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Abstract

Multiple species obtain repetitive head collisions throughout the course of their lifetimes with 

minimal neurologic deficit. Nature has allowed the unique development of multiple protective 

mechanisms to help prevent neurotrauma. In this review, we examine the concept of rapid 

brain movement within the skull ‘Slosh’ and what nature teaches on how to prevent this from 

occurring. We look at individual animals and the protective mechanisms at play. Marching from 

macroscopic down to the molecular level, we pinpoint key elements of neuroprotection that are 

likely contributing. We also introduce new concepts for neuroprotection and address avenues of 

further discovery.
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Introduction

Lessons from Nature

In nature, it is common for certain animals to experience repetitive head impacts with 

minimal to no head damage and/or long-term consequences. Specifically, birds such as the 

woodpecker and the diving gannet, along with horned/antlered animals like the bighorn 

sheep and deer engage in activities that necessitate head impacts on a routine basis [1]. 

Woodpeckers strike trees to look for food and develop nests. Diving gannets strike the water 

at high speed to catch prey. Horned animals compete for mates by head butting.
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On average, woodpeckers slam their beak into tree trunks at a rate of 18–22 times per 

second, to either search for food or to create a nest [2]. This translates to woodpeckers 

moving their heads at 15 miles per hour. With each peck, a woodpecker undergoes a force 

between 1,200–1,400 times that of Earth’s gravity (g) [3]. To put this into perspective, a 

sudden implementation of 50 g would detach the connective tissue that surrounds much of 

a human’s organs [3]. Another bird that frequently experiences head impacts are the diving 

gannets. Diving gannets forage for food in the ocean. Diving gannets make 20–100 dives 

per foraging trip, and with each dive, the head of a diving gannet can collide with the 

surface of the water at speeds up to 20 meters per second [4]. Furthermore, animals such as 

the big-horned sheep use their horns as weapons in combat to compete for mates or guard 

territory. The cranial impact of a collision of horns between two big-horned sheep can be up 

to 3400 newtons per collision [5].

Unique anatomical characteristics of these animals enable the repetitive head collisions with 

limited deleterious consequences. Specifically, the woodpecker has a small subdural space 

and a unique tongue structure that limits brain movement [6]. The tongue of a woodpecker 

is notable because it extends posteriorly from the base of the mouth, around the neck, over 

the occiput, and into the right nostril. This creates a muscular sling inside the head of 

woodpeckers which has previously been identified as a possible shock absorber. In addition, 

the hyoid bone has been shown to aid the dissipation of energy during impact. Similarly, the 

horn of a big-horned sheep is a large, hollow curled structure primarily composed of keratin 

[7]. The distinctive tapered spiral horn geometry reduces the load more efficiently than other 

geometries, such as a tapered bar [7].

In contrast, although the human anatomy clearly differs from that of a woodpecker or 

big-horned sheep, the tightening of the muscles around the internal jugular vein (IJV) may 

possibly reduce the trauma experienced by an individual during head collision (Figure 1). 

The proposed principle is that by increasing venous engorgement, the ability for the brain 

to move within the cerebrospinal fluid becomes limited. This phenomenon of constricting 

neck muscles for impact is commonly observed amongst boxers and may indicate why they 

are able to sustain repeated forces of great magnitude. The development of collars that can 

aid athletes and warfighters is also a topic of ongoing investigation. The remainder of this 

review will look at the principles that mediate brain protection in association with traumatic 

brain injury (TBI).

Mechanisms of Energy Transfer: Shortcomings of Helmets

The injury process in traumatic brain injury often involves coup-contrecoup injury. The 

coup and contrecoup insults result in a focal contusion at the site and opposite site of 

impact, respectively. Direct head impact produces a focal cerebral contusion. Subsequent 

acceleration of the brain to the opposite side of the skull then results in a similar lesion 

opposite to the initial impact (Figure 2) [8]. Several other proposed mechanisms that likely 

contribute to the injury process exist. A study with balloons filled with fluids of different 

densities mimicking the brain and cerebral spinal fluid (CSF) suggest that the denser CSF 

shifts toward the impact site and displaces the brain to the opposite side of the skull [9]. 

