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Purpose: Transcriptomic profiling has enabled the neater genomic characterization of several cancers, among
them colorectal cancer (CRC), through the derivation of genes with enhanced causal role and informative gene
sets. However, the identification of small-sized gene signatures, which can serve as potential biomarkers in
CRC, remains challenging, mainly due to the great genetic heterogeneity of the disease.
Methods: We developed and exploited an analytical framework for the integrative analysis of CRC datasets,
encompassing transcriptomic data and positron emission tomography (PET)measurements. Profiling data com-
prised two microarray datasets, pertaining biopsy specimen from 30 untreated patients with primary CRC,
coupled by their F-18-Fluorodeoxyglucose (FDG) PET values, using tracer kinetic analysis measurements. The
computational framework incorporates algorithms for semantic processing, multivariate analysis, data mining
and dimensionality reduction.
Results: Transcriptomic and PET data feature sets, were evaluated for their discrimination performance between
primary colorectal adenocarcinomas and adjacent normal mucosa. A composite signature was derived,
pertaining 12 features: 7 genes and 5 PET variables. This compact signature manifests superior performance in
classification accuracy, through the integration of gene expression and PET data.
Conclusions: This work represents an effort for the integrative, multilayered, signature-oriented analysis of CRC,
in the context of radio-genomics, inferring a composite signaturewith promising results for patient stratification.
© 2019 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The advent of “omics”-technologies (microarrays, andmore recently
thewave of Next Generation Sequencing (NGS) technologies) is revolu-
tionizing oncological research and treatment, through the introduction
of molecular signatures, as a key instrument for streamlining evaluation
of disease onset and progression. Regarding colorectal cancer (CRC), the
application of these high-throughput technologies has already
highlighted significant genomic alterations and revealed specific genes
with increased causality concerning pathological development [1,2].

However, the translation of the plethora of biomedical data derived
frommicroarray experiments into clinical practice remains challenging,
especially when the aim is the derivation of putative biomarkers.
Colorectal tumors are extremely heterogeneous, involving distinct
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molecular pathways and epigenetic alterations [3–5]. Moreover, this
complexity is further enhanced by the environmental crosstalk, as
well as particularities of the isolation and collection of the biologicalma-
terial. This results in lack of reproducibility between different studies,
routinely observed in various cases [6]. Thus, the pressure is intense
for earlier, rapid, more accurate diagnostic, and ideally non-invasive
therapeutic strategies. F-18-Fluorodeoxyglucose (FDG) is the most
commonly utilized positron emission tomography (PET) radiopharma-
ceutical agent, which is transported and phosphorylated like glucose
but then trapped in the cell. Although not routinely applied in initial
CRC staging, FDG PET/CT represents an evolving modality with proven
value in staging, detection of recurrence and therapy monitoring of co-
lorectal tumors [7,8]. Here, we propose an analytical workflow for the
integrative analysis of CRC data, through inference of robust, composite
signatures encompassing both transcriptomics and PET measurements.
The derived signatures capture key processes and pathways consis-
tently engaged in CRC manifestation and were evaluated for their
potential in tumor classification in an independent public RNA-seq
dataset.

2. Methods

2.1. Patients, Tissue Specimens

A total of 30 patients (Table 1) with histologically confirmed,
primary, untreated colorectal adenocarcinomas were studied.
Among them, 13 patients were selected from a previous cohort [9],
complemented by their gene expression measurements from both can-
cer andmatched normal colon tissue. The tissue specimens of the tumor
and normal colon were removed during surgery and immediately fro-
zen in liquid nitrogen. Total RNA was extracted for further processing
and microarray hybridization, as previously described [9] (with the dif-
ference that Affymetrix HG-U133plus2 platform was used). The quality
of isolated RNA was evaluated photometrically using the 260/280 ratio
and on an agarose gel. All studies have been approved by the Ethical
Committee of the University of Heidelberg and the Federal Agency for
Radiation Protection. Detailed information for each patient, is included
in the Supplementary Table S1.

