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A robust adaptive recurrent cerebellar model articulation controller (RARC) neural network

for non-linear systems using the genetic particle swarm optimization (GPSO) algorithm

is presented in this study. The RARC is used as the principal tracking controller and the

robust compensation controller is designed to recover the residual of the approximation

error. In the RARC neural network, the steepest descent gradient method and the

Lyapunov function are used for deriving the adaptive law parameter of the system.

Besides, the learning rates play an important role in these adaptive laws and they have a

great effect on the functions of control systems. In this paper, the combination of the

genetic algorithm with the mutation particle swarm optimization algorithm is applied

to seek for the optimal learning rates of the RARC adaptation laws. The numerical

simulations about the inverted pendulum system as well as the robot manipulator system

are given to confirm the effectiveness and practicability of the GPSO-RARC-based

control system. Compared with other control schemes, the proposed control scheme

is testified to be reliable and can obtain the optimal parameter about the learning rates

and the minimum root mean square error for non-linear systems.

Keywords: RARC neural network, GPSO algorithm, learning rate, robot manipulator system, non-linear systems

INTRODUCTION

Strictly speaking, almost all practical control systems are non-linear systems and there is a
difference between the mathematical model and the practical system. Besides, the structure and
parameters of the practical systems are generally unknown or time-varying and the disturbances
acting on the system are often random and unmeasurable in many cases. The neural network
has the advantages of highly parallel structure, powerful learning ability, continuous non-linear
function approximation ability, fault tolerance, etc., which greatly promotes and expands the
application of neural network technology in non-linear system identification and control (Hunt
et al., 1992). Recently, scholars have proposed generous research papers on neural network
control theory and engineering application. For a class of uncertain non-linear systems with
strict feedback, an adaptive neural network controller was designed using dynamic surface control
technique (Wang and Huang, 2005). For a class of uncertain Multiple-Input Multiple-Output
non-linear systems with unknown control coefficient matrix and input non-linearity, a variable
structure control method combining an adaptive neural network controller with backtracking and
Lyapunov synthesis is proposed (Chen et al., 2010). The paper presented a control scheme for the
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non-linear systems with input and state delay, which merges a
radial basis function neural network, backstepping, and adaptive
control (Zhu et al., 2008). As for a class of second-order non-
linear systems, a wavelet adaptive backstepping control system
was designed, which consists of a neural backstepping controller
and a robust controller (Hsu et al., 2006).

In 1975, Albus proposed the concept of the cerebellar model
articulation controller (CMAC) for the first time (Albus, 1975),
which was an imitation of the cerebellum learning structure,
also one of the local approximations in the neural network
system. Cerebellar model network system not only has non-
linear approximation ability, adaptive generalization ability and
associative memory ability, but also is a kind of fast convergence
neural network, which has been widely used in non-linear real-
time control system (Guan et al., 2016). An efficient controller
was proposed for the robot manipulators based on the structure
and local learning characteristics of CMAC (Commuri et al.,
1997). Considering the characteristics of non-linear uncertainty
model, the paper presented an adaptive connection controller
based on the monitoring system, which was composed of a
supervisory controller and adaptive CMAC (Lin and Peng, 2004).
Compared with fully connected neural networks, the CMAC
neural network (NN) has strong structural advantages and was
an effective control method for unknown dynamics non-linear
systems (Commuri and Lewis, 1995). For a class of multi-
input and multi-output uncertain non-linear systems, a self-
organizing CMAC control systemwas proposed, which combines
sliding mode control, compensation control and CMAC (Lin and
Chen, 2009). At the same time, a TKS fuzzy CMAC controller
integrates the robust compensation and adaptive law is proposed
to improve the precision of position control and speed control for
robot manipulators (Guan et al., 2018).

As a kind of artificial neural network, recurrent neural
network takes sequence data as input, recursion in the
direction of sequence evolution and all nodes are linked
in a chain to form a closed loop. Therefore, it can show
dynamic time series behavior. Unlike feed forward neural
networks, RNNs have the characteristics of memory and
parameter sharing. This performance also makes it extremely
useful for speech recognition, language modeling, machine
translation and other fields (Sak et al., 2014). A complex
fuzzy neural network system, which can be a modified version
of the fuzzy neural networks, was used for identifying and
controlling non-linear dynamic systems (Zhong et al., 2017,
2018; Lam, 2018). The recursive neuron has an internal
feedback loop which can capture the dynamic response of
the system and further simplify the network model (Lee
and Teng, 2000). The paper combines Takagi-Sugeno-Kang
fuzzy model with the wavelet neural network and constructs
a recurrent wavelet fuzzy neural network to identify and
predict the operation of non-linear dynamic systems (Lin
and Chin, 2004). For the non-linear uncertain systems, an
adaptive recurrent CMAC with sliding mode control was
proposed, and the performance of the system was proved
on the car-following system and the chaotic system (Lin and
Chen, 2006). For the motion control of the linear ultrasonic
motor, an adaptive recurrent CMAC based on variable optimal

learning rate and dynamic gradient descent method was
studied (Peng and Lin, 2007).

