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Abstract

We introduce a minimal agent-based model to understand the effects of the interplay

between dispersal and geometric constraints in metapopulation dynamics under the Allee

Effect. The model, which does not impose nonlinear birth and death rates, is studied both

analytically and numerically. Our results indicate the existence of a survival-extinction

boundary with monotonic behavior for weak spatial constraints and a nonmonotonic behav-

ior for strong spatial constraints so that there is an optimal dispersal that maximizes the sur-

vival probability. Such optimal dispersal has empirical support from recent experiments with

engineered bacteria.

Introduction

The Allee effect is an influential finding named after the ecologist Warder Clyde Allee [1]

concerning a phenomenon typically manifested by the departure from the standard logistic

growth that enhances the susceptibility to extinction of an already vulnerable sparse popula-

tion. Curiously, W. C. Allee did not provide a definition of the effect [2], but in general terms

it can be defined as “the positive correlation between the absolute average individual fitness

in a population and its size over some finite interval”. [3]. The strong Allee effect, which is

the focus of this work, corresponds to the case when the deviation from the logistic growth

includes an initial population threshold below which the population goes extinct [4]. On

the other hand, there exists a weak version of the Allee effect which treats positive relations

between the overall individual fitness in the population density and does not present popula-

tion size nor density thresholds.

The Allee effect can emerge from a variety of mechanisms such as mate limitation, coopera-

tive breeding, cooperative feeding, habitat amelioration [3, 4]. Empirical support to the Allee

Effect can be find in terrestrial arthropods, aquatic invertebrates, mammals, birds, fish, and

reptiles [4, 5]. In addition, thanks to Synthetic Biology it is possible to observe the Allee effect

in programmed bacteria [6].

Besides ecology, conservation biology [4] and invasion biology [7], there is a growing num-

ber of studies addressing the importance of the Allee effect in other subjects such as epidemiol-

ogy [8–10] and cancer biology [11, 12] among others. Explicitly, in Ref. [11] the authors
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suggest the manifestation of the Allee effect as the tumor growth threshold may be explored in

therapeutics.

For long the Allee effect was mostly studied at the population scale, but in Ref. [13] it was

shown its relevance at the metapopulation level as well. Afterwards, it was effectively demon-

strated the Allee effect at the metapopulation level can come up from the Allee effect at the

local population level [14, 15].

Focussing on the theoretical approach to the problem, several models—spanning from

phenomenological to purely microscopic proposals—have been able to reproduce the Allee

effect and to explore its dynamical outcomes [7, 16, 17], namely those coping with the inter-

play between the Allee effect and dispersal. Note that Depending on the primary approach to

population dynamics, the concept of dispersal is also known as migration or diffusion. Let us

mention a few examples: on the one hand, one can find works showing a positive association

between migration and the number of invaded patches [18]; the invasion diagram presented in

Ref. [19] shows that the propagation failure regime shrinks as the dispersal rate increases. In

Ref. [20], it is asserted that in a simple metapopulation dynamics the larger the migration the

larger the mean time to extinction. On the other hand, there are works indicating that the

combination of the Allee effect and dispersal produces a negative impact on the population

dynamics; that is the case of Ref. [21] where the authors claim that the vulnerability to extinc-

tion increases with the mean-square displacement. Considering a nonlinear dynamics analysis

of the Allee effect, the survival-extinction bifurcation diagram shown in Ref. [22] reveals that

the extinction regime augments directly with the dispersal probability. Complementary, it

was also found that a dispersive population under the Allee effect faces a dramatically slowed

spreading [23]. Additionally, it was shown in [24] that the dispersal does not always enhance

regional persistence in a predator-prey system under the Allee effect. Last, the results conveyed

in Ref. [25] indicate that populations with the Allee effect face an inverse relationship between

the settlement probability and the pre-mating dispersal.