2.2. FGD PET Data and Procedures

The FDG dynamic PET (dPET) examinations were performed over
the abdomen in all patients, using a 28-frame protocol for 60 min. De-
tails regarding dPET data acquisition have already been described [10].
PET images have been iteratively reconstructed (6 iterations, 2 subsets)
Table 1
Basic clinicopathological characteristics of the 30 total patients in the two microarray
datasets. Overall, thepatients represent a relatively homogenous cohortwith only primary
colorectal cancer adenocarcinomas.

Patient Characteristics Microarray Platform

hgu133a
(13 patients)

hgu133plus2
(17 patients)

Number of patients

Sex F 7 8
M 6 9

Tumor Stage T1 1 1
T2 – 6
T3 10 10
T4 2 –

Lymph Node Status N0 7 12
N1 2 1
N2 4 4

Synchronous distinct metastasis (M) 4 2
Anatomic Location Right-sided 7 8

Left-sided 6 9
Mean Age, (range) 70 (58–81) 64 (51–83)
with the ordered subset expectation maximization (OSEM) algorithm.
The dynamic evaluation of the PET data has been performed with the
PMOD Software (PMOD Technologies LLC, Zuerich, Switzerland) (Sup-
plementary Fig. S1). Volumes of Interest (VOIs) have been placed over
the tumor area, the reference tissue (normal colon tissue) as well as in
the descending aorta. Time activity curves have been calculated for all
VOIs. Regarding data analysis, this was based on visual (qualitative)
analysis of the FDG PET/CT scans, semi-quantitative evaluation based
on standardized uptake value (SUV) calculations, and quantitative
analysis based on a two-tissue compartment model. The two-tissue
compartment model requires the use of an input function, which
provides the tracer concentration in the vessels. We used an image-
derived input function via a VOI placed over the descending aorta. The
application of a two-tissue compartment model leads to the extraction
of the kinetic parameters k1, k2, k3 and k4 aswell as influx (INF-Ki), tak-
ing into account the fractional blood volume (VB). These indices
describe specific molecular processes of FDG: k1 reflects the carrier-
mediated transport of the tracer from plasma to tissue while k2 reflects
the transport of FDG back from tissue to plasma, and k3 represents the
phosphorylation rate while k4 the dephosphorylation rate of the
radiotracer (Fig. 1). Influx (Ki) is derived from the equation = (k1 ×
k3)/(k2 + k3). In addition to performing compartment analysis, a
non-compartment model based on the fractal dimension (FD) for the
time-activity data was also applied. FD is a parameter of heterogeneity
based on the box counting procedure of chaos theory [11].

2.3. Computational Methods

2.3.1. Microarray Data Analysis
Arrays HG-U133 and HG-U133plus2 were used for respectively 13

patients (data from previous study, GEO accession number
GSE110225) and17patients from this study (data deposited inGEO, Ac-
cession Number GSE110225), in duplicates, comprising tumor and
surrounding tissue (adjacent control). The two datasets were pre-
processed, integrated and analyzed as a single dataset. Complete
microarray analysis was performed with R (R versions 3.2.2, 3.3.1 and
3.5.0)/Bioconductor software [12], using custom CDF annotation [13]
(Fig. 2). Technical details and statistical analyses for the derivation of
differentially expressed genes are described at Supplementary Legend
of Fig. 2.

2.3.2. Functional Analysis of Gene Expression Data
In order to detect and rank significantly altered biological processes

and their respective driver genes from the aforementioned statistical
comparisons, we utilized the BioInfoMiner platform (https://
bioinfominer.com) [14, 37], which performs pathway analysis,
exploiting advanced statistical and network analysis criteria, applicable
on various biological, hierarchical vocabularies (Gene Ontology,
Reactome Pathways and MGI Mammalian Phenotype Ontology).