Not surprisingly therefore, the contrecoup injury represents the initial impact of the brain 
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with the skull and explains why the contrecoup injury site is often more severe [10]. Positive 

pressure theory suggests that contrecoup injury is a result of the brain lagging behind the 

skull and compressing against the opposite side of injury during the initial movement [11]. 

The negative pressure and shear stress theories on the other hand suggest that axial and 

rotational brain movements directly causing damage, respectively [12].

Helmets have largely proved successful in preventing skull fractures from primary and 

secondary impacts. However, they do not similarly protect against closed head injury, 

including focal contusions, hematomas, and concussions. The distribution of energy across 

the helmet and skull prevents fracture but may not adequately dissipate energy transmission 

affecting the brain [13]. Newton’s cradle is a device that uses swinging spheres in series 

to demonstrate the conservation of momentum and kinetic energy (Figure 3). Force 

is transmitted through the middle spheres, which remain stationary. Molecules partially 

connected by electrostatic forces constrain each other and transfer the pressure wave to the 

last sphere. This transfer can occur when a dense object is immersed in a less dense medium 

[14]. For example, in lithotripsy, shock waves can destroy kidney stones without the injuring 

intermittent structures. An ideal system would be one of elastic collision in which the head 

and brain transfer but do not absorb energy. A helmet with a soft outer layer covering the 

hard inner layer may take advantage of this concept. The soft layer may reduce the initial 

severity and facilitate the transfer of energy as seen in Newton’s cradle. Such helmets have 

been developed, though their efficacy is unknown, representing an opportunity for future 

research.

Macroscopic Approaches for Preventing TBI

The pathophysiology of TBI is complex and mitigated by various mechanisms that are 

interconnected; however, analysis of these mechanisms and their commensurate prevention 

may be simplified by examination through categorization of the pathophysiology into 

macroscopic, microscopic, and molecular causes. Macroscopically, TBI is mediated by 

direct force to the head as well as differences in the physical mechanics related to the 

components of the central nervous system and its surrounding structures [8,15]. Within the 

skull, there is the brain, CSF, and a system of vascular structures, which serves to perfuse 

the brain through various arteries. The system drains through a series of venous structures 

located within dura [8,16,17]. As the skull is an inelastic, rigid structure, interaction with 

the brain may cause mechanical injury [8]. Therefore, the skull is filled with a complex 

network of CSF, which circulates within the ventricular system and, notably, is present 

within the subarachnoid space. The CSF functions to prevent mechanical injury to the brain 

by acting as a buffer to absorb shock [16,17]. However, the suspension of the brain in 

CSF confers freedom of movement of the brain within the skull, which may also lead to 

mechanical injury [15]. For example, direct force to the head may cause a cerebral contusion 

and acceleration of the brain within the skull [8]. This aforementioned acceleration then may 

cause the brain to impact the side of the skull opposite to the injury [8,15,18]. Together, 

these injuries are known as, ‘coup contrecoup injury’ [17], and the mechanism of injury 

through which dynamic forces cause movement of the brain and its fluids within the skull 

is known as ‘slosh’ [6,15,19]. As most conventional protective methods, such as helmets, 

protect the skull but fail to mitigate the brain’s freedom of movement, slosh injury is 
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not addressed by these conventional methods [15,19]. To properly address slosh injury, 

protective methods must focus on the freedom of movement of the brain within the skull.