Particle swarm optimization (PSO) algorithm is an
evolutionary algorithm proposed by Kennedy and Eberhart
in 1995 (Eberhart and Kennedy, 1995). It is derived from the
simulation of bird predation and is an evolutionary computation
technology based on swarm intelligence. As a new parallel
optimization evolutionary algorithm, PSO can deal with a large
number of non-linear, non-differentiable, multi-peak as well
as non-continuous optimization and multi-peak optimization
problems, which was widely used in engineering and science
fields (Kennedy, 2011). In the 1970s, professor J. H. Holland
first developed the model of Genetic algorithm (GA) (Holland,
1973). It is an effective optimization method with principles
about genetics natural selection. GA is also very popular in the
fields of optimal scheduling, computer science, combinatorial
optimization as well as transportation problem since its simple
and universal, strong robustness and parallel processing
(Holland, 1992). The improvement of genetic algorithm in the
past is generally considered as the problem of premature and
convergence. An adaptive genetic algorithm with dynamic fitness
function for multi-objective problems in a dynamic environment
was proposed to review the performance of the algorithm
(Bingul, 2007). A new kind of genetic algorithms combined with
the concept of the horizontal set was proposed to control the
“precocity” of the genetic algorithm (Qinghua et al., 2006). In
order to improve the convergence of the genetic algorithm, an
improved crossover operation is proposed, and new population
diversity and individual correlation are defined (Cai and Xia,
2006). However, the research on genetic algorithm fails to fully
consider the situation of individuals in each generation, which
does not match the growth and improvement of individuals in
the process of evolution. In the selection and cross steps of the
genetic algorithm, individuals directly enter the next generation,
while individuals themselves do not get improved. Individuals
have to grow and adapt to the environment in order to reproduce
in nature. In the PSO algorithm, each particle is related to each
other, and the particle can be imitated in the natural world, and
the maximum performance can be improved and the particle can
be mature (Peng et al., 2008).

There are usually two options to select the appropriate
learning rate of the recurrent CMAC (learning rate of the
recurrent neuron, weight, the variance and the mean), one
of which is to adopt human expert experience. However, the
accuracy of the method is not high, and not suitable for complex
and uncertain problems. The second scheme is gradient learning
(Song et al., 2008; Misra and Saha, 2010). In this paper, a robust
adaptive recurrent cerebellar model neural network for non-
linear system based on GPSO algorithm is investigated, in order
to avoid trial-and-error and improve the local optimal problems.
In this system, the optimal learning rate for controller is
calculated by GPSO algorithm, the adaptive recurrent cerebellar
model articulation controller is used as the principal tracking
controller and the robust compensation controller is designed to
recover the residual of the approximation error, and the steepest
descent gradient method and the Lyapunov function are used for
deriving the online adaptive law parameter, so that the system
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stability can be guaranteed. Finally, the proposed GPSO-RARC-
based control system is applied to the inverted pendulum system
and the robot manipulator system to illustrate its effectiveness.
Compared with the existing research already reported in the
literature, the contribution of this paper has the following
three aspects: (1) This paper combines genetic algorithm and
mutation particle swarm optimization algorithm to find the
optimal learning rate of adaptive law to the robust adaptive
recurrent cerebellar model articulation controller and reduce the
system training time; (2) The proposed control scheme ensures
the stability of the entire system; (3) The compensation control
can eliminate the small disturbance, when there are uncertainty,
the compensation control deals with the lumped uncertainty. The
full text is structured as follows. After a basic introduction, the
formulation of the non-linear control system is shown in section
Problem Formulation. In section GPSO-RARC, a GPSO-RARC
control system is developed. Section Simulation Results provides
the simulation results about the manipulator system and the
inverted pendulum system. Finally, in Section Conclusion some
valuable conclusions are drawn from the results.

PROBLEM FORMULATION

The nth order non-linear system can be denoted as:

{

x(n)(t) = f (x(t))+ g(x(t))u(t)+ d(t)
y = x(t)

(1)

or, equivalent to formulas



























ẋ1 = x2
ẋ2 = x3
...
ẋn = f (x1, x2, · · · , xn)+ g(x1, x2, · · · , xn)u(t)+ d(t)
y = x1

(2)

in which f (x(t)) ∈ ℜ
m and g(x(t)) ∈ ℜ

m×m represent
smooth non-linear uncertain functions, which are assumed to
be bounded, but functions that are assumed to be bounded, and
assume g(x(t)) is invertible; u(t) = [u1(t), u2(t), · · · , um(t)]

T ∈

ℜ
m and x(t) = [x1(t), x2(t), · · · , xm(t)]

