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Patients with schizophrenia have deficits in some types of procedural learning. Several
mechanisms contribute to this learning in healthy individuals, including statistical
and sequence-learning. To find preserved and impaired learning mechanisms in
schizophrenia, we studied the time course and characteristics of implicitly introduced
sequence-learning (SRT task) in 15 schizophrenia patients (seven mild and eight severe)
and nine healthy controls, in short sessions over multiple days (5–22). The data show
speed gains of similar magnitude for all groups, but the groups differed in overall speed
and in the characteristics of the learning. By analyzing the data according to its spatial-
position and temporal-order components, we provide evidence for two types of learning
that could differentiate the groups: while the learning of the slower, severe group was
dominated by statistical learning, the control group moved from a fast learning phase of
statistical-related performance to subsequence learning (chunking). Our findings oppose
the naïve assumption that a similar gain of speed reflects a similar learning process;
they indicate that the slower performance reflects the activation of a different motor
plan than does the faster performance; and demonstrate that statistical learning and
subsequence learning are two successive stages in implicit sequence learning, with
chunks inferred from prior statistical computations. Our results indicate that statistical
learning is intact in patients with schizophrenia, but is slower to develop in the severe
patients. We suggest that this slow learning rate and the associated slow performance
contribute to their deficit in developing sequence-specific learning by setting a temporal
constraint on developing higher order associations.

Keywords: serial reaction-time task, procedural learning, skill learning, motor learning, sequence learning,
statistical learning, chunking, schizophrenia

Introduction

Procedures, skills, and tacit knowledge are involved in almost every aspect of our everyday
activities: from perception and action to language, social behavior, and problem solving. Skillful
performance evolves through practice, and is implied by improved performance relative to the
baseline (Karni and Sagi, 1993; Karni et al., 1998; Censor et al., 2012; Shmuelof et al., 2012). It can
be acquired as well as assessed by non-declarative means (Nissen and Bullemer, 1987; Reber, 1993;
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Seger, 1994; Squire, 1994), and is the subject of extensive research
in varied human populations. One of these populations is
patients with schizophrenia, which are known to be impaired in
performing daily procedures, and have deficits in specific types
of procedural learning, such as sequence-learning measured with
the serial reaction time (SRT) task. Several learning mechanisms
contribute to implicit procedural learning in healthy individuals,
including statistical and subsequence-learning (chunking). To
find preserved and impaired mechanisms of procedural learning
in schizophrenia, we studied the evolution in time and the
characteristics of implicitly introduced sequence learning (SEQL)
in patients and in normal controls. This approach allowed us to
explore open research questions regarding procedural learning,
and to identify preserved and impaired information processing
mechanisms in schizophrenia.

Skills, Procedures, and Sequences of
Instructions
Perceptual and motor skill learning are implied by measures that
include speed, error rate, fluency, and smoothness (e.g., Shmuelof
et al., 2012). Skillful performance evolves in a non-linear rate,
through distinctive phases that depend on two crucial factors:
the amount of repetitions and the elapsed time, including the
time between the practice sessions, sometimes in sleep (Karni
and Sagi, 1993; Karni et al., 1995, 1998; Stickgold et al., 2000;
Korman et al., 2003; Ofen-Noy et al., 2003; Walker et al., 2003;
Press et al., 2005; Censor et al., 2012). Skillful motor performance
was taken to imply the existence of an underlying “motor plan”
at different abstraction levels (Clegg et al., 1998; Chafee and Ashe,
2007). In its advanced form, amotor procedure can be viewed as a
fixed (but changeable) sequence of motor instructions (Hikosaka
et al., 2002). Consequently, the terms procedural learning and
implicit SEQL were sometimes used as tightly linked concepts
(Willingham et al., 1989; Knopman andNissen, 1991; Green et al.,
1997).

Sequence Learning
Sequence learning refers to human’s ability to link between
external and/or internal temporal events, between elements
in a stream of information, and/or a sequence of actions or
movements. Sequences can be learned explicitly, according to
the temporal order of the items’ presentation (serial order),
in a conscious, declarative manner, e.g., as in the finger
tapping paradigm (Korman et al., 2003). However, implicit
SEQL is based on human’s ability to automatically extract
commonalities, regularities, and transitional probabilities from
a given set of repeating information. This ability stands at the
basis of our very fundamental perceptual, motor, and cognitive
abilities, including motor coordination, language acquisition,
social cognition, planning, prediction, reasoning, intuition, and
decision making (Reber, 1993; Saffran et al., 1996; Clegg et al.,
1998; Lieberman, 2000; Page and Norris, 2009). SEQL can
be acquired automatically, in the sense that it can occur
without intention or awareness, in an incidental, non-episodic
manner (Nissen and Bullemer, 1987; Reber, 1993; Seger, 1994;
Squire, 1994). It depends on the amount of practice and the
frequency of the repeated regularities (see Page and Norris, 2009,

for a summary). This type of learning involves several brain
mechanisms including simple associative brain mechanisms (i.e.,
Hebb and anti-Hebb rules; Nissen and Bullemer, 1987; Seger,
1994; Clegg et al., 1998; Curran, 1998) that allow for statistical
learning (Stadler, 1992; Reed and Johnson, 1994; Saffran et al.,
1996; Curran, 1998; Hunt and Aslin, 2001; Perruchet and Pacton,
2006) and information chunking processes (Gobet et al., 2001;
Sakai et al., 2003) at multiple, probably hierarchical abstraction
levels (Curran, 1995, 1998; Clegg et al., 1998; Graybiel, 1998;
Koch and Hoffmann, 2000). The SRT task (Nissen and Bullemer,
1987) has proven to be a useful model to explore implicit SEQL
and its underlying neuronal mechanisms for various human
populations (e.g., Curran, 1995; Jimenez, 2008).

The SRT Paradigm
The SRT paradigm is a four-choice reaction time task in which
visual cues are linked to spatial-specific motor responses (Nissen
and Bullemer, 1987; Robertson, 2007). In one of its forms, which
we used here, visual cues appear in any one of four possible
positions arranged horizontally on a touch tablet (see Figure 1);
the responses are made by rapidly touching the cued location
with a single finger. The cues are presented in a fixed, structured
series of spatial locations; thus, unbeknown to the subjects, the
cues introduce a sequence of lateral movements to be learned
(Richard et al., 2009). In the classical SRT paradigm, there are
two measures of learning: the reaction time for the complete
series (RT), and the sequence-specific learning (RT for a trained
sequence is faster than RT for a new, random, or pseudorandom
sequence; Robertson, 2007). However, studies that explored the
possibility that learning in the SRT task includes a statistical
learning component used the pattern of RT differences that
correlates with the underlying temporal order and/or the specific
spatial positions as a dependent measure. This measure allows
one to assess the learners’ ability to exploit different statistics
embedded in the input, across time (Hunt and Aslin, 2001). To
the best of our knowledge, this method has not been studied
in schizophrenia, until now. In the current study we explored

FIGURE 1 | The serial reaction time (SRT) paradigm implemented on a
touch tablet. Participants were presented with four squares (2 cm × 2 cm
each, referred to as 1–4 from left to right) that were “lit up” in an apparently
random sequence of 12 spatial positions, cyclically repeated 8 times (total of
96 presentation). They were instructed to touch the highlighted positions with
their preferred index finger “as fast as possible,” upon which the next position
was highlighted after 200 ms. The highlighting persisted on the screen until an
accurate response was made.
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two components of SEQL: statistical learning and subsequence
learning. These two components can be inferred from the spatial
position and the serial order analyses, respectively (see below).

