
translocations: i.e., those that map to the reverse strand, or whose mapped position in T2T-CHM13 has shifted 
by a user-configurable minimum distance threshold of 1MB. Remaining intervals were then filtered to retain 
only those exceeding a user-configurable size threshold of 1MB. Breakpoint loci within the patched genome 
were then supplied to a second Python script to identify corresponding contigs from the source assembly and 
break them at the inferred positions, with output written in fasta format. These assemblies were then 
reprocessed with GPatch following the same steps described in Patching Biological Data with GPatch. 
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Dot-plots comparing GPatch results following contig breaking to T2T-CHM13 and corresponding target 
genomes were prepared as described in Dot Plot Construction. 
 
Hi-C Data Mapping and Processing 
Hi-C read data for NA12878, in FASTQ format, were obtained from the Sequence Read Archive (SRA) 
repository for Rao and Huntley, 2014 (28) (Additional File 1: Table S1). Given the extraordinary amount of 
sequence data for NA12878 generated in this study, we selected only the two largest FASTA files for 
processing (Additional File 1: Table S1), totalling approximately 1.75 billion reads. We utilized a custom Hi-C 
analysis pipeline based on the 4DN Hi-C Processing pipeline (29). Briefly, FastQC was used to verify the 
quality of Hi-C read data prior to mapping to a given reference genome with BWA-MEM (34). Mapped reads 
with quality scores 40 and above were extracted from the BAM output, converted into pairs format, sorted, and 
replicates merged, using a combination of pairtools (35) commands. Pairtools was further employed to mark 
and exclude duplicate pairs, and select only “UU”, “UR”, and “RU” contact pairs for further processing. 
Restriction enzyme fragment data were then superimposed on pairs data using the fragment_4dnpairs.pl script 
from the 4DN consortium. Finally, we used Juicer (30) to construct Hi-C matrices from the final pairs file and 
apply normalization using the KR method (28). All analysis steps were automated with Makefiles to ensure 
reproducibility, and were performed on a local compute cluster using memory-optimized nodes allocated with 
500GB RAM, 12 3.0 GHz Intel Xeon Gold 6154 compute cores, and 4TB HDD. Hi-C loop calling was 
performed using the GPU-enabled version of hiccups, on a local server equipped with an NVIDIA Titan-V GPU 
and 270GB available RAM, using the Juicer Tools juicer_postprocessing.sh script (30). Loop calling was 
performed with hiccups (30) at 10kb and 5kb resolutions for Hi-C data mapped to both the T2T-CHM13 and 
GPatch NA12878 assemblies. Due to unexplained crashes of the hiccups software, loop calling could only be 
completed for resolutions 5kb and 10kb. 
 
Hi-C Visualization 
Normalized matrices in .hic format were browsed locally in Juicebox for initial comparison across stored 
resolutions before identifying 80kb as the optimal resolution for visualization. Hi-C heat map plotting for 
individual chromosomes was then automated with a custom Python script utilizing the CoolBox API (36). Plots 
were generated at 80kb resolution with balanced normalization, for both T2T-CHM13 and GPatch-NA12878 
based Hi-C matrices, with plots stored in SVG format. SVG images for each dataset were then converted to 
PDF format using the online tool: https://tools.pdf24.org/en/svg-to-pdf (37), combined into a single PDF file in 
Adobe Acrobat, and reduced to sets of six thumbnails per standard letter sized page (landscape format) using 
the MacOS Preview tool. Thumbnails were extracted from the resulting PDF files, edited, and arranged into 
final figures in Adobe Illustrator, with the following edits applied uniformly to each image: 1) Bilateral scaling to 
120%; 2) Adjust embedded heatmap and scale images to improve contrast using the “levels” tool from the 
Phantasm plugin (https://astutegraphics.com/plugins/phantasm), with input levels for the RGB channel set to 
50:0.5:255, and output levels set to 0:240. Final figures were saved in PDF format. 
 
Hi-C Loop Comparison 
In order to compare the positions of individual loops and loop anchors between T2T-CHM13 and GPatch 
NA12878, we first prepared liftover chains using the nf-lo Nextflow pipeline (38), following steps described at 
https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=1390827233_st3mhvM8SnGwC9IK4FZ9ysMqCN54&db=hg
38&c=chrX&g=chm13LiftOver, with T2T-CHM13 as the target and GPatch NA12878 as the source, and using 
minimap2 as the aligner, using the same mapping parameters as used previously in simulated and biological 
data analyses. Starting with loop predictions from the patched NA12878 assembly, loop predictions at 5kb and 
10kb resolution were decomposed into individual loop anchor loci by splitting each line in the BEDPE source 
file into separate lines for the upstream and downstream loop anchors and assigning the BED name field for 
both with a matched ID number, with upstream and downstream anchors tagged with _1 and _2 suffixes, 
respectively. Resulting BED files were processed with the UCSC LiftOver tool (33) to convert from GPatch 
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NA12878 frame to T2T-CHM13 frame. We first counted loops for which one or both anchors failed to liftover, 
indicating presence in sequence unique to the GPatch NA12878 assembly. Next, BedTools (31) was used to 
identify lifted GPatch NA12878 loop anchors that overlap T2T-CHM13 loop anchors, using the command 
`bedtools intersect -a <NA12878 anchors> -b <T2T-CHM13 anchors> -u`. A custom python script was then 
used to reassemble intersecting anchors into complete or partial loop annotations in BEDPE format, with 
“missing” loop anchors, from loops where only one anchor intersects a T2T-CHM13 anchor, denoted by ‘.’ 
characters in the affected BEDPE fields. From this, we were able to count completely and partially shared 
loops between GPatch NA12878 and T2T-CHM13. Loops unique to GPatch NA12878 were identified based on 
records in the “unmapped” fraction of the LiftOver results. 
 
To determine which loops have anchors that are separated by at least one contig or patch boundary in GPatch 
NA18278, we decomposed loops into loop intervals, defined as the maximal interval between the upstream 
and downstream loop anchor coordinates, and stored these in BED format. Likewise, the single-base 
coordinates of 5’ and 3’ contig boundaries, in the frame of the GPatch NA12878 assembly, were extracted from 
the corresponding contigs.bed file generated within the patching step. We then used bedtools intersect, with 
options `-a <loop_intevals.bed> -b <contig_boundaries.bed> -wa -u` to reduce intersections between loop 
intervals and contigs to a list of unique loop intervals that overlap at least one contig boundary. This was 
repeated for loop calling resolutions 10kb and 5kb. Average loop lengths for 5kb and 10kb resolutions were 
calculated in awk by totaling the lengths of all loop intervals from each resolution and dividing by the number of 
total loop predictions.  
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https://github.com/adadiehl/GPatch/tree/master/scripts. Tools in the scripts directory also require minimap2 
(https://github.com/lh3/minimap2). All custom code and commands used in this analysis are documented and 
presented in the manuscript github repository at https://github.com/Boyle-Lab/GPatch-Manuscript. Sources for 
all publicly-available data used in this study are documented in Additional File 1: Table S1. 
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