2.3.3. Association of Gene Expression and Clinical Data
As the integrated dataset is highly heterogeneous, Spearman corre-

lation analysis was used to produce rho Correlation coefficients and
their relative asymptotic P-values (threshold: |cor| ≥ 0.6 & p-value
Fig. 1. Schematic presentation of the two-tissue compartment. Cplasma represents the
tracer concentration in blood, C1 the unbound (non-metabolized) tracer in tissue, and
C2 the metabolized tracer in tissue. In case of FDG k1 is the transport rate of the tracer
from blood to tissue, k2 the transport rate back to blood, k3 the phosphorylation rate
and k4 the dephosphorylation rate.

ncbi-geo:GSE110225
ncbi-geo:GSE110225
https://bioinfominer.com
https://bioinfominer.com


Fig. 2. Computational workflow applied for the integrative analysis of the two microarray datasets. Complete analysis was performed in R statistical software/Bioconductor (R versions
3.2.2, 3.3.1 & 3.5.0). Details of the framework are described at the Supplementary Legend of Fig. 2.

179E.–I. Vlachavas et al. / Computational and Structural Biotechnology Journal 17 (2019) 177–185
b.05) in order to select the most correlated genes with any of the PET
variables, from the initial list of the 911 DE common genes.
2.3.4. Derivation and Evaluation of Informative Feature-Sets for CRC
Classification

Gene features were selected from the subset of differentially
expressed genes deriving from the microarray analysis using the
limma R package [15], and prioritized by BioInfoMiner as master
regulators. The data mining approach applied to the 3 different groups
of features (only genes, only PET features and both types of data), is
summarized in the following steps: (1) implementing a cross-
validation scheme with a Random Forest classifier for each group
separately (10 fold cross-validation, repeated 10 times for 10 different
random seeds) (2) evaluation and comparison of the relative model
performances by the aggregated resampling results (R package caret)
[16]. Additionally, the contribution of each variable to the initial com-
posite signature of the 102 features, was evaluated through Multiple
Factor Analysis (R packages FactoMineR and FactoShiny) [17].

Finally, lasso feature selectionwas applied to derive themost impor-
tant discriminative variables (genes and PET measurements), and the
final feature subset was derived from the total aggregated results
(R package glmnet: 100 different random seeds/10-fold cross valida-
tion, alpha = 1 and lambda = lambda.1se, for each random seed [18].
2.3.5. Epidemiological Evaluation of the 22-Gene Signature in the TCGA
COAD RNA-Seq Dataset

A dataset of 519 RNA-seq samples, from 41 solid tissue normal and
478 primary colon adenocarcinomas surgically removed from patients
prior to therapeutic administration of chemotherapy or other therapies
[19], was retrieved from the GDC (Genomic Data Commons) database,
analyzed for gene expression and used as an independent dataset for
evaluation of the classification capacity of the 22 gene signature [20],
utilizing the R package TCGAbiolinks (Supplementary Fig. S2). The char-
acterization and grouping of cancer samples based on the 22-gene sig-
nature, was performed as described below. Briefly, median expression
value across all cancer samples is computed for each gene. For each
sample a numeric value of 1 is assigned if its expression is higher than
the median for each gene, or 0 if it is lower. For each gene-subgroup
depicted in Fig. 5, an average expression score is computed for each
sample. Finally, if the average expression score of a sample is N0.5, it is
characterized as “Highly expressed” for the relative Group, else Low.
2.3.6. Survival Analysis
Based on the pre-defined groups of patients described in the

previous section, the prognosis of each cluster was examined by
Kaplan-Meier overall survival estimators (R package TCGAbiolinks-
TCGAanalyze_survival function). Moreover, the survival outcomes of
the aforementioned groups were compared by log-rank tests (Surv
function-R package survminer). Finally, the relative Hazard Ratios
were computed with the R package survival (coxph function).
3. Results