Particularly in population ecology, Windus and Jensen [26] proposed a minimal model that

successfully captures the Allee Effect by means of a bistable dynamics arising from microscopic

rules. Inspired by their model, we develop an ecological metapopulation dynamics in order to

explore how the threefold interplay between the Allee Effect, dispersal and spatial constraints

impacts on the survival probability of a population dynamics. It is reasonably expected that

the dispersal has a beneficial impact on population survival by decreasing the local competition

for resources. But interestingly, we observe that for severe spatial constraints there is the emer-

gence of an optimal dispersal rate that promotes the highest survival probability. This nonmo-

notonic relation between survival and dispersal—which is not very intuitive at first glance—

was recently observed in controlled experiments with engineered bacteria [6].

Materials and methods

Consider a metapopulation [27, 28] with L subpopulations composed of agents that are able to

move, die or reproduce. As usual in metapopulation dynamics [27], we assume a well-mixed

subpopulation, i.e., inside each subpopulation all individuals have the possibility to interact

one another. In Statistical Physics parlance that is to say that our local dynamics exhibits a

mean-field character. The mobility is implemented as a random walk between neighbor sub-

populations such that migration occurs at each time step with probability D. At a given time

step, if migration does not take place (with probability 1 − D) then one of the two events is

chosen [26]: death of an agent with probability α or reproduction with probability λ when two

agents meet. Mating limitation is an important source of the Allee effect [25, 29] which in our

model is incorporated in the reproduction event.

Optimal dispersal in metapopulation dynamics
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At this point, three remarks are worth making: first, heed that D controls the difference of

time scale between the patch mobility and the reproduction/death; second, we make no extra

assumptions on the probabilities α or λ; and third, this proposal naturally incorporates the

environmental changeability seeing that the carrying capacity of each subpopulation is not

fixed. Moreover, there is no local condensation of the agents because the random walk uni-

forms the agents distribution among the subpopulations.

We would like to stress that our goal is not to model specific ecological dynamics, but to

investigate the possible emerging scenarios from this minimal agent-based migration-repro-

duction-death dynamics instead. This approach can be seasoned with further elements that

account for the traits of a given system. It is well-known that the use of minimal models is

very helpful in providing an understanding of the cornerstone mechanisms present in tai-

lored models.

Monte Carlo algorithm

Computationally, we use an array with N states divided into the L subpopulations. Each state

in subpopulation u indicates an agent, iuA or a vacancy, iuV . Our time unit is a Monte Carlo step

(mcs) that consists of a visit to each one of the N states. Our main code is available at [30].

Monte Carlo Step:

For each state i = 1, . . ., N:

• First get the subpopulation, say u, of the state i.

• With probability D:

• Dispersal: If the state i indicates an agent, iuA, then move it to one of its neighbors w chosen

at random: iuA ) iwA. (event 1)

• With probability 1 − D:

• Reproduction: If the state i indicates a vacancy, iuV , then pick at random another state j in

the same subpopulation u. If this j indicates an agent, juA, then pick at random another state

l in the same subpopulation u. If the state l indicates another agent, luA, then transform the

vacancy iuV into an agent iuA with rate λ: iuV þ juA þ luA ) iuA þ juA þ luA. (event 2)

• Death: If the state i indicates an agent, iuA, then transform it into a vacancy with rate α:

iuA ) iuV . (event 3)

After each mcs apply a synchronous update of the states.

Analytical considerations

Consider that Au(t) and Vu(t) are the number of agents and vacancies in the subpopulation u
at time t, with corresponding local fractions au = Au/(Vu + Au) and vu = Vu/(Vu + Au), respec-

tively. Let u = 1, . . ., L. We consider a circular/ring metapopulation where each node is a sub-

population connected to k neighbor subpopulations. That parameter controls the magnitude

of the spatial constraints, i.e., k means the number of new pathces that individuals can move to

from its current patch.