SRT and Schizophrenia
The relative simplicity of the SRT paradigm, the possibility to
introduce and learn the sequence properties implicitly, and the
performance-based measure of learning make it a convenient
paradigm for studying procedural learning in subjects with
various psychiatric, neurological, and cognitive disorders, one of
which is schizophrenia. Schizophrenia is a brain-based disease
with yet unclear neuropathology (Harrison, 1999). It affects
basic human functions such as perception, motor coordination,
cognition, social interactions, language, and thought (Heinrichs
and Zakzanis, 1998; Harrison, 1999). Since all of these functions
are based, at least to some extent, on implicit learning,
procedures, and tacit knowledge, many studies have sought to
investigate whether procedural learning is intact in schizophrenia
patients. Moreover, schizophrenia patients also suffer from
difficulties in initiating actions, low motivation, and attention
deficits, which typically lead to poor and fragmented performance
in various skills. Since the acquisition of a new skill is generally
associated with a decrease in the need for effortful control
over performance, and the development of automaticity via
consolidating task-specific procedures (Poldrack et al., 2005), the
ability of the patients to master skills, if it exists, might be used to
overcome or bypass their initiation and motivational deficits and
thus, it has important therapeutic implications.

Green et al. (1997) explored procedural learning in
schizophrenia via the SRT task. They found comparable RT
improvement in both the patients and controls; however, the
patients performed significantly slower than the controls and
exhibited significantly less sequence-specific learning. Green
et al. (1997) suggested that the sequence-unspecific learning
may reflect an improvement in the pairing of visual cues and
the corresponding finger-response (Green et al., 1997, see also
Curran, 1995; Robertson, 2007). Following this work, several
studies showed that schizophrenia individuals can improve
performance on the SRT task, as revealed by faster RTs; however,
the evidence regarding their ability to achieve sequence-specific
learning is conflicting, with variations in task structure, the
amount of practice, and the medication status of patients playing
a role in the findings (Green et al., 1997; Perry et al., 2000; Marvel
et al., 2007; Foerde et al., 2008; Siegert et al., 2008).

In a critical review of the literature on SEQL in schizophrenia,
Remillard (2014) argued that the current evidence does not allow
one to distinguish between deficits in the acquisition of sequence
knowledge and the expression of this knowledge. He suggested
that the reported deficit could arise from a deficit in expressing
sequence knowledge via an anticipatory process, due to the
slow disengagement of attention that characterizes schizophrenia
patients. In support of the hypothesis of intact implicit knowledge
acquisition, patients with schizophrenia were found to be capable
of implicitly learn complex rule-based knowledge, as assessed
by the artificial grammar paradigm, although they needed more
practice than did healthy controls (Danion et al., 2001; Horan
et al., 2008).

Current studies of SRT in schizophrenia have two limitations:
(1) they are typically based on 5–10 practice blocks within a
single training session, that cannot accommodate a possible
slower learning rate in the patients, and (2) they focus on
learning the specific sequence as the primary (or even the only)
indicator of procedural learning (Green et al., 1997; Siegert et al.,
2008). In addition, these studies excluded from the analysis some
measurements that otherwise could reflect the rate of errors
and the smoothness of performance (e.g., trials with very long
reaction times), which are prominent measures in procedural
learning. To resolve these potential problems, we used multiple
practice sessions lasting many days, and analyzed procedural
learning at different abstraction levels, looking for evidence of
statistical learning, chunking learning, and procedural (skill)
learning.

Statistical-Related Learning in the Current
Study
Statistical learning enables the subjects to increase their speed by
a successful probability-based prediction of the next movement
or some of its components. Successful prediction allows for the
preparation and initiation of the next movement even before the
next cue appears. In the current study, predictions of the lateral
finger movement that is needed for rapidly touching the cued
location (Figure 1) have two components: direction and size. As
previously argued (Hunt and Aslin, 2001), a random sequence of
visual cues does not allow for any position-specific improvement.
However, the SRT sequence is typically designed, as in the
current study, with an equal probability of transition between
position pairs, and with no transition to the same position in
consecutive trials. As a result, the direction of movement from
the lateral positions is deterministic (to the right from the left-
most position and to the left from the right-most position).
Therefore, on average, it should allow for faster responses to
the central positions. This is because the direction of motion
is fully predictable for two out of the three possible transitions
toward each central position (e.g., from p1 to p2; see Figure 1),
and for only one out of the three possible transitions toward
each lateral position. The predicted statistical-related learning
could thus be assessed by analyzing the pattern of RT for the
different spatial positions, and its relationship to the serial order
in the sequence. A non-specific learning component should
show same RT gains for all four spatial positions. Statistical-
related learning should result in faster RTs for central compared
with lateral positions, regardless of the serial positions in the
sequence. When the learning of the specific sequence or parts of
it occurs, the spatial position’s specific distinctions are expected
to fade off.

Subsequence Learning
Humans have the ability to implicitly divide a chain of
information into chunks (subsequences). This ‘chunking’ process
was found to be a key mechanism underlying information
processing in perceptions, actions, learning, and cognition
(Gobet et al., 2001). For example, acquiring a complex sequential
skill involves chaining a number of elementary movements
(“chunks”) to make a complete sequence. A chunk is defined
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TABLE 1 | Demographic and clinical data of the participants.

Control (CONT) Mild (MILD) Severe (SEV)

Age 33 ± 3.7 32.9 ± 4.1 (19–44) 35.2 ± 4.1 (23–48)

Gender 6F/3M 4F/3M 1F/7M

Age of onset 21.5 ± 3.2 (18–27) 25.8 ± 4.1 (23–33)

Illness duration (years) 11.4 ± 4.1 (0.45–25) 8.2 ± 4.1 (0.16–27)

PANSS Positive 10.9 ± 0.72 (8–13) 11.7 ± 3.1 (7–18)

PANSS Negative 9.1 ± 0.76 (7–11) 22 ± 3.01 (12–35)

Number of practice days∗ 11.5 ± 2.9 (8–14) 9.1 ± 3.7 (5–14) 8.8 ± 4.4 (5–14)

Positive and Negative Syndrome Scale (PANSS) denotes positive-and-negative symptoms scores in the range 7–49. The number of practice days was averaged per
group, excluding sessions beyond 14 days. The numbers in each column correspond to the average value, ± SD, and the range of the individual data appear in
parentheses.

as “a collection of elements having strong associations with
one another, but weak associations with elements within other
chunks” (Gobet et al., 2001). It serves as a memory unit, or in
our case, a single motor plan. In the SRT paradigm, a chunking
process can be inferred from serial order analysis of the RTs. In
our analysis, we expect that when a subject learns a subsequence,
elements that belong to the same chunk will be faster than the
neighboring elements.