T ∈ ℜ
m are the

inputs and outputs of the control, respectively; x(t) =
[

xT(t), ẋT(t), · · · , x(n−1)T(t)
]T

∈ ℜ
mn is a state vector of

the system and is assumed to be measurable, and d(t) =

[d1(t), d2(t), · · · , dm(t)]
T ∈ ℜ

m is the unknown external
disturbance but bounded (

∣

∣d(t)
∣

∣ ≤ D).
The purpose of the control system is to design a controller so

that the state x(t) can track a given reference value xd(t). The
tracking error was denoted as e(t)1 xd(t) − x(t) ∈ ℜ

m, and the
tracking error vector of the control system is defined as:

E1

[

eT(t), ėT(t), · · · , e(n−1)T(t)
]T

∈ ℜ
mm (3)

If the dynamics and external disturbances of the controlled object
are known (i.e., the nominal functions of f (x(t)), g(x(t)) and

d(t) are known exactly), the so-called feedback linearization
method can be used for the control problem. In this way, an ideal
controller can be developed as:

u∗ =
1

g(x(t))

[

−f (x(t))− d(t)+ xd
(n) + KTE

]

(4)

in which K = [Kn, · · · ,K2,K1]T ∈ ℜ
mn×m is the feedback

gain matrix, where K i = diag(ki1, ki2, · · · , kim) ∈ ℜ
m×m (i =

1, 2, · · · , n) are non-zero positive constants diagonal matrix. The
following error dynamics are derived by applying the control law
(4) to the system (1). Suppose K is chosen so that all roots of the
polynomial h(s) 1 sn+k1s

n−1+· · ·+kn are strictly in the open left
half of the complex plane. This means that for any starting initial
conditions, the trace of the reference trajectory is asymptotically
achieved at lim

t→∞
|E| = 0.

Substituting (4) into (1) the error dynamic equation is
developed as:

e(n) + K1e
(n−1) + · · · + Kne = e(n) + KTE = 0 (5)

However, the non-linear functions f (x) and g(x) are usually
unknown and external disturbances are unknown and uncertain.
In this case, the control law (4) cannot be implemented in
the practical applications. In order to make the system output
x(t) effectively follow the given reference track xd(t), a GPSO-
RARC control system is developed to achieve a better control
performance in the following sections.

GPSO-RARC

The structure of GPSO-RARC control system consists of a sliding
surface, a robust adaptive recurrent CMAC where its learning
rates can be updated using the GPSO algorithm and a robust
compensation controller. Figure 1 shows the block diagram of
the RARC feedback control system.

The Recurrent CMAC Model
Figure 2 Shows an RCMAC model, in which T denotes a
delay time. The architecture of the RCMAC includes the inputs
space, the association memory space with recurrent weights, the
receptive-field space, the weight memory space and the outputs
space. The following describes the propagation of signals in each
space and the basic functions of each space.

1) Input space C: which can be described as the c =
[

c1, · · · , ci, · · · , cni
]T

∈ ℜ
ni , ci is the ith input in layer

1. Based on the specific control space, all variables of the
input state ci can be quantized to discrete regions (namely,
an element).

2) Association memory space (Membership function) A: usually
several elements are accumulated into one block and the
number of blocks nk is usually no less than two. A represents
an association memory space with nA (nA = ni × nk)
components. In the space, each block performs the Gaussian
function as a receptive-field basis function, and is described as:
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FIGURE 1 | The architecture of the GPSO-RARC control system.

φik = exp

[

−(cri −mik)
2

v2
ik

]

, for i = 1, 2, ..., ni, k = 1, 2, · · · , nk(6)

in which φik denotes the kth block of the ith input cri with the
mean mik and the variance vik. In general, the input of this block
can be described as follows:

cri(t) = ci(t)+ rik φik(t − T) (7)

in which represents the recurrent gain, φik(t−T)1 φikT indicates
the value of φik through time delay T. Obviously, the input of this
block includes the memory term φikT , which saves the previous
information about the network and presents dynamic mapping.
This is the obvious difference between RCMAC and traditional
CMAC. Where the variable c1 is separated into blocks A and ,
while the variable c2 is separated into blocks a and b. Shifting
each variable to an element yields different blocks. For example,
in Figure 2B the block C and D for c1, while the block c and d for
c2 are obtained by shifting an element. In this space, each block
has three adjustable parameters, namedmik, vik, and rik.