Taking into account the 3 events described in our algorithm and considering the well-

mixed population (mean-field) at the local scale, the rate of change of vu and au are given by

dvu=dt ¼ ð1 � DÞðpdeath � prepÞ ð1Þ

Optimal dispersal in metapopulation dynamics
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and

dau=dt ¼ ð1 � DÞðprep � pdeathÞ þ Dð� pout þ pinÞ ð2Þ

respectively. The effective probability of successful reproduction of two individuals in an avail-

able vacancy is prep ¼ lvua2
u. The effective probability of death of one individual depends on

the fraction of individuals at a given subpopulation and the rate of death, pdeath = αau. The

probability of selecting an individual to move out of a given subpopulation u is just pout = au.

Finally, the probability of individuals in the neighbors z moving into u is proportional to the

fraction of individuals in neighbors az weighed by the number of possible choices of move-

ment k, pin ¼
PL

z¼1
1

kWuzaz, with Wuz being the elements of the adjacency matrix which

assumes the value 1 if u and z are connected or 0 otherwise. Considering all these terms we can

rewrite the dynamical equations in terms of Au(t) and Vu(t) to obtain the equations ruling the

overall system

dVu

dt
¼ ð1 � DÞ

�

�
lVuA2

u

ðVu þ AuÞ
2

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
Reproduction

þ aAu

z}|{
Death �

ð3Þ

dAu

dt
¼ ð1 � DÞ

�
lVuA2

u

ðVu þ AuÞ
2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Reproduction

� aAu|{z}
Death

�

þ D
�

� Au|ffl{zffl}
Emigration

þ
XL

z¼1

1

k
WuzAz

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Immigration

�

ð4Þ

Aiming at taking into account both the cases of single and multiple sources of invasion, we

shall use an initial condition given by

Auð0Þ ¼

1

ns
N
L u ¼ 1; . . . ; ns

0 u ¼ ns; . . . ; L

(

ð5Þ

where N/L is the initial size of each subpopulation and ns is the number of initial sources. By

default, we use Vu(0) = N/L − Au(0) as well.

Survival-extinction phase transition

From a preliminary numerical analysis we observed that the steady-state solution satisfies

A1u ¼ �A; V1u ¼ �V 8u u ¼ 1; 2; . . . ; L ð6Þ

which can be used as an ansatz to our problem yielding

N ¼
XL

u¼1

ðAu þ VuÞ ¼ Lð�A þ �V Þ ) �V ¼ N=L � �A ð7Þ

d�A
dt
¼ ð1 � DÞ

lðN=L � �AÞ�A2

ðN=LÞ2
� a�A

" #

þ D � �A þ
1

k
k�Að Þ

� �

¼ 0 ð8Þ
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Then from Eq (8) we obtain three solutions to �A. The stability analysis provides an overall

picture of the steady-state

A1u ¼
N
2L 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 a

l

p� �
Auðt ¼ 0Þ � Ao

c and a � l=4

0 otherwise

8
<

:
ð9Þ

where Ao
c is the threshold initial population size required for the local persistence:

Ao
c ¼

N
2L

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4
a

l

r� �

ð10Þ

Eqs (9) and (10) do not explicitly take into account the dispersal parameter D, but they allow

us to get an insight into the nature of the survival-extinction phase transition: they show that

the subpopulation faces a discontinuous transition at the critical point αc = λ/4. This discontin-

uous transition is verified for the dynamics of the whole system inasmuch as the mobility of the

agents induces the long-run absence of local correlations to the whole metapopulation.

Results and discussion

In this section, we present the results for metapopulations of sizes 10� L� 50 and increasing

k. By means of Monte Carlo simulation and bearing in mind Eqs (1) and (2) we confirmed

that the results are still valid for larger networks that correspond to the limit of a macroscopic

system (the so-called thermodynamic limit). For the sake of simplicity and without loss of gen-

erality the results we show are for λ = 1.