The Current Study
There were three aims of the current research: (1) to measure the
time course, the dynamic characteristics, and the rate of implicitly
introduced SEQL, in patients with schizophrenia as compared to
healthy controls, and (2) to identify and characterize impaired
and preserved mechanisms in this cognitive-related visual-motor
task (i.e., the acquisition of statistical knowledge and of serial-
order knowledge). (3) To test the ability of schizophrenia patients
with severe, predominantly negative symptoms to develop and
retain new skills. The multi-session format of the study, which
involved months of experimental recording, was chosen to
overcome a potential limitation of the previous typical single-
session SRT studies, which could have been affected by the slower
learning rate of the patients.

Materials and Methods

Participants
A group of 15 patients participated in the study. The patients
met DSM-IV criteria for schizophrenia and were recruited
from a day hospitalization patients’ population from a public
psychiatric hospital (Kfar ShaulMental Health Center). Patients
were screened for medical and neurological conditions. Subjects
with Parkinson disease and/or drugs or alcohol addiction
were excluded. Psychiatric symptomatology was assessed by
the Positive and Negative Syndrome Scale (PANSS). The
schizophrenia patients were clinically classified in correlation
with the dominancy and severity of their negative symptoms
and were divided into two equal groups: severe (SEV group,
N = 8) with PANSS-negative ≥12 and mild (MILD group,
N = 7) with PANSS-negative less than 12. The clinical and
demographic data of the groups appear in Table 1. The
PANSS-negative values were significantly different between

the groups, p < 0.001. All other demographic and clinical
parameters, including PANSS-positive, illness duration, age
of onset and age, had a large overlap between groups and
did not differ significantly (see Table 1). All schizophrenia
patients received atypical neuroleptic medication in equivalent
doses, (risperidone 2–3 mg, quetiapine 400–600 mg, olanzapine
10–15 mg, and clozapine 300–450 mg) and were stabilized on
medication prior to entering the study. The control group
comprised nine age-matched subjects, recruited from the hospital
community.

The study was carried out in accordance with the
recommendations of the Helsinki committee of the Jerusalem
mental health center affiliated with the Hebrew University with a
written informed consent from all subjects.

Apparatus and Procedure
Subjects were seated in front of a touch-sensitive computer screen
and viewed a static horizontal template of four adjacent squares
(black lines on a gray background), each having a 2 cm × 2 cm
width. On each trial one square was highlighted in blue. The
subjects were asked to touch the highlighted square (the visual
cue) ‘as fast as possible.’ The visual cue stayed on the screen
until the subject made contact with the screen at the highlighted
location. The time for an accurate response (from the target onset
until the subject touched the visual cue location) was recorded.
A new visual cue was then presented after a response–stimulus
interval (RSI) of 200 ms. Unbeknown to the subjects, the visual
cue followed a repeating sequence of locations. Designating the
spatial positions as 1–4 from left to right (Figure 1), we used
four different sequences: in the main experiment the sequence
(S12) was 1-2-1-4-3-2-4-1-3-4-2-3, as previously used (Jimenez
and Vazquez, 2005). This sequence is a second-order-conditional
(SOC) sequence, where each element has the same frequency
and can be predicted only from the identity of at least two
preceding elements (Curran, 1998). Successive trials were not
allowed to appear at the same spatial position. One block of
trials contained eight successive (cyclic) repetitions of the fixed
12-element sequence, making a total of 96 trials in a block.
The subjects performed three successive blocks in a session, a
single session for each training day, and the practice lasted 5–22
training days (see Table 1 for the group average and range).
On average, all groups practiced for a similar number of days,
and no correlation was found between any of the parameters
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and the number of practice days, including age, age of illness
onset, illness duration, as well as positive and negative symptoms
(p > 0.17 under all conditions). Most patients trained for 14
training days or less, but one mild patient trained for 22 days and
three severe patients trained for 16, 20, and 22 days,. We thus
chose the 14th day as the “last day of training” for the group
average data, and presented the full training data for selected
individuals (Figure 3). The interval between the practice days
was 5 (SD = 0.45, N = 15 patients) and 12.2 (SD = 2.2, N = 9
controls) days on average.

To determine whether the slow performance of the severe
patients, even after extensive practice, depends on the sequence
properties, we tested four severe patients, with a shorter, 7-
element hybrid sequence (S7), which was ‘1-2-1-4-3-2-4’; note
that this sequence is composed of the first seven elements of S12.
These four patients practiced S12 for 10–22 days and reached
a saturated performance, i.e., they did not improve for several
practice days. Then they practiced S7 for three practice blocks
per session. In this experiment we had 98 trials per block (14
repetitions × 7 elements).

Transfer Tests
To determine the specificity of the learning to the training
sequence (S12) after extensive training, we conducted a transfer
test, in a subset of the patients. Only patients that underwent
extensive training (equal or >8 days) were tested: four severe
patients, but just one mild patient, and seven controls. The
new sequence that we used was the 12-element SOC 3-2-
4-1-3-1-2-3-4-2-1-4; it was denoted as R12. Tests for the
transfer of learning were conducted on average after 13 practice
days (39 blocks). Three control subjects, who displayed an
additional improvement in speed after the first test for transfer
(8 days on average), performed another test for transfer at
a later practice stage (after 19 days on average). For each
participant we computed: (1) RT of the first block of S12
(RT0), which served as the baseline measure to compute RT
gains; (2) RT(S12) of the last practice block before the transfer
test; (3) RT(R12) of the first succeeding block, for the new
sequence R12. We then computed two measures for transfer: (a)
The percentage of transfer, defined as [RT(R12)–RT0]/[RT(S12)–
RT0]∗100, with 100% transfer implying non-specific learning; (b)
Sequence-specific gain, defined as RT(S12)–RT(R12). Two of the
four severe patients that practiced the 7-element sequence S7
were also tested with another 7-element sequence R7, which was
3-4-1-2-1-4-2.

Statistical Analysis
Data analysis was performed using SAS� v9.3 (SAS Institute,
Cary, NC, USA). A p-value of 0.05 was considered statistically
significant and nominal p-values are presented.

We compared the groups per day, using repeated measures
analysis of variance (SAS PROC Mixed). At first the per-day
(up to day 14) pairwise comparisons of the LSmean (model
estimated adjustedmeans) differences in RT between groups were
performed. Before fitting the model the 96 trials of each block
within day were averaged; thus, we modeled the (mean) RT as a
function of the group and day, and the day-by-group interaction

term, the day was entered as a random effect where the blocks
within day per subject were treated as the correlated (repeated)
measure. The same method was used to compare the mean RT
across participants in the time scale of blocks.

Using repeated measures analysis of variance (SAS PROC
Mixed) we compared between the groups and within the groups
per day by spatial position. Before fitting the model the 24 trials of
each spatial position within block within day were averaged, thus
we model the (mean) RT as a function of group, spatial position
and day and the day by group by spatial position interaction
term, day was entered as a random effect where the blocks within
day per subject were treated as the repeated measure. The within
day pair wise comparisons between the groups for each spatial
position and for spatial positions within groups are presented
with respective 95% confidence intervals.