Increases in intracranial volume cause a reduction in intracranial compliance thereby 

reducing the brain’s movement within the skull, or slosh, and risk of TBI [6,15,19]. Of 

the components within the skull (the brain, CSF, and blood), blood is the component that is 

acquiescent to rapid changes in volume and, thereby pressure [15]. Therefore, an increase 

in cerebral blood volume would allow a reduction in intracranial compliance and confer 

protection to TBI through reduced intracranial collisions [6,15]. As previously mentioned, 

the cerebral vasculature drains through a series of venous channels with primary outflow via 

the IJV [16]. Constriction of the IJV alters intracerebral venous hemodynamics by reducing 

cerebral venous drainage, which increases intracranial volume as evidenced by an increase 

in intracranial pressure (ICP) and intraocular pressure (IOP) [20,21]. This is similar to 

the previously described Queckenstedt maneuver, where compression of the bilateral IJVs 

results in increased ICP [6]. Additionally, it is important to note the relationship between the 

intracranial volume and ICP as described by the Monro-Kellie doctrine (Figure 4) [22].

To assess the effect of IJV constriction, a rat model used a compressive collar to induce 

constriction of the IJV, which resulted in over a 30% increase in ICP and IOP within 

seconds [15]. Additionally, rats equipped with the compressive collar showed a reduced 

severity of TBI injury, as evidenced by the number of amyloid precursor protein-positive 

(APP-positive) neurons on autopsy: p <0.01 [15]. In a similar rat model, collar-induced IJV 

compression resulted in a 48.7%−59.1% reduction in degenerative neurons as evidenced 

by fluoro-jade B (FJB), a 36.8%–45.7% decrease in reactive astrocytes as measured by 

glial fibrillary acidic protein (GFAP), and a 44.1%–65.3% reduction in microglial activation 

as evidenced by ionized calcium-binding adapter molecule 1 (IBA1) [6]. This cerebral 

protection through venous constriction and resulting increased IOP is also found to be a 

protective element of woodpeckers [6,15,23].

Furthermore, a similar mechanism may be capable in humans [6,15,19]. In humans, 

the IJV passes between the two muscle bellies of the omohyoid [6,24]. Therefore, 

constriction of the IJV by contraction of the omohyoid may result in this same alteration of 

intracerebral hemodynamics and protection from TBI [6,15]. Some researchers hypothesize 

that professional boxers are able to withstand expected blows much greater than unexpected 

by the contraction of the neck muscles, including the omohyoid [6]. Other research has 

demonstrated that muscle contraction prior to impact reduces head kinematics [25,26], and 

that neck strength is a protective factor against TBI [25–27]. This protective effect is likely 

related to biomechanical protection against head acceleration but may also include protective 

effects caused by neck muscle constriction of the IJV. To enhance the protective effect, 

IJV compressive collars have been examined in American Football and shown to reduce 

white matter changes after repetitive head impacts [28,29]. Similar jugular collars have also 

demonstrated the protective effect against slosh injury in military and police training during 

explosives training [30–32].
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Microscopic Approaches for Preventing TBI

In nature, there are several animals that withstand repeated head impacts of significant force 

without resultant long standing injury. Birds and Bighorn sheep may both have developed 

unique respiratory adaptations that allow for increased carbon dioxide (CO2) mediated 

cerebral blood flow alterations that have a neuroprotective effect during impacts.

The avian respiratory system is a unique and efficient system of gas exchange, delivering 

oxygen to tissue and removing CO2 from blood. Physically distinct from the mammalian 

respiratory system it utilizes nine air sacs and a pair of lungs. Birds have two cervical air 

sacs, an unpaired clavicular sac, two cranial thoracic sacs, two caudal thoracic sacs, and two 

abdominal air sacs (Figure 5). The sacs are arranged into two groups, those coming off the 

anterior of the lungs and those arising from the posterior of the lungs. These thin-walled 

structures are composed of simple squamous epithelium, a thin layer of connective tissue 

and blood vessels. Unlike other vertebrates whose lungs allow for bidirectional flow of air 

due to expansion and contraction, the avian lungs are static with the air sacs functioning as 

bellows that expand and contract, forcing air though the lungs in a unidirectional fashion 

[33].