Looking at the time series of the total number of agents in the metapopulation for different

dispersal rates as depicted in Fig 1. The evolutions for D = {0.03, 0.09, 0.019} exhibit a single

stable (steady) state; however, the cases with D = {0.05, 0.07, 0.014} display bistable solutions.

This rich dynamics is the outcome of the competition between reproduction (event 2) and

mortality (event 3). It is worth stressing the role of randomness—governed by our probability

parameters—on the development of that bistability. The combination of randomness and bist-

ability paves the way to ecological scenarios in which extinction can take place with no appar-

ent reason, even in the presence of abundant resources whatsoever. Last, the scenario marked

by two well-separated stochastically-induced steady-states is the hallmark of a sudden phase

transition that we depict in Fig 2; therein, one perceives the density of individuals—which is

our order parameter—displays a sheer increase of a critical mortality rate αc. To fully grasp the

idea behind the survival-extinction transition in Fig 2, we consider the different ecological sce-

narios corresponding to α = {0.04, 0.08, 0.12}. Explicitly, if we increase α = 0.04 to α = 0.08—

ie, environmental conditions for mortality are enlarged—the total density of individuals

undergoes just a slight drop. However, if the mortality parameter α becomes larger than α =

0.08 (eg, α = 0.12), there is a significant dynamical response in the population density, specifi-

cally the mass extinction. That is to say, an augment in the mortality rate can either spark a

small or a drastic decline in the population. That means that depending on the proximity to

the threshold point the population can exhibit a robust profile with respect to environmental

perturbations or else behave in a quite vulnerable way. This feature is a remarkable fingerprint

of a discontinuous phase transition. It is worth mentioning that abrupt phase transitions are

not an odd phenomenon in biological dynamics [31].

Up to now, we have not separated out the roles played by D and ns on the threshold αc(D).

To that, we call attention to Fig 3 where it is possible to disentangle the effect produced by

each parameter. Resorting to an iterative procedure close to that described in section 2.1 of

Ref. [26]: (i) set an initial guess for the threshold αc0, and start the algorithm; (ii) if a sample

Optimal dispersal in metapopulation dynamics
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Fig 1. Time series (in mcs) for the total number of of agents for D = {0.03, 0.05, 0.07, 0.09, 0.14, 0.19} with L = 10,

N = 104 L, ns = 1 and k = 2. Each color corresponds to one sample. The symbols were obtained from Monte Carlo

simulations and the lines from Eqs (3) and (4).

https://doi.org/10.1371/journal.pone.0218087.g001
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reaches extinction, the seed αc0 is decreased by dα; (iii) if a sample shows a long-term persistent

population, then αc0 is increased by dα. The results of this process are plotted in Fig 3 where is

possible to verify a good agreement with the theoretical threshold obtained from Eqs (3) and

(4). Heed there is an optimal dispersal rate D� that leads to the maximum allowed mortality

rate αmax below which the population will be within in the survival phase. Thus, a population

with an optimal dispersal rate D� is less likely to enter the extinction phase than populations

with sub-optimal dispersal D = D� ± δ for δ> 0. In other words, in Fig 3 it is clear that the opti-

mal dispersal allows the population to stay in the survival phase with mortality rates that leads

other populations with D = D� ± δ (faster/slower) to the fate of extinction. In respect of the

number of sources, we verified that it does not change the qualitative nonmonotonic depen-

dence of α vs D, only the magnitude of the dependence is sensitive to that.