3) Receptive-field space (Hypercube) : H regions composed of
blocks (called Aa and Bb) are called receptive-fields. The
kth multidimensional receptive field function is described
as follow:

hk(cr,mk, vk, rk) =
∏ni

i= 1φik =
∏ni

i=1exp

(

−
(

cri−mik
vik

)2
)

(8)

for i = 1, 2, ..., ni, and k = 1, 2, ..., nk

in which cr = [cr1, cr2, · · · , crni ]
T ∈ Rni , mk =

[m1k, m2k, · · · , mnik]
T ∈ Rni and vk = [v1k, v2k, · · · , vnik]

T ∈

Rni . Meanwhile, the multidimensional receptive-field functions
can also be expressed in a vector form:

H =
[

h11, . . . , h1nk , h21, . . . , h2nk , . . . , hni1, . . . , hnink
]T

∈ ℜ
nink

=
[

h1, . . . , hl, . . . , hnl
]T

∈ ℜ
nl (9)

in which hik is associated with the ith layer and kth block, the
field is activated while the input is in the kth receptive-field. At
the same time, one or more of the same weights are activated
by nearby inputs, and the corresponding blocks export similar
outputs. The correlation is a very useful feature of the RCMAC,
which is a local generalization.

4) Weight memory (RCMAC output weight) W: in this space,
the parameter wnink is the weight which parameterizes the
RCMAC mapping(connects to hik), which can be represented
by the following formula:

w =
[

w11, . . . ,w1nk ,w21, . . . ,w2nk , . . . ,wni1, . . . ,wnink

]T
∈ ℜ

nink

=
[

w1, . . . ,wl, . . . ,wnl

]T
∈ ℜ

nl (10)

in whichwl is automatically adjusted from the initial value via the
online algorithm.

5) Output space Y : The outputs of RCMAC are the sum of
the activated receptive field multiplied by the corresponding
weight, expressed as:

uRCMAC = yo =

ni
∑

i=1

nk
∑

k= 1

wikhik (11)

and the outputs with the RCMAC can be described with the
following vector form as:

uRCMAC = y = wT H (12)

Since the recurrent unit of RCMAC contains the past value of the
receptive-field basis function, the results of the control network
have the features of dynamic characteristics and simple structure.
If the time delay T=0, the system will return to a conventional
CMAC mode. Moreover, the RCMAC will be simplified as a
recurrent neural network, in case of each block carries only an
element, and each input space has only one layer. Therefore,
RCMAC is a generalization of recurrent neural networks, but
it is more general, faster to learn and more to recall than
the latter.

Adaptive Law for RCMAC Control System
The robust adaptive RCMAC control system includes an adaptive
recurrent CMAC and a robust controller which is shown in
Figure 1, and output of the system as the following:

u(t) = uRARC = uARCMAC + uR (13)
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FIGURE 2 | (A) Architecture of an RCMAC. (B) Organization of a 2-D RCMAC.

FIGURE 3 | The flowchart of the GPSO algorithm.

in which uARCMAC is the output of the developed adaptive
RCMAC and uR is the output of the robust compensation.
uARCMAC is the main controller of RCMAC, which is used to
approximate the ideal controller in formula (4). The parameters
of RCMAC are adjusted online by the adaptive laws. uR is
the robust controller used to efficiently restrain the influence
of residual approximation error between the RCMAC and
the ideal controller, and guarantees the L2-stability of the
control system.

A sliding surface s(t) can be defined as follow:

s(t) = e(n−1) + K1e
(n−2) + · · · + Kn−1e+ Kn

∫ t

0
e(τ )dτ (14)

in which s(t) =
[

s1(t), s2(t), · · · sm(t)
]T

∈ ℜ
m, taking the

derivative about (14), and substituting with (1) and (13)

ṡ(t) = e(n) + K1e
(n−1) + · · · + Knė = e(n) + KTE

= xd
(n) − f (x)− g(x)u(t)− d(t)+ KTE (15)

then define L = 1
2 s

2(t) as the cost function, and its derivative is
L̇ = s(t)ṡ(t) ≤ 0 and substituting (13) in it

L̇ = s(t)ṡ(t) = s(t)[xd
(n) − f (x)− g(x)(uRCMAC + uR)

−d(t)+ KTE] (16)

According to the steepest gradient descent algorithm, the
parameters of RCMAC, ˙̂wk, ˙̂mik, ˙̂vik and ˙̂rik can be updated by
the tuning laws as below:

˙̂wk = −ηw
∂s(t) ṡ(t)

∂ŵk
= −ηw

∂s(t) ṡ(t)

∂uRCMAC

∂uRCMAC

∂ŵk

= ηws(t)gh k (17)

˙̂mik = −ηm
∂s(t)ṡ(t)

∂uRCMAC

∂uRCMAC

∂hk

∂hk

∂φ
ik

∂φ
ik

∂m̂ik
(18)

= ηms(t)gŵkhk
2(cri −mik)

v̂2
ik

˙̂vik = −ηv
∂s(t)ṡ(t)

∂uRCMAC

∂uRCMAC

∂hk

∂hk

∂φ
ik

∂φ
ik

∂ v̂ik
(19)

= ηvs(t)gŵkhk
2(cri −mik)

2

v̂3
ik

˙̂rik = −ηr
∂s(t)ṡ(t)