Inter-subject, intra-block (i.e., “intra-subject”), and inter-
block (within session) variability were assessed by fitting several
(one per day for days 1, 3, and 10) random effects models with the
SAS PROC MIXED procedure, where the RT was modeled with
the subject, and block within subject entered as random effects.

The SDwere estimated from the variance components, and the
overall mean RT, adjusted for the block, was estimated from the
intercept and its 95% confidence interval. SD and the coefficients
of variations (CV) of the three measures are presented with their
respective 95% confidence intervals. The CV is a unit lessmeasure
of relative variability that is comparable across different measures.

The confidence intervals of the inter-subject SD and the
inter-block (within session) SD and CVs were calculated with
bootstrap methodology using 10,000 simulated samples. The SD
are compared via the confidence intervals; if the confidence
intervals overlap, then we stated that there is no statistically
significant difference between the two parameters.

Results

In the following, we will analyze the characteristics and
properties of learning in the SRT task. We start by analyzing
the time course of learning and its characteristics, including
inter- and intra-subject variability, as well as online (within
session) vs. offline learning effects. We then consider the
possible components of this learning, divided into (1) statistical
learning via spatial specific learning, (2) serial-order learning, via
subsequence learning (chunking), and (3) increased smoothness
in performance via exploring intra-subject RT variability.

The Time Course of Learning
The learning-related improvement in the mean RT over blocks
and practice days is shown in Figure 2 (group averages) and
Figure 3 (individual examples). We first averaged the 96 trials
per block, and then computed the LSmean (the model-estimated
mean) RT across subjects, per block and per day (Figure 2).
Using repeated measures analysis of variance (see the statistical
analysis), we found statistically significant differences in the series
mean RT between the SEV group and both other groups (MILD,
CONT) for every single day. The CONT group was found to be
similar to the MILD group (i.e., with no significant difference) on
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FIGURE 2 | Group learning curves. The mean series RT across participants
as a function of day (bold line) and block (three blocks per day, thin line) for the
three experimental groups (SEV, n = 8, MILD, n = 7, CONT, n = 9) as
estimated from the model (LSmeans, see Materials and Methods). The error
bars denote the residual SD.

almost all days except days 6–8, where the CONT group became
faster than theMILDgroup who, on average, started to “catch up”
and improved their RT performance 4 days later (Figure 2).

We found that with training, the three groups exhibited a
comparable gain of speed between the first and the last (14th)
day of training. The average RT gains were 269, 288, and 267 ms
for the CONT, MILD, and SEV groups, respectively. However,
the pattern of learning differed among the groups, and showed
opposite tendencies. The SEV group showed an initial short-term
phase of fast learning (from day 1 to 3) in which the mean RT
improved rapidly and accumulated to a total of ∼200 ms gain of
speed relative to the first day of practice (75% of the total learning
gain, Figure 2). This initial learning phase was followed by a
long-term, slower learning stage in which additional performance
gains were incrementally obtained over multiple sessions of
training (one session per a practice day). This phase converged
into a stable performance from the 11th day of practice. Two
severe patients continued to practice up to 22 practice days
(Figure 3 subjects YS and SP), but they had no further speedup
gains. In contrast, the other two groups exhibited a different
pattern of learning, starting with a very slow rate of learning for
the first 4 days (CONT) or even after 8 days of practice (MILD;
see Figure 3, for individual examples), followed by a sudden
increase in learning for 3 days, when it leveled off, and reached
saturation.

The individual examples in Figure 3 provide preliminary
results regarding the ability of patients with severe schizophrenia
to acquire performance speed which is comparable to normal.
The figure shows that some, but not all of the severe

patients improved their performance when they changed
from a 12-element SOC sequence to a 7-element hybrid
sequence.

Online and Offline Learning Effects
To analyze the online (within session) and offline (between days)
practice effects of the groups, we defined: (i) within-day RT
gain (within-day) as the difference between the LSmean RT of
the first and the last block on a given practice day, averaged
across subjects; (ii) between-day RT gains (between-days) as the
difference between the LSmean RT of the last block on a given
day, and the LSmean RT of the first block on the following
practice day. Figure 4 shows the average (across the first 10 days
of practice) of the within-day and the between-day RT gains for
the three groups.

For all groups, positive RT gains were found within-day
(online effects), but not between-days, where small forgetting
effects were found (negative off line effects). The within-day and
between-day parameters were modeled using repeated-measures
ANOVA models. Within-day and between-days were modeled
as a function of day, group, and the group-by-day interaction
term. We found that for the within-day effect, no statistically
significant difference was found between the groups, but the
interaction term was significant, implying that the pattern of
change over days of the within-day speed gain differs between
the groups. For the between-days effect, the analysis revealed
no statistically significant difference between the groups and the
interaction term was not significant. No statistically significant
correlation between the number of days that passed between
consecutive practice days and the between-days RT gain was
found.

The Effect of Practice on the Intra-Subject
Variability and the Smoothness of Performance
One characteristic of RTs for different populations and disorders
is the intra-subject RT variability. We noted that in the initial
stage of learning some of the severe patients had very large RT
variability, with very long pauses (up to 22 s; >25-fold their
initial average RT) and fragmented performance. However, this
abnormal variability largely disappeared with practice, reaching
normal levels relative to the RT itself, which could be described
as smoother performance. We analyzed this variability within
blocks, using the CV (see Materials and Methods, Statistical
Analysis). We found that the CV in the CONT and MILD groups
increased a little between days 1 and 10 (from CV = 26.25% to
CV = 34.61% for the CONT group; and from CV = 22.15%
to CV = 32.20% for the MILD group). In the CONT and the
MILD groups, this increase was probably due to subsequence
learning (see Figure 6) and to a systematic reduction in the
mean RT (Figure 2), with SD decreasing from 139 to 118 ms
(CONT group), but not in the MILD group. In contrast, the
CV for the SEV group was reduced to half between days
1 and 10 (from CV = 80.98% to CV = 38.43%), and the
within-block SD was reduced from 674.7 ms on the first day
of practice to 213.2 ms on the 10th day (see Table 2). Our
data show that with practice, the long abnormal pauses that
characterized the performance of the SEV group disappeared,
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FIGURE 3 | Examples of learning curves for 4 severe patients (Left) and for four control subjects (Right). Data were averaged across three blocks of 96
trials on each training day. Data are shown for two 12-element sequences: S12 (the trained sequence) and R12 (a different 12-element sequence for testing transfer),
and two 7-element sequences that were administered to the patients after they had reached a saturation level (S7 for training, R7 for test of transfer).

yielding smoother, probably procedurally based performance
(see section Evidence for Procedural Learning in Schizophrenia
Patients).