The respiration of birds consists of two cycles of inhalation and exhalation. In the first 

inhalation, air enters through the nares, goes down the trachea and into each primary 

bronchus. Some enters the lungs and participates in the exchange of oxygen and CO2 

through the air-capillary system, while the remainder enters the posterior sacs. When the 

bird exhales, the fresh air in the posterior sacs then enters the lungs, displacing the spent air. 

Thereby the process facilitates gas exchange. The spent air exits through the trachea. During 

the second inhalation, the air again enters through the trachea into the posterior sacs and 

lungs, displacing the spent air, but cannot yet exit through the trachea due to the inward flow 

of air. Instead, the CO2 rich air enters the anterior sacs. During the second exhalation, air 

from the lungs and anterior sacs is expelled through the trachea [33].

Additionally, the respiratory sacs invade the bone via diverticula, thus pneumatizing them. 

When the diverticula come into contact with each other, they may unite, creating a 

continuous airway from the sacs into the bone. Pneumatic bones are common in the skull, 

humerus, clavicle, keel (sternum), pelvic girdle, and the lumbar and sacral vertebrae in birds 

that fly [33].

Bighorn sheep possess horns that are made up of an outer sheath that encases a bone core 

called the horncore. The outer sheath is made of keratin, the protein found in human hair and 

nails, and is organized into a protein-based matrix of lamellar sheets [7]. These sheets form 

hollow, elliptical tubules dispersed between layers that extend and grow forming the horn. 

Myers et al. has suggested that the horns of the bighorn sheep are themselves pneumatic 

organs, continuous with the respiratory system, thereby allowing the animal to rebreathe 

its air to increase the carbon dioxide within its blood. The increase in the partial pressure 

of CO2 would induce vasodilation and subsequent increased intracranial volume, creating a 

tighter fit of the brain inside the cranium, reducing slosh, and thus, brain injury [34]
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CO2 is a mediator of cerebral blood flow (CBF), and this effect has been well studied. 

Physicians first started to explore the use of hyperventilation to lower cerebral blood volume 

and ‘ICP during the 1920s [35]. CO2 concentration is a key determinant of intracranial 

volume and elevated arterial CO2 tension leads to a reversible relaxation and dilation of 

cerebral arteries and arterioles and increased CBF, whereas hypocapnia causes constriction 

and decreased blood flow [36]. The vasodilator effects of CO2 in humans are demonstrated 

by the observation that inhalation of 5% CO2 results in an 50% increase in CBF, and 7% 

CO2 inhalation causes a 100% increase in CBF [37]. Cerebral blood volume is also impacted 

by alterations in the partial pressure of CO2, but the relative change is less marked than CBF 

[38]. CO2 is not only a potent dilator of cerebral vasculature; it is also an effective ocular 

vasodilator of retinal and optic nerve blood flow [39].

Given the potential physiologic explanations for the observed protection from brain injury 

in animals such as the hummingbird and bighorn sheep, it is no surprise that the search 

continues for a similar approach to manipulate CO2 in humans. By increasing the partial 

pressure of CO2, we may induce cerebral vasodilation and lead to increased ICP, thus 

reducing the shearing and cavitation caused by rapid acceleration/deceleration that are 

the hallmark of slosh-injury [34]. Increased partial pressure of CO2 or hypercapnia not 

only mitigates macro-slosh injury, it also may also reduce molecular slosh of hemoglobin 

molecules present within red blood cells by reducing the absorption of forces by the 

tissue through an increase in the elasticity of collisions. Hypercapnia may be induced by 

a respiratory circuit which could be a breathing or non-breathing circuit mask, or a breathing 

circuit capable of controlling the amount of inhaled CO2 (Figures 6 and 7).