∂uRCMAC

∂uRCMAC

∂hk

∂hk

∂φ
ik

∂φ
ik

∂ r̂ik
(20)

= ηrs(t)gŵkhk
2(cri −mik)

v̂2
ik

φ
ikT

where learning-rates ηw, ηm, and ηr are positive for ˙̂wk, ˙̂mik, ˙̂vik,
and ˙̂rik, respectively.
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Genetic Particle Swarm Optimization
(GPSO) Algorithm
Particle swarm optimization algorithm (PSO) is a swarm
intelligence algorithm designed by simulating hunting behavior
of birds. The PSO moves the individuals in the population
to a good region according to the adaptability of the
environment. However, instead of using evolutionary operators,
each individual fly in the D-dimensional search space at a
certain speed and is regarded as a non-volume particle, and
dynamically adjusts according to the flight experience of itself
and its companions. The ith particle is represented as Xi =

(xi1, xi2, ... xiD), the best position (with the best adaptive value) it
has experienced is Pi = (pi1, pi2, ... piD), also known as pbest . The
index number of the best position experienced by all particles in
the population is denoted by the symbol g, namely Pg , also known
as gbest . The velocity of the particle i is Vi = (vi1, vi2... , viD).
For each generation, its d dimension (1 ≤ d ≤ D) is changed
according to the following equation:

vi,d(k+ 1) = ω · vi,d(k)+ c1 · r1 · (pbest − xi,d)

+ c2 · r2 · (gbest − xi,d) (21)

xi,d(k+ 1) = xi,d(k)+ vi,d(k+ 1) (22)

where c1 and c2 are the learning factors, which are also called
acceleration constant, ω is the inertia factor, r1 and r2 are the
uniform random numbers within the range of [0,1]. The right
side of the formula (21) consists of three parts. The first part
is the inertia or momentum part, which reflects the movement
habit of the particle, which means that the particle has a tendency
to maintain its previous speed. The second part is the cognition
part, which reflects the memory or remembrance of the particle’s
own historical experience, which represents the tendency of the
particle to approach its best position in history. The third part
is the social part, which reflects the group history experience of
synergy and knowledge sharing between particles.

Particle swarm optimization is simple to calculate and
converges quickly, but it lacks mutation ability and is easy
to diverge. Genetic algorithm has strong global search ability
and high efficiency, but it is prone to premature convergence
and poor local search ability. Therefore, a GPSO algorithm
is proposed in this paper, which integrates the crossover
and mutation operations of the genetic algorithm into the
optimization iteration process of particle swarm, and adopts
adaptive crossover and adaptive mutation to enhance the ability
of the population to jump out of the local optimal solution.

Firstly, the main parameters of PSO are improved in the
GPSO algorithm. The linear decreasing method is adopted for
inertia weight ω , so that the algorithm can have strong global
optimization ability in the early stage of search and detailed local
search in the late stage of search. The iterative formula is shown
in equation (23):

ω(k) = ωstart − (ωstart − ωend)k/kmax (23)

where ωstart is the weight of initial inertia, ωend is the weight of
terminate inertia; k is the current number of iterations; kmax is
the maximum number of iterations.

In order to make the algorithm have a strong global search
ability in the early iteration process, it can converge to the global
optimal quickly in the later stage, the value of learning factors in
this paper is evaluated by asymmetric linear variation, as shown
in equations (24) and (25):

c1 = c1s − (c1s − c1e)k/kmax (24)

c2 = c2s − (c2s − c2e)k/kmax (25)

where c1s, c2s and c1e, c2e are the initial and terminate iterative
value of learning factors of c1, c2 respectively.

Secondly,the crossover operation of GA is applied to PSO
in the GPSO algorithm. Particles in the population are selected
and randomly paired, and then paired particles are crossed
with selected probability pc. For cross particles xi and xj, the
calculation process is shown in equations (26) and (27):

{

xk+1
i = α1x

k
i + (1− α1)xkj

xk+1
j = (1− α1)xki + α1x

k
j

(26)

{

vk+1
i = α2v

k
i + (1− α2)vkj

vk+1
j = (1− α2)vki + α2v

k
j

(27)

where α1, α2 are two random numbers within the interval [0, 1],
and equations (26) and (27) represent the crossover operation of
the position and velocity of the paired particles, respectively.

Then, the mutation operation of GA is applied to PSO
in GPSO algorithm. The optimal position of each particle
varies with the selected probability pm. Assuming that the D-
dimensional variable of the individual optimal value pi is pdi ,

the variation operation of pdi is carried out with the strategy of
random perturbation. The variable β applied is subject to the
normal distribution with mean value 0 and variance 1, and its
mutation formula is shown in (28).

pdi = pdi (1+ 0.5β) (28)

The selection of crossover probability pc and mutation
probability pm is one of the important factors affecting the
optimization ability of the algorithm. If the pc is too small,
the generation speed of new individuals will slow down during
the iteration. If the pc is too large, the good individuals that
have been generated in the population may be damaged. If pm
is too small, then the ability to generate new individuals by
mutation operation will be weakened, which is not conducive to
maintaining the diversity of the population. If pm is too large,
it is similar to the random search algorithm. Therefore, this
paper proposes an adaptive crossover and adaptive mutation
strategy to make pc and pm automatically adjust according to the
evolutionary state of the population.