Interestingly, Fig 4 shows there is an optimal number of sources that promotes the largest

survival area in the diagram α vs D> 0, as anticipated in Fig 3. This means that the survival

Fig 2. Stationary density of agents a1 vs mortality rate α with D = 0.2, k = 2, L = 10, N = 104 L, ns = 1. The symbols come from the Monte

Carlo Simulations and the lines come from the numerical integration of Eqs (3) and (4).

https://doi.org/10.1371/journal.pone.0218087.g002
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probability is maximized for an intermediate number of sources, wherefrom we understand

that in populations subjected to the Allee Effect it is best to spare the population in many

sources, but not too much. Similar results were found in Ref. [15] where the authors came up

with an integrated model that displays an Allee-like effect at the metapopulation level, which is

Fig 3. Phase diagram α v D for ns = 1, 2, . . ., 6 sources, L = 10, N = 104 L and k = 2. The point D = 0 is excluded from

the diagram since it refers to isolated populations with threshold αc = λ/4 = 0.25. In all the cases n0 ¼
104

ns
, where n0 is

the initial subpopulation size. The lines are obtained from Eqs (3) and (4). At the bottom of each plot we show the

optimal dispersal D� and the corresponding maximum allowed mortality rate αmax(D�) below which the population

still stay in the survival phase.

https://doi.org/10.1371/journal.pone.0218087.g003
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the outcome of imposing the Allee effect at the local population level. That is in contrast with

our work because we use a microscopic model with no extra assumption on birth and death

rates.

The survival-extinction phase diagram in Fig 5 shows that a decrease in the severity of the

spatial constraints—i.e., an increase of k—leads to a decreasing in the threshold mortality

αc(D) for all k. That is to say, the population becomes more vulnerable to extinction when

there are more open paths to emigrate. This result goes along the finding in Ref. [18] where it

was found that a decreasing in the number of connections enhances the invasion probability.

Furthermore, we observe the emergence of two different regimes: αc increases nonmonotoni-

cally with D for severe spatial constraints (k = 2, 4), but it increases monotonically with D for

loose spatial constraints (k = 6, 8). Although we used a simplified minimal network it already

Fig 4. Survival area in the phase diagram α ×D versus the number of sources ns for 0 <D< 1. The case D = 1 is excluded because it implies

no reproduction/death. The case D = 0 is excluded because it implies no migration between the patches. In all cases we keep the initial

subpopulation size fixed n0 ¼
104

ns
and we use N = 104 L.

https://doi.org/10.1371/journal.pone.0218087.g004
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shows the importance of spatial constraints in changing the qualitative behavior of the system.

At last, Fig 6 summarises our results for different magnitudes of spatial constraints k. Clearly,

there is a threshold for k, above which there is a monotononic dependence between αc and D.

So, what is the underlying mechanism behind the qualitative change presented in Figs 5

and 6? First, let us keep in mind that the Allee effect in our approach is manifested by the

mate-finding limitation. When the geometric constraints are severe, we have a nonmonotonic

regime caused by the source-sink dynamics between the donor subpopulation and its sur-

roundings. For small dispersal, the source cannot provide enough individuals to produce

a sustainable colony in the first-neighbors that in turn acts as a drain from the donor subpopu-

lation. For intermediate dispersal, the first neighbors receive enough individuals to bear

Fig 5. Phase diagram α vs D for networks with increasing number of neighbors k = 2, 4, 6, 8 (decreasing spatial constraints). The

theoretical lines (red) comes from numerical integration of Eqs (3) and (4). The optimal dispersal and the corresponding maximum α are: (a)

D� = 0.09 and αmax = 0.122; (b) D� = 0.092 and αmax = 0.089.

https://doi.org/10.1371/journal.pone.0218087.g005
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sufficient reproduction to overcome the Allee Effect. Nonetheless, if the dispersal is further

augmented, then the first neighbors receive as many individuals as they lose to their next-near-

est neighbors, which yields an insufficient net reproduction to guarantee long-term survival.

Alternatively, in the monotonic regime, the loose spatial constraints allow the emergence of

multiple secondary sources that feed one another in a way that, in boosting the dispersal, one

enhances the net reproduction to surpass the Allee effect.