The Effect of Practice on the Inter-Subject
Variability
We further explored the inter-subject variability of each group
throughout the training sessions (see Materials and Methods,
Statistical Analysis). The inter-subject variability was relatively
high for the SEV group (a 2.4-fold range of individual subjects’
RT, 649–1566 ms); however, it was reduced to a 1.5-fold
range on the eighth day of practice, similar to that found
on the first day of practice in the CONT group. In contrast,

the CONT group started with a relatively small inter-subject
variability (455–657 ms) and reached a ninefold range of RTs
(64–508 ms) on the eighth day of practice. The intra-subject
variability of the MILD showed a similar tendency. The inter-
subject variability was assessed by fitting several (one per day
for days 1, 3, and 10) random effect models, where the RT
was modeled with the subject entered as a random effect (see
Materials and Methods, Statistical Analysis). The inter-subject
variability throughout the days was compared via the coefficient
of variation measure (CV), which is defined as the ratio of
the model-estimated SD and the mean RT of the population).
Using this analysis, we found that the between-subject variability
in the control group almost doubled itself, increasing between
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FIGURE 4 | The average (across the first 10 days of practice, across subjects) of the within-day and the between-days RT-gains for the three groups.
Negative numbers imply “forgetting.” The average time that passed between consecutive practice days was 10.5±2, 6+0.6, and 5±1, days for the CONT, MILD,
and SEV groups, respectively.

day 1 and day 10 from CV = 28.4% to CV = 52.09%. The
MILD group showed the same tendency: the between subject
variability increased between day 1 and 10 from CV = 23.59%
to CV = 47.27%. In contrast, the inter-subject variability in the
SEV group decreased with training, by more than half between
day 1 and day 10: from CV = 90.29% to CV = 41.29% (see
Table 3).

To summarize so far, we found that the SEV group was slower
than the other groups, exhibited a different type of learning
than did the CONT and MILD groups, and after several days
of practice reached RT values that were within the range of the
initial RTs of the other two groups. They also exhibited opposite
tendencies regarding the pattern of inter- and intra- subject RT
variability during learning. Table 4 summarizes these results.
No offline learning effect was found in our study, pointing to
implicit (as oppose to explicit) learning process (Robertson et al.,
2004).

We now turn to investigate the different aspects of the
learning, staring with the statistical learning as reflected by spatial
specific learning.

Spatial Position Specific Learning
In this section, we analyzed the learning-related improvement
of the RT, for the different spatial positions. For this purpose
we grouped together trials that shared the same spatial position
throughout the trained sequence (3 repetitions in a trained
sequence, 24 repetitions in a block), and tested their mean
RT as a function of training. Given our experimental settings,
and the theoretical arguments presented in the introduction,
we hypothesized that statistical learning should result in faster
responses to the cues at the central spatial positions (p2 and
p3) and slower RTs to the peripheral positions (p1 and p4). No
RT differences are expected between positions that share similar
spatial eccentricity. Learning the serial order of the sequence, or

parts of it, should reduce or diminish these spatial effects (see the
Introduction).

Figure 5 plots the LSmean RT over time for each spatial
position (p1–p4) by group. Using repeated measures analysis
of variance, we compared the groups and within the groups,
per day, by spatial position. Before fitting the model, we
averaged the 24 trials of each spatial position within blocks on
each day. Thus, we modeled the (mean) RT as a function of
group, spatial position, day, and the day × group × spatial
position interaction term. Day was entered as a random effect
where the blocks within day, per subject were treated as the
repeated measure. Based on this analysis, we found that the RTs
were affected by eccentricity (central vs. peripheral positions),
as hypothesized here by probability-related considerations.
However, this effect changed as a function of training and
group.

On the first day of practice the CONT group exhibited a
significant RT difference (>76 ms, p < 0.0001) in all four
combinations of central vs. peripheral position comparisons. The
|RT difference| between responses to cues with the same spatial
eccentricities (i.e., p1, p4, and p2, p3) was <4 ms (n.s.), with
faster RTs for the central spatial positions. This probability-
related effect (see the Introduction) faded with practice, reaching
similar mean RTs for all spatial positions on the last day of
practice. In contrast, it took the SEV group 8–9 practice days to
reach the above spatial position-specific effect, with a significant
RT difference in all four combinations of central vs. peripheral
position comparisons (|RTdiff| > 135 ms; p < 0.0001 for
cross eccentricity comparisons; |RT diff| < 17 ms (n.s.) for the
same eccentricity comparisons). This probability-related effect
persisted until the last day of practice. (See Supplementary Table
S1 for full details).

The analysis of the MILD group’s data showed a similar but
weaker effect compared with that found in the CONT group
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TABLE 2 | Intra-subject (within block) variability on practice days 1, 3 and 10 for each of the three groups.

Group Day
number

Within block
SD

95% CI of within
block SD

Within block
CV%

95% CI of within block
CV%

Control 1 139.524 [135.67–143.61] 26.25% [17.50–33.75%]

Mild schizophrenia 1 122.589 [118.90–126.51] 22.15% [14.15–29.15%]

Severe schizophrenia 1 674.698 [655.67–694.87] 80.98% [24.77–104.3%]

Control 3 136.406 [132.77–140.24] 28.35% [20.48–36.97%]

Mild schizophrenia 3 99.201 [95.985–102.64] 19.88% [14.69–28.12%]

Severe schizophrenia 3 268.904 [261.32–276.94] 42.41% [20.27–53.68%]

Control 10 118.170 [114.61–121.95] 34.61% [23.36–50.05%]

Mild schizophrenia 10 125.879 [120.19–132.14] 32.20% [18.59–73.22%]

Severe schizophrenia 10 213.238 [205.43–221.66] 38.43% [30.04–42.42%]

TABLE 3 | Between subject variability on practice days 1, 3, and 10 for each of the three groups.

Group Day
number

Between subject
SD

95% CI of between
subject SD

Between subject
CV%

95% CI of between
subject CV%

Control 1 150.94 [95.643–195.21] 28.40% [18.59–35.64%]

Mild schizophrenia 1 130.51 [89.088–163.54] 23.59% [15.61–30.05%]

Severe schizophrenia 1 752.28 [241.34–1158.4] 90.29% [34.88–114.6%]

Control 3 143.88 [109.48–180.69] 29.90% [21.93–37.93%]

Mild schizophrenia 3 142.41 [87.661–180.85] 28.54% [17.05–41.23%]

Severe schizophrenia 3 338.28 [154.37–483.42] 53.36% [29.28–65.52%]

Control 10 177.87 [125.84–200.26] 52.09% [30.42–70.44%]

Mild schizophrenia 10 184.80 [88.293–203.84] 47.27% [18.59–73.22%]

Severe schizophrenia 10 229.13 [153.46–271.23] 41.29% [30.75–45.17%]

TABLE 4 | The table summarizes the characteristics of the learning as a function of practice days, for the SEV (pink), and the CONT (blue) groups.

Group: SEV CONT

Days: 1–3 4–8 9–14 1–3 4–8 9–14

Average RT msec
On the first and the last days

854 ± 44 503 ± 50 521 ± 41 283 ± 44

Learning rate F S S/N N/S F S/N

Inter-subject variability H L L H

Intra-subject variability H L L H

Spatial-position-effect X
√ √

X

Series-position-learning X X X X x/
√ √

The SEV group started from fast (F) learning rate on the first 3 days, and moved to slow (S) and No-change (N) rate; and from High (H) inter and intra subject variability to
Lower (L) variability. The CONT group showed an opposite tendency. Note that on the last day of practice, the SEV group reached the same characteristics that represent
the performance of the CONT group.