3.1. Selection of Genes Characterizing Primary Colon Adenocarcinomas

Differential expression analysis between tumor and adjacent tissue
revealed a total of 1760 significantly Differentially Expressed (DE)
genes, from which 916 were up-regulated, and 844 were down-
regulated (Supplementary Table S2). Several cytokines were identified
among the top-up-regulated genes (CXCL3, CXCL1, CXCL2), as also vari-
ous cadherins (CDH3) and specific phosphoproteins (SPP1). On the
other hand, the top down-regulated genes with themost significant de-
crease in expression, included AQP8, CLCA4, MS4A12, CA1, GUCA2A,
ZG16, SLC263, CA4, UGT2B17& SLC26A2. The functional enrichment anal-
ysis of the 1760 DE genes, revealed key biological processes as signifi-
cantly enriched, including among other, cellular response to stimulus,
cell cycle, metabolism, chemotaxis and cell migration, DNAbiosynthesis
and regulation of cell death (Fig. 3). Interestingly, the majority of genes
involved in cell cycle are up-regulated, including nodal genes like cyclin
B1 (CCNB1) and cyclin dependent kinase (CDK1), both essential for mi-
tosis progression, suggesting an uncontrolled cell proliferation. In addi-
tion, processes related to telomere maintenance, contain almost
exclusively up-regulated genes (24 out of 25), supporting that this
could enable replicative immortality, one of the important hallmarks
of carcinogenesis [21]. The results of the functional analysis are shown
in Fig. 3A.

For the derivation of a minimal gene set, characterizing cancer man-
ifestation, two additional comparisons, one comprising 24 samples from
patients without distant metastases and one with the remaining 6 pa-
tients with distant synchronous metastases, were performed
(Supplementary Tables S3 & S4). The intersection of the 911 common
genes, was retained as an initial consensus gene set characterizing pri-
mary colorectal adenocarcinomas (Fig. 3B). These genes were subjected
to functional network analysis with BioInfoMiner web platform,



Fig. 3.A. Top rankedGOBiological Processes resulting from the application of semantic analysis on the 1760 genes found as differentially expressed between cancer and normal tissue. GO
terms identified as significantly enriched are grouped according to their biological relevance (horizontal axis). The vertical axis depicts the number of relevant genes. B. Common and
unique DE genes found by the three statistical comparisons: all 30 cancer samples versus their paired controls (‘total comparison’), 24 cancer samples from patients without distant
metastases versus their adjacent paired controls (‘non-metastatic’ comparison), and 6 cancer samples from patients with synchronous distant metastases versus their respective
controls (‘metastatic’ comparison).
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implying the utilization of functional and pathway annotations as
features driving the selection of important genes. This selection ap-
proach contributes to the generalization capability of the prioritized
genes, because it preserves the underlyingmolecular basis. This analysis
highlighted a subset of 94 linker genes (Supplementary Table S5), with
pivotal role in the cross-talk among distinct molecular pathways,
namely telomere length regulation, nuclear transport, growth, tumor
suppression and structural abnormalities of the large intestine (abnor-
mal crypts of Lieberkuhn morphology) (Supplementary Fig. S3).
Fig.4.A. Correlation plot (FactoShiny R package) combining 94 selected linker genes (marked in
correlate with four of the PET variables (SUV, k3, FD, INF), whereas the 4 (k4, VB, k1, k2) are l
dataset (Dim2). B. Projection of the samples to the first two PCs, based on both PET and gene
PET variables, clearly separates cancer samples from the adjacent control ones.
3.2. Integration of Gene Expression and PET Variables

Integration of gene expression and PET data, resulted in a single
composite feature-set, consisting of the 94 selected genes and the 8
PET variables. Multiple Factor Analysis (MFA) was performed, in order
to correlate heterogeneous variables and measure their contributions
to the total variation of the composite set. In Fig. 4 the results for the
first 2 axes (Principal Components, PCs) are shown, where the simulta-
neous projection of both PET and gene expression data sets off
green)with the 8 PET variables (marked in red). On thefirst PC (Dim1) genes significantly
argely orthogonal (independent) and contribute additional information to the composite
features (R package factoextra). First PC (Dim1), spanned by the 94 genes and 4 of the
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interesting putative association patterns between the twodata layers. In
detail, in Fig. 4A we observe the high correlation of 4 PET variables
(marked in red, SUV, k3, FD, INF) with a large group of genes. The corre-
lation between the two (molecular and PET) variable groups is captured
by the first PC (Dim1), which accounts for 40.64% of total variation. The
second PC (Dim2), integrates the contributions of solely PET variables
(k4, VB, k1 and k2). In the first dimension, genes and PET variables
share equal contributions (PET = 49.98% & genes = 50.04%), while in
the second dimension the PET variables dominate (~88% versus
12.14% attributed to genes). Hence, 4 PET variables out of 8 are
correlated to gene expression, whereas the other 4 are largely orthogo-
nal (independent) and contribute unique, additional variance, largely
unaccounted by the molecular descriptors, to the composite dataset.
In Fig. 4B, the separation of samples according to the same first 2 PCs,
is shown.