The rate and mutation probability are defined as shown in
equations (29) and (30):

pc =

{

(pc1−pc2)(fmax−f ′)
fmax−favg

f ′ ≥ favg

pc1 f ′ < favg
(29)
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FIGURE 4 | Single inverted pendulum system.

FIGURE 5 | Simulated pendulum systems on angle and angular speed based

on RCMAC.

pm =

{

(pm1−pm2)(fmax−f )
fmax−favg

f ≥ favg

pm1 f < favg
(30)

where pc1, pc2, pm1, and pm2 are constants, f ′ represents the
fitness value corresponding to the better individuals compared
with the two individuals with crossover operation; f refers to
the fitness function value of the mutant operational particle,
favg refers to the average value of the fitness function value of
the entire population at present. From the formula, it can be
seen that the probability of crossover operation and mutation
operation of individuals whose fitness function value is lower
than the population average is relatively high, which ensures
the population diversity. At the same time, when fmax − favg
decreases, the individual in the population tends to converge
to the local optimal solution. Meanwhile, the probability of
individual crossover and mutation will increase, which enhances

FIGURE 6 | Simulated pendulum systems on angle and angular speed based

on RARC_PSO.

FIGURE 7 | Simulated pendulum systems on angle and angular speed based

on RARC_GA.

the ability of the population to generate new individuals and
urges them to jump out of the local optimal solution.

Finally, the fitness function fitness =
m
∑

i=1

∥

∥ei(t)
∥

∥

2
is chosen as a

cost function, to evaluate the performance of learning rates in the
GPSO algorithm. The flowchart of GPSO is shown in Figure 3.

Robust Compensation Control
There is unavoidably the approximation error between the
adaptive recurrent CMAC(ARCMAC) and the ideal controller,
an ideal controller can be formulated as the sum of ARCMAC
and the approximate error:

u∗ = uARCMAC + ε(t) (31)
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FIGURE 8 | Simulated pendulum systems on angle and angular speed based

on RARC_GPSO.

FIGURE 9 | Tracking error for angle on four schemes.

Substituting (13) in (1), yield:

x(n) = f (x)+ g(x)(uARCMAC + uR)+ d(t) (32)

using the product of (4) and g(x) subtract (32), yield:

g(x)(u∗ − uARCMAC − uR) = e(n) + KTE = ṡ(t) (33)

The robust controller can reduce the influence of the
approximation error between the ARCMAC and the ideal
controller, thus achieving the tracking performance of L2.
Assuming that ε(t) exists and satisfies L2 bounded, consider the
specified L2 tracking performance (Chen and Lee, 1996):

m
∑

i=1

∫ T

0
s2i (t) dt ≤

m
∑

i=1

[s2i (0) / g0i]+
m

∑

i=1

r2i

∫ T

0
ε2i (t) dt (34)

FIGURE 10 | Two-link robot manipulator’s architecture.

TABLE 1 | Initial of learning rate and RMSE.

Algorithms Lr_m Lr_v Lr_w Lr_r Rmse

RCMAC 0.2 0.3 0.5 0.2 0.0158

RARC_ PSO 0.073 0.059 0.689 0.208 0.0153

RARC_GA 0.021 0.249 0.094 0.519 0.0150

RARC_GPSO 0.050 0.889 0.722 0.291 0.0056

Here ri is a prescribed positive attenuation constant. The
following formula describes the design of a robust controller:

uR(t) = (2R2)
−1

(R2 + I) s(t) (35)

where R = diag (r1, r2, · · · , rm) ∈ ℜ
m×m and I is the unity

matrix, then further state and prove the following theorem.
Theorem I: while the nth-order MIMO non-linear systems

described in (1), the RARC control system is designed as in (13),
in which uRCMAC is shown as (12) with the online parameter
learning algorithms (17)-(20), and (35) describe the design of the
robust controller. Then the desired L2 tracking performance in
(34) can be achieved for the specified attenuation levels ri , i =
1,2, · · · ,m.