(see Figure 5 and Supplementary Table S1). On the first day of
practice, theMILD group showed a significant RT difference in all
four combinations of central vs. peripheral positions, with faster
RTs for the central spatial positions. (RT difference > 73 ms,
p < 0.0001 for three cross eccentricity comparisons, and RT
difference = 43 ms, p = 0.015 for the p3, p4 combination.)
The RT difference between the responses to the two central
cues was n.s. (p < 0.093), and the RT difference between the
responses to the two peripheral cues was significant (p = 0.024).
This probability-related effect faded with practice, reaching non-
significant differences in RTs for all spatial positions on the last
day of practice (see Supplementary Table S1).

Serial Order Learning
In this section, we analyzed the learning-related improvement
in the RT, for the different series positions. For this purpose,
for each subject we grouped trials that shared the same
serial position (1–12) throughout each block (eight repetitions
per position per block), and tested their mean RT (across
the blocks per day) as a function of the training day.
Our aim was to see if and how subsequence learning
develops in the SRT task, and how spatial position learning
(which could be related to statistical learning) relates to
series-position learning (which could be related to chucking
processes).
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FIGURE 5 | Spatial position specific learning. The mean series RT across participants as a function of day for the three experimental groups (SEV, n = 8, MILD,
n = 7, CONT, n = 9) and for the four spatial positions (1–4 in different colors) as estimated from the model (see Materials and Methods). The error bars denote the
residual SD. Note that the SEV group showed increasingly faster RTs for the central compared to the peripheral positions with practice. In comparison, the RTs of all
positions for the CONT and MILD groups converged with practice.

Figure 6 shows the per serial position mean RTs on the first
day of practice, and on three other representative practice days at
later stages of learning for the CONT,MILD, and the SEV groups.
We found that on the first day of practice the CONT group
exhibited a regular pattern of spatial-position related temporal
behavior, with a clear difference between series positions that
were related to central spatial positions (series positions 2, 5,
6, 9, 11, and 12), and positions that were related to peripheral
spatial positions (series positions 1,2,4,7,8, and 10; Figure 6A).
The SEV group started much slower than the CONT group, and
needed several days of training to develop a clear spatial position-
related pattern of performance with faster RTs for central spatial
positions, regardless of their serial position (Figure 6C). The
MILD group (Figure 6B) displayed a less clear effect of spatial-
position-specific learning on the first day of practice. These
results are consistent with the results and analyses of the previous
two sections (see the Discussion).

With practice, the CONT (but not the SEV) group changed
from a spatial-position-specific pattern to a series-related specific
performance, where performance at positions 5 and 6 were
similar to each other and were found to be systematically
faster than all the other serial positions, including positions
11–12, which shared with them the same spatial positions
(‘121432413423’; see individual examples in Figures 6G–I for
one CONT, one MILD, and one SEV subject, respectively). We
interpret this finding as evidence for chunking learning (see
the Discussion). Since different subjects developed this type
of learning at a different learning rate, implicitly dividing the
sequence into different fragments (or chunks) on different days,
the group’s average RT (across subjects) could mask the fine
details of this type of learning. Thus, we show in Figures 6D–F

examples of chunking in one control, one mild, and one
severe patient. As shown, the control subject and the mild
patient (but not the severe patient) developed sequence-specific
learning gradually, via subsequence learning. Moreover, a direct
comparison of the average RT for the fastest and most salient
positions (5 and 6), to positions 11, 12, which share with it
the same spatial positions (2 and 3), shows that for the control
subject and the mild patient, but not for the severe patient,
the two subsequences were learned at a different rate, pointing
to chunking learning (Figures 6G–I). The individual examples
demonstrate how sequence knowledge can develop via a gradual
chucking process (e.g., Figure 6D).

Transfer Test
Although the main emphasis of the current study was on
investigating statistical and subsequence learning, we conducted
an additional test, in a subset of the patients, to determine the
specificity of the learning in relation to the trained sequence
(S12). Only patients that had undergone extensive training
(>7 days) were tested: four severe patients, one mild patient,
and seven controls. Three control subjects, who exhibited a
highly significant learning gain after the first test for transfer,
performed another test for transfer at a later, advanced practice
stage, which was used to assess their transfer effect. Specificity of
learning was quantified by determining the percentage of transfer
of the learning gain from the trained to the new sequence (see
Materials and Methods), with 100% transfer indicating that no
sequence-specific learning had occurred.

Figure 7A shows the percentage of transfer of learning
from the trained (S12) to the new (R12) sequence. The results
indicate a dependency between the percentage of transfer and
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FIGURE 6 | Learning of subsequences as a function of training. (A–C) The temporal dynamics of the RT for each of the 12 elements in the trained sequence,
plotted for the CONT (A), the MILD (B), and the SEV (C) groups. The x-axis represents the serial position (1–12) in the sequence, with RT data averaged across
blocks in a day (eight repetitions in a block, three blocks in a day) and then averaged across subjects. Error bars denote 1 SE of the mean across subjects. (D–F) are
individual examples from one control subject, one mild and one severe patients, respectively. At the bottom of sub-figures (D,F) we introduced for each serial
position the related spatial position to be pressed in the experiment. It can be seen that during the initial phase of training (CONT group) and on the last days of
training (SEV groups) the RTs for the central positions were faster than the responses to the peripheral positions, regardless of their serial position. With training, the
CONT group learned a subsequence (series position 5–6), and performed it better than all the other subsequences, including the subsequence at positions 11–12,
which included the same spatial-position in a different order (‘1-2-1-4-3-2-4-3-1-4-2-3’). These effects were less clear for the MILD group; however, this group did
display temporal dynamics similar to the CONT group. Since the subjects learned the subsequences at a different rate and order, we present here three individual
examples for one control, one mild, and one severe patient. (G–I) Three examples of individual RT learning curves of two sub-parts of the trained sequence [serial
positions 5,6, (sub Seq 1) and serial positions 11,12 (sub Seq 2)], for a control subject (G), a mild patient (H), and a severe patient (I). The two subsequences shared
the same spatial positions (p2, p3), but differed in their temporal order. Data were averaged across three blocks per day × two serial positions (N = 6); error bars
denote 1 SE of this mean.
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FIGURE 7 | The sequence specificity of training following extensive practice. Sequence specificity was assessed by measuring series RT on a new
sequence (R12) following a multi-day period of training on the first sequence (S12). The plots show a scatter representation of different individuals for two specificity
measures plotted against the general level of performance [RT (S12)] before the transfer test. (A) The percentage of transfer of learning, one data point (latest
measure) per subject (B) Sequence-specific gain (see Materials and Methods); note that in (B), two (rather than one) data points are shown for each of three
subjects who were tested twice, the first of whom is shown as a thin line. Both graphs show that the speed of performance in all subjects, both patients and
controls, is inversely correlated with the specificity of learning, with faster being more specific.

the general speed of performance (RT of S12): a high (>80%)
transfer for the slow performers (four severe patients and three
controls) and a small (<40%) transfer for the faster performers.
Figure 7B shows the sequence-specific gain [the difference
between RT(S12) and RT(R12)] plotted against RT(S12) for all
the transfer tests that were conducted. The trend line shows
a negative correlation (R = –0.75) between the sequence-
specific gain and the trained RT, with slower individuals
(patients and controls) being less specific. Taken together, these
results suggest that the speed of performance in all subjects
indicates the specificity of learning, with faster being more
specific.