Because of the interplay between intracranial volume, partial pressure of CO2 and severity 

of TBI, it was suspected by Smith et al. that the physiologic acclimatization to increased 

altitude may lead to changes within the cranium that would reduce the rate off concussion 

experienced by high school athletes. These changes include increased ICP and would be a 

result of hypoxic vasogenic edema. They showed that among athletes playing at a higher 

altitude, there was a 31% reduction in the incidence of total reported concussions and 30% 

decrease in concussion rate for overall exposures, 27% for competition exposures, and 28% 

for practice exposures in football players. This study included nearly 6000 athletes from 

almost 500 schools with locations ranging from 2.1–2104 meters above sea level [40]. A 

follow up to this epidemiologic study was conducted by Myer and Smith et al. amongst 

National Football League (NFL) players, hypothesizing that games played at a higher 

elevation would have a lower rate of concussion than games played at a lower elevation. 

They found that the rate of concussion was 30% lower in games played at or above 196.3 

meters. These results show that like bighorn sheep and other animals, a protective effect of 

hypercapnia induced increase in intracranial blood volume may be present in humans, albeit 

to a smaller degree [34].

Molecular Approaches for Preventing TBI

Targeted molecular modifications affecting erythrocyte membrane properties, hemoglobin 

structure, and blood viscosity are promising avenues to reduce TBI [41]. These therapeutic 

approaches are hypothesized to act via modulation of intracranial compliance, thus 

Barpujari et al. Page 6

Arch Clin Toxicol (Middlet). Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minimizing the slosh effect. Erythrocytes cannot execute typical cellular repair processes 

like a nucleated cell; thus, many molecular alterations last the lifetime of the cell. After 

TBI, one of the primary injuries to erythrocytes is compromised cell membrane function 

[42]. Animal models of TBI have revealed an increase in markers of lipid peroxidation 

in RBCs as well as increased aggregation and decreased electrophoretic mobility, both 

markers of RBC function and membrane distensibility. Experiments with isolated human 

blood have shown similar trends; blast waves transmitted through steel containers cause lysis 

of erythrocytic cell membranes but can be mitigated by decreasing free space within the 

container to reduce the slosh effect [43]. Translation of this principle into in vivo systems 

could be achieved with interventions which increase erythrocyte volume or blood viscosity 

(Figure 8).

As discussed in previous sections, the partial pressure of CO2 is a critical mediator of 

cerebral autoregulation as well as erythrocyte function [44,45]. Hypercapnia causes a 

right shift in the oxyhemoglobin dissociation curve, thus increasing O2 off-loading in 

hypoxic tissues. Further, increased pCO2 increases RBC volume through accumulation of 

bicarbonate, chloride, hydrogen, and other ions [46,47]. This effect serves to increase the 

viscosity of blood by increasing the proportion of total volume held within the cellular 

compartment [48]. Increased blood viscosity along with increased cerebral blood flow may 

be the crucial factors explaining the observation of fewer concussions during football games 

played at higher altitudes [34,40]. These factors are also consistent with the hypotheses 

explaining the innate neuroprotection seen in Bighorn Sheep. Hypercapnia induced by 

altitude and their unique respiratory anatomy allows Bighorn Sheep to minimize intracranial 

compliance and reduce the fluid slosh effect.

Pharmacologic modulation of erythrocyte function and total cerebral blood flow with the 

carbonic anhydrase acetazolamide could leverage these principles to prevent TBI (Table 1). 

Single doses of acetazolamide are sufficient to increase cerebral blood flow [49], which 

could potentially beneficial in reducing brain slosh although this remains to be tested 

directly. Another study demonstrated acetazolamide treatment prior to exercise resulted in 

elevated arterial and venous CO2 partial pressures [50], which may impart all of the benefits 

of hypercapnia on brain dynamics during TBI. More investigation in disease-specific 

contexts is needed to fully evaluate the therapeutic potential of acetazolamide in TBI 

prevention.