Proof: The following formula gives the Lyapunov function:

V(s(t)) =
1

2
sT(t)s(t) (36)

Taking the derivative of the Lyapunov function and using (31),
(33) and (35), as below:

V̇(s(t)) = sT(t)ṡ(t)

= sT(t)g[ε(t)− (2R2)
−1

(R2 + I) s(t)]

=
m
∑

i=1
g0i[si(t)εi(t)− s2i (t)

r2i +1

2r2i
]

=
m
∑

i=1
g0i[si(t)εi(t)−

s2i (t)
2 −

s2i (t)

2 r2i
)]

=
m
∑

i=1
g0i[−

s2i (t)
2 − 1

2 (
si(t)
ri

− riεi(t))
2
+

r2i ε
2
i (t)
2 ]

≤
m
∑

i=1
g0i[−

s2i (t)
2 +

r2i ε
2
i (t)
2 ]

(37)
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Assuming εi(t) ∈ L2[0,T], ∀T ∈ [0,∞), taking the integration of
the above equation from t = 0 to t= T, yields:

V(T)− V(0) ≤
m

∑

i=1

g0i[−
1

2

∫ T

0
s2i (t) dt +

r2i
2

∫ T

0
ε2i (t) dt ] (38)

Since V(T) ≥ 0, the following inequality can be derived
from (38):

1

2

m
∑

i= 1

g0i

∫ T

0
s2i (t) dt ≤ V(0)+

1

2

m
∑

i=1

g0i r
2
i

∫ T

0
ε2i (t) dt (39)

using (36), the above inequality is equivalent to the following:

m
∑

i=1

∫ T

0
s2i (t) dt ≤

m
∑

i=1

[s2i (0)/g0i]+
m

∑

i=1

r2i

∫ T

0
ε2i (t) dt (40)

and the proof is completed.

Moreover, in (24), in the case of
∫ T
0 ε2i (t) dt < ∞ then

∫ T
0 s2i (t) dt < ∞ for all T, so the L2 stability of the closed-loop

system is guaranteed.

FIGURE 11 | Simulated results of a two-joint manipulator on RCMAC. (A) Position tracking for link1 and link2; (B) Speed tracking for link1 and link2; (C) Tracking error

for link1 and link2.

FIGURE 12 | Simulated results of a two-joint manipulator on RARC_GA. (A) Position tracking for link1 and link2; (B) Speed tracking for link1 and link2; (C) Tracking

error for link1 and link2.

FIGURE 13 | Simulated results of a two-joint manipulator on RARC_PSO. (A) Position tracking for link1 and link2; (B) Speed tracking for link1 and link2; (C) Tracking

error for link1 and link2.
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SIMULATION RESULTS

Single Inverted Pendulum System
There is the single inverted pendulum system on the vehicle,
as shown in Figure 4, and its dynamic equation is as follows
(Mori et al., 1976):

ẋ1 = x2
ẋ2 = f (x)+ g(x)u

(41)

where, f (x) =
g sin x1−mlx2

2 cos x1 sin x1/(mc+m)
l(4/3−m cos2 x1/(mc+m))

,

g(x) =
cos x1/(mc+m)

l(4/3−m cos2x1/(mc+m))
, x1 and x2 are the angle and

angular velocity of the pendulum, respectively, g = 9.8m/s2 is
the acceleration of gravity, mc = 1kg is the mass of the car, is
the mass of the pendulum, l = 0.5m is half the length of the
pendulum, u is the control input.

The tracking reference signals are xd(t) = 0.1sin(t), the initial
conditions for this system are set as x(0) = π/60, ẋ(0) = 0, the
robust compensation R = 0.05, the k1 = 3, k2 = 1 then the
inputs are s(t) = 3e+ ė+

∫ t
0 edt and ṡ(t) = ë+ 3ė+ e.

Considering the practical application, the off-line training
time of the three optimization algorithms is set to 2 s,
then the learning rate obtained by off-line training is taken
as the initial value of the learning rate parameter of the
system controller. For comparison, the original RCMAC
control system, the RARC control system based on GA
algorithm, the RARC control system based on PSO algorithm,
and the RARC control system based on GPSO algorithm
are applied to this single inverted pendulum system. Their
simulation results are shown in Figures 5–9. The state responses
x(t) and ẋ(t) of normal RCMAC and RARC based on
PSO (RARC_ PSO) are shown in Figures 5, 6, respectively

and state responses of RARC based on GA (RARC_GA)
and RARC based on GPSO (RARC_GPSO) are plotted
in Figures 7, 8, respectively. Moreover, the tracking errors
of various algorithms are depicted in Figure 9, and the
Root Mean Square Error (RMSE) are presented in Table 1,
respectively. Eventually, the simulation results show the proposed
RARC_GPSO control system can effectively achieve favorable
control for the single inverted pendulum system and can
get better tracking performance than others, especially in the
tracking of the angular speed.