Discussion

We studied the time course and characteristics of SEQL in
schizophrenia (severe and mild) patients and control subjects. All
participants practiced the task in short sessions over many days,
(5–14 sessions; with some reaching over 20 practice sessions,
on different days). The sequence was introduced implicitly via
visual cues on a touch tablet, which triggered a sequence of
lateral movements to be learned (Richard et al., 2009). The
data show a similar magnitude of learning (speed gains) across
days for all three groups, including the severe schizophrenia
patients (∼270 ms speedup, Figure 2). However, the groups
differed in overall speed: comparable RT was found for the
mild patients and controls (∼300 ms after practice), but slower
RT was found for the severe patients (550 ms after practice).
By analyzing the data according to its spatial (Figure 5) and
temporal (Figure 6) components, we provide evidence for two
types of procedural learning: an initial visual-motor statistically
related learning process (Figure 5), and later, series-related,
subsequence learning (Figure 6), which typically characterizes
the SRT paradigm. Next, we will discuss the different learning

types and the way that patients can be distinguished from
controls.

Evidence for Two Stages in Sequence Learning
Statistical learning was suggested to be a component of
SEQL (Perruchet and Pacton, 2006). Using the SRT paradigm,
several studies (Stadler, 1992; Reed and Johnson, 1994) have
shown that SRT performance is sensitive to the statistical
relationships between trials and transitions. Moreover, (Hunt
and Aslin, 2001) have shown that in a given SEQL task,
subjects may implicitly learn several statistics in parallel.
These important demonstrations leave open the question
of whether statistical learning and subsequence learning are
independent processes. This fundamental question is the subject
of a debate that goes beyond the specific realm of the
visual-motor SRT task (Meulemans and Van der Linden,
2003; Perruchet and Pacton, 2006). Theoretically, statistical
computations and chunk formation (here, subsequence learning)
could be two independent processes that may automatically
and simultaneously be activated (Meulemans and Van der
Linden, 2003; Perruchet and Pacton, 2006). In the current
study we explored the evolution in time of statistical and
SEQL in a SRT task over a prolonged period of time,
and thus we could examine this fundamental question. Our
results clearly showed that statistical learning and subsequence
learning are two stages in SEQL. We found that statistically
related learning is evident for slow responses, around 550 ms,
whereas subsequence learning is evident at faster RTs (around
300 ms; Figures 5 and 6). Note that the shape of the
learning curves in Figures 2 and 3 provides independent
and complementary indications of the two stages of learning,
as will be discussed next in Section “The interpretation of
slow performance.” Our results also showed that the spatial-
position-specific learning effect can be obtained very quickly,
within the first day, block, or even the first cycle, as found
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for the CONT and MILD groups. These groups (but not
the SEV group with the slower SEQL rate, Figures 5 and 6)
progressed to the next stage of learning where they learned
fragments of the sequence, and performed them faster than
the others (Figure 6). These subsequences depended on the
temporal position in the series and not on the spatial position
of the cue. Importantly, the first subsequence that is learned
(Figure 6) is typically based on the fastest subsequence temporal
positions (5 and 6) whose speed advantage is due to implicit
statistical considerations. The hypothesis that these findings
suggest that the two learning processes are limited by different
time constraints will be discussed in the next section. In
summary, our findings support the prevalent information
processing models in oral (Saffran, 2001; Perruchet and
Pacton, 2006) and visual-scene analysis (Fiser and Aslin, 2005;
Perruchet and Pacton, 2006) in which statistical computations
and chunk formation are considered as two successive steps
in information processing and SEQL, with chunks inferred
from prior statistical computations (Perruchet and Pacton,
2006).

Temporal Constraints on Sequence Learning
There are different temporal constraints inherent in the two
stages of SEQL discussed above.Whereas theoretically, the visual-
motor learning stage can be obtained by creating simultaneous
pair wise associations between visual and motor cell activations,
the formation of sequence-specific predictions requires the
integration of information from three successive trials, owing
to the properties of the SOC sequence. It is reasonable to
assume that the need to form associations among three successive
elements is limited by the capacity and temporal characteristics
of the implicit working memory of the participants, and by
the temporal properties of the mechanism that creates these
associations. For example, a possible mechanism for both
learning types may rely on Hebbian associations, which require
the activation of pairwise cell assemblies in a certain (small) time
window (e.g., Caporale and Dan, 2008). These considerations
suggest that in the absence of declarative knowledge, statistical
learning can be activated at slower RTs compared with sequence-
specific learning. This conjecture is supported by the current
finding that the statistical learning is evident here in a time
window of ∼500 ms (plus the 200 ms of the RSI) or even higher,
whereas sequence-specific learning becomes effective below an
average RT of 500 ms (Figures 5–7). Given these constraints, the
statistically related learning could precede and possibly enable
the learning of the sequence. In support of this argument, we
noted that the first subsequence that is learned is typically
based on the fastest subsequence temporal positions (5 and 6)
whose speed advantage is due to implicit statistical considerations
(Figure 6).

Spatial-Position Specific Learning as a
Statistical Learning Process
In the Introduction, we hypothesized that under the constraints
of our experiment, a statistical learning component should
appear as a spatial position-specific learning effect, with faster
responses to the central spatial positions relative to the lateral

positions, regardless of their serial order in the sequence. In
accordance with this assumption, the data showed that at an
average RT of around 550 ms, the trained subjects of all
three groups responded faster to the central positions than
to the peripheral ones (Figure 5; Figure 6A day1; Figure 6C
day > 7), regardless of their position in the sequence. The
finding that statistical-related performance is found above a
certain speed limit supports the notion that it reflects the
activation of a probability-based internal program. According to
our interpretation in the Section “Introduction,” the advantage
of the central positions may suggest the existence of a
probability-based motor plan that enables the preparation and
even the initiation of lateral movements toward the location
with the highest probability. Such a program can set the
direction of the next movement when initiated from the
lateral positions, and may set the velocity of the movement
according to the average step size in the task (1–2 squares on
average). Being a probability-based program, its performance
is limited, since the final step of the movement (the actual
choice) depends on the actual visual cue (Willingham et al.,
1989).