From an empirical perspective, the work by Smith et al [6] supports our finding regarding

optimal dispersal. Therein, they engineered E. coli colonies aiming at displaying the strong

Allee effect and found that the dispersal acts as a double-edged sword. In other words, inter-

mediate dispersal rates favor bacterial spreading whereas both low and high dispersal rates

inhibit it. Additionally, they provide empirical evidence for another result of ours in Figs 5 and

6: increasing connectivity can increase the vulnerability to extinction.

Fig 6. Regime diagram of the dependence between threshold mortality αc vs dispersal rate D for L = 50. The vertical line that separates the

two regimes is kthreshold = 30. For k< kthreshold: αmax> αD = 0.5 then αc × D displays a nonmonotonic dependence. For k� kthreshold: αmax =

αD = 0.5 then αc × D exhibits a monotonic dependence.

https://doi.org/10.1371/journal.pone.0218087.g006
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In spite of the fact that it is known that reaction-diffusion equations with a linear popula-

tion growth can exhibit a critical diffusion rate (for a given habitat size) guaranteeing the sur-

vival of the population [33], we would like to emphasize that our work goes beyond that: we

have shown that the relationship between the survivability and dispersal undergoes a transition

of monotonicity when a birth-death process with the Allee effect is subjected to the interplay

between dispersal and tunable spatial constraints.

Conclusions

In this work, we have investigated the spectrum of scenarios arising from a metapopulation

dynamics under the Allee Effect using a minimal agent-based model which points at describ-

ing fundamental mechanisms thereof. Employing numerical and analytical tools we have

shown that the survival-extinction boundary undergoes a monotonicity transition: it has a

nonmonotonic behavior marked by an optimal dispersal for severe spatial constraints, but a

monotonic behavior for loose spatial constraints. The verification of this qualitative change in

the dependence of the mortality threshold as a function of the dispersal highlights the impor-

tance of the triangular interplay between the Allee Effect, dispersal and geometric constraints

for the persistence of populations.

Besides the experimental work of Ref. [6], there are other previous theoretical models

pointing to the same conclusions over the likely existence of an intermediate mobility rate

that optimizes the survival probability. Explicitly, in Ref. [32] the authors found a nonmono-

tonic relationship between the critical Allee threshold and the migration parameter by

imposing the Allee Effect at the microscopic scale which is made considering a nonlinear

per capita birth rate rni/C + rni c/C2 and per capita death rate rn2
i =C þ rc=C. where ni stands

for the number of individuals on habitat patch i, C is the carrying capacity, c is an Allee

threshold. In addition, we can refer to the results in Ref. [34] in which it was used an individ-

ual two-gender population on a hexagonal grid where the juveniles disperse away from

their natal territory with dispersal distances distributed as a negative exponential. In that

case, the population growth was highest for an optimal distance of the dispersal. In [35]

they found that the dispersal can have antagonistic effects on the persistence of biological

control introduced under the Allee effect. However, none of these studies have found the

major novelty of our work: increasing the magnitude of the spatial constraints can change

qualitatively the survival-extinction boundary from a nonmonotonic to a monotonic depen-

dence. Our finding prompts an inquiry into the actual role of the network topology [36, 37]

in the macroscopic outcome of ecologic dynamics; something we intend to explore in future

work.

In a broader view, there are other biological systems that exhibit nonmonotonic effects

of dispersal such as epidemic spreading [38], birth-death-competition dynamics with migra-

tion [39], evolutionary dynamics with the Allee effect and sex-biased dispersal [40], logistic

growth dynamics in metapopulations with heterogeneous carrying capacities [41], metapo-

pulation genetics dynamics with balancing selection [42], two-type (mutants, strains, or spe-

cies) population dynamics under the Allee effect [43], and range expansion of a genetically

diverse population where individuals may invest its limited resources partly in motility and

partly in reproduction [44]. As we adopted a minimal ecological model, it is possible to bring

forth different extensions of the present work in order to fit for the traits of the problems

aforementioned For instance, instead of using a memoryless random walk, we can use a

more realistic mobility dynamics: random walks that intermittently revisits previously visited

places [45].
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