This result supports the utilization of PET measurements for patient
stratification, as on one hand, part of them correlates stronglywith gene
expression measures and can serve as proxies of the underlying
molecular pathways and on the other hand, another part provide
additional non-redundant information. This result also suggests a per-
formance advantage of the composite feature-set, if both types of data
are available.
3.3. Evaluation of the Feature-Sets through Classification Methods

The performances of the three feature-sets (Genes-only, PET-only &
Composite) in regard to tumor classification were evaluated through
themachine-learning, cross-validation scheme, with respect to the Sen-
sitivity, Specificity and Receiver Operating Characteristic (ROC) metrics
(Fig. 5). Whereas all perform well, the composite feature-set yields an
overall better performance, showing the advantage of combining the
gene expression datawith the PET kinetic data. Notably ROC, which bal-
ances specificity and sensitivity, is significantly improved attaining an
area under the curve (AUC) of 0.97. Furthermore, from the aggregated
results of the cross validation procedure with Random Forests, the 94
genes showed an overall better sensitivity (that is predicting the cancer
samples), whereas the 8 clinical quantitative variables illustrated a rel-
atively higher specificity.
Fig. 5.Groupeddotplots of the average cross-validation resampling results (representative
example using a specific random seed), for the 3 groups of variables: only the 94 hub
genes, only the 8 PET variables and the combination of both (ROC, Sensitivity,
Specificity-10 fold cross-validation, repeated 10 times for 10 different random seeds).
Using the total merged microarray dataset as the training set, the composite signature
yields overall better performance measures than either PET, or genes separately.
3.4. Derivation of a Composite Signature

The composite feature set (94 genes +8 PET variables) was further
optimized by mathematical methods for dimensionality reduction, in
order to derive theminimum set of featureswithmaximumdiscrimina-
tion capability and thus to improve efficiency from the clinical point of
view. On this purpose, lasso feature selection algorithm was applied
(see Materials and Methods). This resulted to a compact composite sig-
nature that comprised 12 features, 7 genes and 5 PET variables,
representing a reduced set of less covariant features, corresponding to
discrete functional modules. In this sense, from the cluster of covariant
PET variables, namely VB, k1, k2 and k4 (Fig. 4A), only k2 and k4 were
selected as the best descriptors of the variance observed in Dim2.More-
over, it improved the separation of patients, leading to more homoge-
neous clusters and less mislabeled samples (Fig. 6).

3.5. Construction of an Expression Signature Comprising Genes as Proxies of
PET Measurements

With the aim to elucidate the molecular mechanisms related to the
PET variables, we performed correlation analysis between the initial
list of 911 common DE genes and the 8 PET variables. The analysis
pinpointed that 4 PET features, out of the 8, namely, INF FD, k3 and
SUV had a significant correlation with 47 genes (Supplementary
Table S6). In particular, SUV presented the highest number of correla-
tions with the gene set, followed by k3, FD, and INF.

In contrast, k1, k2, k4 and VB did not show any significant correla-
tions with any of the 911 genes, suggesting that these clinical variables,
contribute important information, non-captured by the transcriptomic
data. BioInfoMiner semantic analysis, using as input these 47 genes,
was performed on 2 different controlled vocabularies, GO and
Reactome, revealing various molecular mechanisms related to
metabolism (one‑carbon metabolic process, ion transport, glycolytic
process, carboxylic acid metabolic process, purine-containing com-
pound metabolic process), as significantly enriched. Subsequent gene
prioritization, resulted in 15 genes with putatively central role in the
aforementioned pathways. Aiming to assess their potential clinical sig-
nificance in the large TCGA cohort, we combined those 15 genes with
the 7 genes of the compact composite signature. This 22-feature set,
composed solely of gene expression values, was initially evaluated re-
garding its discriminatory potential in separating cancer from normal
samples, utilizing the independent TCGA-COAD dataset, and illustrated
a robust performance (Fig. 7).