Two Link Robot Manipulator System
The controlled object is an n-joint robot manipulator, and its
non-linear dynamic equation is (Lewis et al., 2003):

M(x)ẍ+ V(x, ẋ)ẋ+ G(x)+ F(ẋ)+ τd = τ (42)

where M(x) ∈ Rn×n indicates inertia matrix which is the
symmetrical positive definite, V(x, ẋ) ∈ Rn means the term of
centrifugal force and Coriolis force, Ṁ(x)−2V(x, ẋ) is the oblique
symmetric matrix, G(x) ∈ Rn is the gravity, F(ẋ) ∈ Rn is the
term of friction, τd(t) ∈ Rn is an unknown external disturbance,
τ (t) ∈ Rn is the joint torque vector applied by the actuator, and
x ∈ Rn represents the vector of the joint variable.

A two-joint system is presented as follow, as shown in
Figure 10, and the similar design process can be extended to any
n-joint system. The specific system parameters of the two joint
manipulators are described as below:

M(x)

=

[

l2
2m2 + l1

2
(m1 +m2) + 2l1l2m2 cos (x2) l2

2m2 + l1l2m2 cos (x2)
l2
2m2 + l1l2m2 cos(x2) l2m2

]

(43)

FIGURE 14 | Simulated results of a two-joint manipulator on RARC_GPSO. (A) Position tracking for link1 and link2; (B) Speed tracking for link1 and link2; (C)

Tracking error for link1 and link2.

TABLE 2 | Initial of learning rate and RMSE.

Algorithms Lr_m1 Lr_v1 Lr_w1 Lr_r1 Lr_m2 Lr_v2 Lr_w2 Lr_r2 Rmse1 Rmse2

RCMAC 0.1 0.1 0.5 0.1 0.1 0.1 0.5 0.1 0.0442 0.0369

RARC_PSO 0.1639 0.575 0.583 0.032 0.233 0.439 0.544 0.137 0.0194 0.0308

RARC_GA 0.459 0.563 0.456 0.044 0.471 0.586 0.492 0.087 0.0174 0.0279

RARC_GPSO 0.429 0.838 0.600 0.085 0.613 0.704 0.770 0.174 0.0145 0.0185
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V(x, ẋ) =

[

−l1l2m2ẋ2 sin(x2) −l1l2m2(ẋ1 + ẋ2) sin(x2)
m2l1l2 sin(x2) 0

]

(44)

G(x) =

[

(m1 +m2)l1g cos(x1)+ l2m2 cos(x1 + x2)
m2l2g cos(x1 + x2)

]

(45)

where x1, x2, m1, m2 and l1, l2 are the angle, mass
and length of joint 1 and 2, respectively. g means the
gravity acceleration.

In addition, the dynamics of the manipulator also includes the
non-linear viscous and dynamic friction terms of F(ẋ) and the
unknown disturbance τd, as follow:























l1 = 1.0 m l2=1.0 m
m1 = 0.8 kgm2=2.3 kg
g = 9.8 m/s2

F(ẋ) = 0.02sgn(ẋ)
τd = [0.2 sin(t) 0.2 sin(t)]

(46)

The initial state of the system is [x1d, ẋ1d, x2d, ẋ2d]
T =

[0.09 0 − 0.09 0]T , and the expected trajectory are
represented as:

x1d(t) = sin t x2d(t) = sin t (47)

in the robust compensation R = 0.5 ∗ I, k1 = 3 and k2 = 1.
In order to further prove the superiority and robustness of

RARC_GPSO control system, the other three neural network
control schemes (normal RCMAC NN, RARC_PSO NN and
RARC_GANN) are adopted to compare the position and velocity
tracking of the manipulator’s joints, as shown in Figures 11–13.
The control performance of the robust adaptive RCMAC control
system based on GPSO in the two-joint manipulator is shown
in Figure 14. It is obvious that the performance of RARC_GPSO
is better than that of the other three control methods in the
velocity tracking and position tracking, and it has the best
speed of error convergence. Table 2 represents RMSE of the
four controllers designed above, which reconfirm that the robust
adaptive RARC_GPSO is more excellent than the others in robot
manipulator control.

CONCLUSION

A robust adaptive RCMAC control system has been successfully
proposed for non-linear MIMO systems in this paper. The main
findings of this study are the development of a GPSO-based
RCMAC with the adaptive law for updating parameters, and the
learning rates can be optimized to best value based on the GPSO
algorithm. The control system includes an ARCMAC which is
developed to simulate the ideal controller, and a robust controller
which is designed to compensate for the difference between
ARCMAC and ideal controller. In this design, the optimal
learning rate and adaptive learning algorithm of controller
parameters are derived, and the L2-stability of the system is
proved by Lyapunov function. Furthermore, the simulation
results also prove the effectiveness of the control system. The
GPSO-based RCMAC has dynamic characteristics because it
considers the past value of received field basis function in
associative memory space, so it has outstanding performance in
general motion control and trajectory tracking. If the control
scheme is applied to classification, the effect is not very good
mainly because each sample in the classification is not necessarily
linked. The next research plan will refer to the framework of fuzzy
theory in the control of nonlinear systems (Zhong et al., 2019),
and constantly improve the algorithm to make it universal.
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