TBI & Hearing Loss: A Shared Mechanism

The association of TBI of the blast variety with hearing loss is well established [51], 

Within the subset of TBI patients, Lew et al. noted that those with blast-related TBI have 

significantly higher rates of hearing loss than those with non-blast-related TBI (62% vs 44%, 

p=0.04) [52]. Barotrauma-mediated tympanic membrane rupture is one well-characterized 

mechanism of hearing loss following blast exposure [53]. However, slosh-mediated damage 

to anatomical structures involved in audition may be another mechanism for hearing 

loss following blast exposure. Cochlear hair cells may be particularly susceptible to slosh-

mediated damage in the setting of blast-related TBI, due to their relative fragility and 

mobility in the inner ear. Thus, mitigating slosh may help prevent damage to these structures 
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during blast-related TBI. One proposed mechanism of slosh-mitigation in this setting is 

increasing intracranial volume via cranial venous sinus engorgement secondary to jugular 

vein compression. Increasing intracranial volume may be transmitted to the inner ear space, 

increasing volume and pressure surrounding the hair cells and attenuating slosh-mediated 

damage during a blast by reducing relative mobility of hair cells [31]. Other mechanisms 

involving redirecting energy from blasts may be similarly beneficial in mediating slosh-

associated damage to anatomical structures and subsequently minimizing hearing loss.

Investigation of Slosh: A Way Forward

TBI is linked to cerebral edema, blood-brain barrier disruption, and neuroinflammation, 

all of which play a role in the severity of the injury and functional recovery. Recent 

advancements in TBI research imply that slosh mitigation, a method of limiting the brain’s 

ability to move inside the skull in both linear and rotational directions, may have the 

potential to prevent TBI [6,15,43]. The invention of a moderate jugular compression collar 

to enhance the resistance of the jugular vascular tree evolved from a better understanding 

of the mechanics of slosh as it applies to blood within the cranium [6]. More blood was 

hypothesized to be diverted to the vertebral veins (increasing CBF) and other capacitance 

arteries with higher vascular resistance, which occupied cerebral space and limited potential 

mobility [6,15,43]. Research studies have revealed that IJV compression significantly lowers 

signs of neurological injury, as measured by FJB levels and posttraumatic glial activation, 

with substantial reductions in the cortex, hippocampus, striatum, and cerebellum [6].

Other treatments have now emerged that follow the similar ideas of enhancing cerebral 

blood flow and cerebral perfusion pressure in the hopes of limiting brain impairment after a 

TBI by employing the principles of slosh mitigation. The strategies, to prevent subsequent 

injury after a TBI, range from postural adjustments to pharmacological interventions that 

can maintain cranial pressures, brain tissue perfusion, and reduce inflammation. Head 

immobilization and therapeutic positioning of the head (varying degrees of head of bed 

elevation (HBE)) have been advocated as a low-cost and straightforward method of 

preventing subsequent brain injury [54–57]. In a study by Winkelman et al., HBE of 30° has 

been reported to be a therapeutic technique to consider for preventing elevated ICP in TBI 

patients [55]. Other studies, on the other hand, have been unable to reach a consensus on 

therapeutic impact of HBE of 30°, and thus suggest that the optimum angle of HBE should 

be determined individually, with the desired clinical goal in mind, and after an analysis of 

the response of ICP, cerebral perfusion pressure (CPP), and CBF in each backrest positions 

[54–57].

Monitoring ICP in individuals with TBI is critical for preventing further damage. An 

elevation in ICP is associated with a drop in CPP and, as a result, a decrease in CBF, 

which can lead to secondary ischemic phenomena. Hypocapnia is hypothesized to cause 

cerebral vasoconstriction and is commonly used to regulate ICP but chronic hypocapnia in 