The 22 genes were clearly separated into 2 distinct sub-groups,
based on their expression pattern in the normal samples (Fig. 7). Specif-
ically, Group1 contains 16 genes highly expressed in normal samples,
while Group 2 contains 6 genes with low expression. Next, we ought
to investigate if this small feature-set, could have any impact in patient
stratification and potential prognostic significance. On this premise, we
constructed a scoring methodology and characterized the cancer sam-
ples, based on the relative expression of the 2 separate sub-groups
(see Materials and Methods). Hence, based on Group1, patients were
classified either as “Group1 High” (high expression in the majority of
the relevant genes) or “Group1 Low” (low expression in the majority
of the relevant genes). Similarly, two patient clusters were formed,
based on the expression of the 6 genes belonging to Group 2. Interest-
ingly, survival analysis on these patient clusters revealed that low ex-
pression of Group2 genes, is associated with poor prognosis (log rank
p-value = .096; hazard ratio 0.7217, 95% confidence interval 0.4809 to
1.083) (Fig. 8). Moreover, combining the aforementioned information
fromboth gene groups, 4 clusters of patientswere formed. Pairwise sur-
vival analysis on all 4 clusters, showed that the 22 gene signature could
define patient clusters with differences in overall survival estimates.
In detail, the most significant differences, were identified for the two
following comparisons: “HighGroup1.HighGroup2 vs. HighGroup1.
LowGroup2” (log rank p-value = .037; hazard ratio 0.4736, 95%
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confidence interval 0.2303 to 0.9739), “HighGroup1.HighGroup2 vs.
LowGroup1.LowGroup2” (log rank p-value = .087; hazard ratio
0.5526, 95% confidence interval 0.2724 to 1.121). Overall, Group2 low
expression is correlated with unfavorable survival, whereas high ex-
pression of Group1 is associated with a favorable prognosis (Fig. 9). In-
terestingly, the vast majority of the 6 genes representing the second
sub-group of the signature (ENO1, GSTP1, MTHFD1 & SCD), are mainly
implicated in biological processes related to metabolism, such as
carboxylic acidmetabolic process, oxoacidmetabolic process and unsat-
urated fatty acid metabolic process. Furthermore, CD44 and GSTP1
genes, are also annotated to other distinct molecular mechanisms, in-
cluding apoptosis and growth factor signaling cascades. Regarding the
sub-Group1, the 16 related genes are associated to other distinct meta-
bolic processes, including glycogen metabolic process, lipid metabolic
process and bicarbonate transport.

4. Discussion

In this study, we propose a generic methodology for patient data in-
tegration (here, gene expression and PET-kinetic data) for tumor classi-
fication and survival analysis. We showcase the application of the
methodology to CRC patients using two microarray datasets in combi-
nation with available PET data.

An initial important step was the extraction of gene expression
signatures as putative biomarker sets with notedmechanistic, interpre-
tation efficiency in terms of the molecular description of the pathology.
These consist of pivotal genes in the cross-talk of systemic cellular
processes [23]. Massive, existing functional and molecular pathway an-
notations, in the form of hierarchical vocabularies or ontologies, served
as the drivers of the initial selection process, rather than solely quantita-
tive, expression-based, computational techniques, engulfing the
underlying molecular background. Classical, data mining methods for
dimensionality reduction, when applied as the sole criterion for
biomarker selection, without prior exploitation of recorded biological
information, fail to capture molecular interactions and result to over-
fitting, and loss of generalization power.

The initial gene signature of 94 DE attained efficient mapping onto
significant processes of tumor biology and served as a basis for further
derivation of compact signatures, including the final, composite one, in-
tegrating gene expression with molecular imaging data from PET. The
selected genes possess strong regulatory role, involved in diverse,
cross-talking processes with broader impact in cellular physiology.