The Interpretation of Slow Performance
One salient finding in our study is that the SEV group performed
slower than the other two groups but had a similar overall
gain of speed (∼270 ms), in accordance with previous work
(Green et al., 1997). A naïve interpretation would suggest that
similar speed gains reflect similar learning processes. However,
a closer inspection reveals that the SEV group had different
performance characteristics and a different time course of
learning, with a paradoxically faster speed improvement during
the initial practice days. Specifically, during the first 3 days
of practice the SEV group achieved the majority of its speed
gains (∼200/270 ms) and its average RT improved by 24%
(Figure 2). In contrast, in this initial stage of practice, the other
two groups exhibited much lower gains of speed (∼52/270 ms)
and its average RT improved by 9–10% (See also individual
examples, Figure 3). If one ignores the overall speed level of
the groups, the finding of a higher initial learning rate for
the severe patients could suggest that the SEV patients have
a faster learning rate than do the controls. This suggestion
could be surprising, given the various cognitive, memory, and
motivation deficits that characterize severe schizophrenia, as
well as the previous evidence for abnormal learning in these
patients (Vohringer et al., 2013). A possible explanation is
that the learning rate of the severe patients is in fact slower
than that of the other two groups, with a prolonged initial
statistics-related learning phase (Figure 5). This suggestion is
strongly supported by the analysis we made in this study (for
a summary, see Table 4), which suggests that the SEV group
developed statistical-related visual-motor performance, whereas
the CONT group moved from a fast stage of statistical learning
to subsequence (sequence specific) learning (Figures 5–7).
Our results support previous suggestions that practice does
not necessarily make perfect, and that a limiting factor in a
given context could be the period of plastic changes (a few
sessions), and the amount of progress in a given learning
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context (Adini et al., 2002). It also suggests that the absolute
(and not just the relative) level of performance is an important
factor that should be taken into account when studying implicit
learning.

Sequence-Specific Learning in Schizophrenia
Patients
Our results extend the findings of many previous studies that
showed conflicting results regarding the ability of schizophrenia
patients to learn the temporal order of the trained sequence
(Green et al., 1997; Perry et al., 2000; Marvel et al., 2007;
Foerde et al., 2008; Siegert et al., 2008; Remillard, 2014). We
found that some of the patients from the MILD group did
exhibit subsequence learning. In comparison, the patients from
the SEV group, who were tested for transfer with another
sequence, exhibited little or no sequence-specific learning, since
above 80% of their learning was transferred to a new SOC
sequence (Figure 7). Instead, they displayed an evolution of
statistical learning throughout the practice days. Our findings
are in accordance with previous suggestions that procedural
learning in the SRT can be divided into separate learning
processes, one of which is sequence-specific and the other
which is not (Knopman and Nissen, 1991; Green et al.,
1997).

Evidence for Procedural Learning in
Schizophrenia Patients
In many studies, schizophrenics have been found to be slower
and more variable than normal controls (Schwartz et al., 1989).
Since RT appears to have trait-like properties in schizophrenia
patients (Schwartz et al., 1989), the diversity of assumptions and
theoretical arguments that are represented within the boundaries
of RT experiments is immense (Nuechterlein, 1977), including,
for example, “dissociation from environmental stimuli, lower
motivation, less intense concentration of attention or inability
to attain a high level of preparation” (Rodnick and Shakow,
1940). In our study, as in previous studies (e.g., Green et al.,
1997), the severe (but not the mild) patients exhibited high
intra-block RT variability, with occasional long pauses (up to
22 s; >25-fold of their initial RT). Importantly, with practice,
these pauses were eliminated, and the performance became
faster and smoother (the intra-block variability halved itself),
leading to similar mean and median RT values. Since our
measured RT reflects the time needed for correct responses, our
results also show (indirectly) a decrease in the rate of error, a
gain of speed and smoothness, all of which are indications of
the development of procedural (skill) learning (e.g., Shmuelof
et al., 2012). In light of our finding regarding statistical and
subsequence learning in the different groups, we suggest that
given prolonged practice, schizophrenia patients, including those
patients with high, predominantly negative symptoms and rigid
behavior, can acquire and retain different types of procedural
knowledge and new, sensory-motor, cognitive-related skills.
These newly acquired procedures may lead to relatively fluent
performance. However, the procedural knowledge that underlies
a new skill may differ among subsets of patients and healthy
controls.

The ability of schizophrenia patients to acquire new
procedures is supported by previous studies that found evidence
of preserved skill learning in schizophrenia, as assessed by the
artificial grammar paradigm (Danion et al., 2001; Horan et al.,
2008), the Tower-of-Hanoi tasks (Goldberg et al., 1990), and the
rotary pursuit task (De Picker et al., 2014). Note that in all of these
studies, as was found here, the patients needed more practice,
sometimes over multiple days, to reach performance comparable
to that of healthy controls (Goldberg et al., 1990; Danion et al.,
2001; De Picker et al., 2014).

Why do Severe Schizophrenia Patients have
Deficits in Sequence-Specific Learning?
Previous studies show conflicting results regarding the ability
of schizophrenia patients to develop sequence-specific learning
in the SRT task (Green et al., 1997; Perry et al., 2000; Marvel
et al., 2007; Foerde et al., 2008; Siegert et al., 2008). Researchers
thus concluded that at least some of the schizophrenia patients
suffer from deficits in SRT procedural learning (Green et al.,
1997). Here we tested the possibility that the inability of the
patients to develop sequence-specific learning is due to the short
practice period with the task (i.e., all the training was in a
single session). We found that the patients could be divided
into two sub-groups. Of these, the group of patients with the
severe predominantly negative symptoms (some of them with
rigid, robotic-like behavior) exhibited very little sequence-specific
learning (Figure 7), and did not exhibit subsequence learning
(Figures 5 and 6). In contrast, their learning was dominated
by statistically related learning, even after months of practice
consisting of 2–3 sessions per week (Figures 5 and 6). Possible
explanations derived from previous studies include deficits in
their implicit working memory (Haenschel and Linden, 2011),
and/or deficits in their cortico-cerebellar loop (Green et al.,
1997). Our results suggest an alternative explanation, in which
an initial temporal constraint, imposed by slow performance,
prevents higher order associations that are critical for learning
the sequence. With practice, however, the patients become fast
enough to counteract this temporal constraint, but at that stage
they reach a stable non-plastic state owing to prolonged practice
with a constant context (Adini et al., 2002). This explanation
suggests that changing the sequence or other contextual elements
should enable or promote learning.

Summary and Conclusion

We found that prolonged practice, with short (few minutes)
sessions over multiple days was enough to develop and
consolidate procedural learning having similar gain in all
subjects, both schizophrenia patients and healthy controls.
The statistical learning component was found to be intact in
the schizophrenia patients. However, those patients with high,
predominantly negative symptoms (i.e., the severe patients) were
slower to acquire the spatial position-specific statistics, possibly
due to their large temporal variability at the initial stages of
learning. Importantly, after reaching a saturation level at RT
similar to the initial speed of the controls, some severe patients
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could quickly improve their performance when the sequence
length and complexity were reduced, thus demonstrating that
their performance limit was not due to an inability to move
faster or to learn subsequences. Future studies should explore
the possibility that long sequences could be learned by severe
schizophrenia patients, using a cascade of short subsequences.

The finding that patients with severe schizophrenia
can learn and retain procedural skills, while exhibiting
different performance characteristics that can be measured
using a portable bedside device (tablet), has interesting
clinical implications. For example, the paradigm could
be used for an objective clinical assessment, since the
performance characteristics (with or without learning)
differentiated those patients with mild and severe
predominantly negative symptoms. Moreover, this study
presents a possible method for bypassing the initiation

and motivational deficits and the difficulties in performing
basic, everyday procedures that characterize severe
schizophrenia.
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