TBI patients increases the risk of death and severe disability [58–60]. Mild hypercapnia, 

on the other hand, may enhance CBF by cerebral vasodilation, which has a therapeutic 

impact in cerebral ischemia following a TBI [58,59,61]. TBI is also known to cause cerebral 

bleeding and RBC lysis, which causes Hb and heme to be released and absorbed by 
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microglia and neurons [62,63]. This causes oxidative damage and inflammation in brain 

tissue, which can lead to cytotoxic edema [63–65]. Acetazolamide can target one of the 

molecular targets connected to cytotoxic edema, AQP4, in the astrocyte. In an in vivo 

mouse TBI model, acetazolamide was shown to reduce cytotoxic edema [64,66]. Another 

study looked at the effectiveness of the antioxidant methylene blue (MB) in decreasing 

inflammation and behavioral problems associated with diffuse brain damage [67]. This is 

especially noteworthy because antioxidant levels have been found to drop in both adult and 

pediatric TBI patients across several studies [65,67]. Hence, MB intervention is a good 

potential therapeutic approach that may reduce life-threatening complications of TBI, such 

as cerebral edema and neuroinflammation, and protect against the development of secondary 

and long-term neuropsychiatric complications [64–67].

After an injury, the brain’s ability to pressure autoregulate may be compromised, and CBF 

might passively follow shifts in CPP [6,15,43,54,60,61]. To maintain optimal blood flow 

and perfusion, it is critical to reduce inflammation, edema, and oxidative stress in the brain. 

In animal TBI models, the protective effects of Minocycline (a microglia activator) and 

DFX (an iron chelator) on protecting BBB and lowering inflammation through decreasing 

TNF-alpha and suppressing oxidative stress to avoid edema have been explored [68–70].

Conclusion

Further prospective studies are needed to determine the efficacy of the aforementioned 

strategies, as well as other theorized methodologies, in preventing and managing TBI 

patients. This could lead to new insights into therapies that can significantly reduce 

subsequent insult/injury after a TBI. Looking forward, slosh mitigation and early 

neuroprotective interventions, as opposed to extracranial protective equipment like helmets, 

appear to offer a fresh paradigm for preventing and managing TBI by successfully targeting 

the intracranial environment.
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Figure 1: 
Anatomical relationship of omohyoid and internal jugular vein.
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Figure 2: 
Coup-Contrecoup Injury.
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Figure 3: 
Newton’s Cradle.
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Figure 4: 
The skull confines the brain, cerebrospinal fluid, and intracranial blood. If volume increases 

in any of these dynamics, the system eventually loses ability to compensate and intracranial 

pressure peaks.
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Figure 5: 
Overview of avian lung sacs.
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Figure 6: 
Partial rebreather mask that could be used to increase CO2 in humans.
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Figure 7: 
Respirator device that can acutely increase venous CO2.
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Figure 8: 
Mechanisms that increase CO2, erythrocyte volume, and/or cerebral blood flow can have 

protective effects on the ‘slosh’ effect.
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Table 1:

Overview of pharmaceutical treatments that target cerebrovascular dynamics.

References Study Design Critical Observations

Erythrocyte Disruption after TBI

41 Randomized trial in a rat model of TBI TBI causes increased erythrocytic lipid peroxidation and increases 
erythrocyte aggregation.

42 ex vivo analysis of human blood subjected to 
simulated explosive blast waves

Decreasing free space within a container (no slosh) reduces erythrocyte 
disruption and hemolysis compared to incompletely filled containers 
(slosh).

Effect of CO2 on erythrocytes & CBF

47 ex vivo analysis of whole blood from multiple 
mammal species

Erythrocytes increased in volume proportional to the relative CO2 

content of blood.

48 ex vivo analysis of human blood Increasing pCO2 causes an increase in blood viscosity

44 Non-controlled clinical trial Transient hyperventilation is associated with increased cerebral 
autoregulation reactivity.

50 Randomized trial in horses
Acetazolamide increases arterial and venous pCO2 during exercise 
without significantly affecting oxygenation.

Human Observational Studies & Pharmacologic Approaches

49 Non-controlled clinical trial Single dose of acetazolamide increases CBF by ~40%.

19 Observational studies of amateur and professional 
athletes

Altitude is inversely associated with risk of concussion during American 
football games
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