Fig. 7.Heatmap of the 22-genes signature in the TCGA RNA-Seq dataset (456 cancer samples, 41 normal samples-R package ComplexHeatmap). Sampleswith relatively high expression of
a given gene aremarked in red and sampleswith relatively low expression aremarked in blue. The gene set achieves anoverall good separation of normal and cancer samples. Samples and
genes have been reordered by the method of hierarchical clustering (average method, Pearson distance).
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Τhe combination of genes and PET parameters achieved superior perfor-
mance measures and improved the discrimination accuracy between
cancer and control samples. The merit of the integrative strategy was
further supported by the MFA results, confirming the informational
complementarity of PET and gene expression measurements. Further-
more, the reduced compact composite set of 7 genes and 5 PET
Fig. 8. Kaplan-Meier plot of overall survival estimates, comparing the 2 patient clusters surviva
(log-rank p-value-R package survmimer).
variables, serves as an initial pool of candidate biomarkers, for future in-
dependent studies, encompassing both layers of data.

The association of various PET variables to distinct biological
pathways aligns well with findings from previous studies [24,25].
To assess the clinical significance of the correlation between PET
and gene expression, a 22 gene set was derived and evaluated in
l outcomes, based on the expression of the 6 genes of Group2 in the TCGA-COAD dataset



Fig. 9. Kaplan-Meier plots of overall survival, examining the prognosis of the 4 final patient clusters using the 22- genes signature in the TCGA-COAD dataset, based only on the available
cancer samples. Fig. 7A illustrates the overall survival estimates between the groups “HighGroup1.HighGroup2” and “HighGroup1.LowGroup2”, whereas Fig. 7B compares “HighGroup1.
HighGroup2 and “LowGroup1.LowGroup2” (log-rank p-value-R package survminer).
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the TCGA dataset. Interestingly, this analysis, based on an
independent cohort, highlighted biologically meaningful groups
of patients with notable differences in survival. For example,
patients characterized with relatively low expression of Group2-
genes, had the worst survival estimates. These findings further
support the notion that specific PET variables encapsulate impor-
tant molecular information, fitting the pathophysiological course
of the disease.

The genes of the final signature represent the molecular counter-
parts of the PET-kinetic variables, are mostly related as expected, to dis-
tinctmodules of metabolic reprogramming, which is considered as a
hallmark of cancer progression [26]. In detail, it is well known that
the balance between fatty acid synthesis and oxidation is
deregulated in cancer, supporting cancer growth [27], whereas
one‑carbon metabolism, is also altered during the initial steps of
CRC manifestation, to enhance malignant transformation [28]. It
has been also recently demonstrated that fatty acid beta oxidation
genesis specifically disrupted in CRC [29]. Among the relevant to
fatty acid beta oxidation genes, ACADM contributing to the signa-
ture as a major regulator, has been characterized as favorable prog-
nostic gene in CRC [30]. In addition, several lines of evidence
support the aberrant regulation of various bicarbonate transporters
in oncogenesis, highlighting the importance of intracellular pH
homeostasis in cancer cell survival [31]. On the other hand, except me-
tabolism, the derived genes are also associated with distinct modes of
tumor physiology in CRC, such as detoxification (GSTP1) [32], metasta-
sis (KIT) [33], immunomodulation & stem cell renewal (CD44) [34] and
ER stress (CCT7) [35]. Finally, the aforementioned distinct metabolic
pathways could be targeted by novel contrast agents, enabling better
screening of crucial metabolic components like carbohydrate metabo-
lism and glycosylation, previously characterized as promotingmetasta-
sis and invasiveness in CRC cell lines [36].

5. Conclusions

Overall, this work represents a pioneering effort for multilayered,
signature-oriented, analysis of CRC, in the context of radio-genomics,
inferring a composite signaturewith promising results for robust epide-
miological stratification. Further elucidation on the interrelationships
between genes and PET variables hold the promise for development of
non-invasive approaches, regarding the timely monitoring and the
rational therapeutic administration in CRC. Finally, the composite signa-
ture should be tested in future external validation studies with larger
sample sizes, initially regarding its discriminatory potential, as also for
associations with distinct CRC subtypes and clinicopathological
characteristics.
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