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N6-methyladenosine (m6A) is one of the most prevalent RNA post-transcriptional
modifications and is involved in various vital biological processes such as mRNA splicing,
exporting, stability, and so on. Identifying m6A sites contributes to understanding
the functional mechanism and biological significance of m6A. The existing biological
experimental methods for identifying m6A sites are time-consuming and costly. Thus,
developing a high confidence computational method is significant to explore m6A
intrinsic characters. In this study, we propose a predictor called m6AGE which utilizes
sequence-derived and graph embedding features. To the best of our knowledge, our
predictor is the first to combine sequence-derived features and graph embeddings for
m6A site prediction. Comparison results show that our proposed predictor achieved
the best performance compared with other predictors on four public datasets across
three species. On the A101 dataset, our predictor outperformed 1.34% (accuracy),
0.0227 (Matthew’s correlation coefficient), 5.63% (specificity), and 0.0081 (AUC) than
comparing predictors, which indicates that m6AGE is a useful tool for m6A site
prediction. The source code of m6AGE is available at https://github.com/bokunoBike/
m6AGE.

Keywords: m6A, machine learning, graph embedding, feature fusion, CatBoost

INTRODUCTION

N6-methyladenosine (m6A) is one of the most prevalent RNA post-transcriptional modifications.
It was first found in mammalian RNA in 1974 (Desrosiers et al., 1974). Subsequently, m6A
modification was observed in various species, such as Saccharomyces cerevisiae (Schwartz et al.,
2013), Arabidopsis (Luo et al., 2014), humans and mouse (Dominissini et al., 2012). Research
shows that m6A sites are enriched in long internal exons and 3′UTRs around stop codons rather
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than randomly distributed in the genome (Dominissini et al.,
2012; Meyer et al., 2012; Wan et al., 2015). It has been reported
that m6A modification is associated with many biological
processes, including but not limited to protein translation and
localization (Meyer and Jaffrey, 2014), mRNA splicing and
stability (Nilsen, 2014), RNA localization and degradation (Meyer
and Jaffrey, 2014). Therefore, precisely identifying m6A sites
contributes to understanding the regulatory mechanism and
biological significance of m6A modification.

High-throughput techniques have enabled locating the m6A
sites in genomes. MeRIP-Seq (or m6A-Seq), a combination
of immunoprecipitation and next-generation sequencing
technology, has successfully mapped m6A in several species
genomes (Dominissini et al., 2012; Schwartz et al., 2013; Wan
et al., 2015). In 2015, Chenet al. developed photo-crosslinking-
assisted m6A-sequencing (PA-m6A-seq) which provided a
high-resolution (about 23nt) mammalian map (Chen et al.,
2015a). MeRIP-Seq and PA-m6A-seq can only locate the high
methylation regions of m6A rather than the exact positions. In
the same year, Linder produced a single-nucleotide resolution
map of m6A sites using a new technology termed miCLIP
(Linder et al., 2015). However, the current experimental methods
face a lot of limitations and expensive costs. With the rapid
development of computational methods, it is possible to use
machine learning algorithms to predict m6A. Hence, building
advanced models to predict m6A sites is significant for the
following research of m6A.

Chen et al. (2015b) proposed the first predictor named
iRNA-Methyl for m6A sites in Saccharomyces cerevisiae, using
three physical-chemical properties of dinucleotide and SVM
classifier. WHISTLE (Chen et al., 2019) integrates genomic
features besides the sequence features to train a predictor with
SVM classifier. Liu and Chen (2020) developed a computational
method called iMRM for detecting different RNA modifications
simultaneously with XGBoost classifier. Recently, deep learning
methods show better performance trend in bioinformatics
problems. DeepM6ASeq (Zhang and Hamada, 2018), BERMP
(Huang et al., 2018), Gene2vec (Zou et al., 2019), DeepPromise
(Chen et al., 2020), and im6A-TS-CNN (Liu et al., 2020) establish
deep learning frameworks by using convolutional neural network
(CNN) layers and gated recurrent unit (GRU) to seek the m6A
sites on DNA/RNA sequence level on the same dataset as SRAMP
(Zhou et al., 2016). In this study, seven kinds of sequence-derived
features are employed to encode RNA sequences, including
CTD (Tong and Liu, 2019), Pseudo k-tuple Composition
(PseKNC) (Guo et al., 2014), nucleotide pair spectrum (NPS)
(Zhou et al., 2016), nucleotide pair position specificity (NPPS)
(Xing et al., 2017), nucleotide chemical properties and density
(NCP-ND) (Golam Bari et al., 2013), electron-ion interaction
pseudopotentials (EIIP) (Nair and Sreenadhan, 2006), and bi-
profile Bayes (BPB) (Shao et al., 2009). Besides, graph embedding
methods are innovatively introduced to distill the potential
structure information. Firstly, a network is constructed by
mapping each sample of the dataset to a node. Secondly, the
three graph embedding methods SocDim (Tang and Liu, 2009),
Node2Vec (Grover and Leskovec, 2016), and GraRep (Cao et al.,
2015) are used to learn the distributed representation of the

sample in an unsupervised manner. At last, all the feature vectors
are merged as the input of model. The predictive results show that
m6AGE improves the performance of identifying m6A sites.

MATERIALS AND METHODS

Datasets
The m6A sites of different species share different consensus
motifs. The adenosines lying within the consensus motif
are considered to be the potential methylation sites. The
samples in the dataset are RNA sequence segments with
the potential methylation sites at their center. The samples
with the m6A sites experimentally annotated are put into the
positive dataset, whereas the other samples are put into the
negative dataset.

There have been many datasets across multiple species for
training m6A site predictors. We have collected four datasets
that involve three species: Saccharomyces cerevisiae, Arabidopsis
thaliana, and human. The following are details of these datasets.

A101. Wang extracted A.thaliana m6A sites from the m6A
peak data of Luo et al. (2014) and Wan et al. (2015). The
dataset (Wang and Yan, 2018) Wang built contains 2,518 positive
samples and 2,518 negative samples. Every sample in the dataset
is a 101nt RNA sequence segment.

A25. Luo obtained 4,317 m6A peaks detected both in Can-
0 and Hen-16 strains. After removing the sequences with more
than 60% sequence similarity, Chen et al. (2016) obtained 394
positive samples. The same number of negative samples were
selected randomly from sequences without the m6A site. The
length of every sample is 25nt.

S21. Chen further constructed this dataset (Chen et al., 2015c)
based on the previous work (Chen et al., 2015b). They selected
832 RNA sequence segments as the positive samples in the
training set whose distances to the m6A-seq peaks are less than
10nt. Then, 832 of 33,280 RNA sequence segments with non-
methylated adenines were selected randomly as negative samples
in the training set. The rest 475 RNA sequences with methylated
adenine and 4750 of 33,280 RNA sequences with non-methylated
adenine constitute the independent testing dataset. The length of
every sample is 21nt.

H41. Chen obtained the m6A-containing sequences in Homo
sapiens from RMBase (Chen et al., 2017). All the m6A sites
in these sequences conform to the RRACH motif. The dataset
contains 1,130 positive samples and 1,130 negative samples. The
length of every sample is 41nt.

Construction of Input Feature
Conventional machine learning models require numerical
vectors as input features. The feature extraction methods selected
have an important impact on the performance of the model.
To fully characterize the context of m6A sites, seven sequence-
derived features were used. In addition, we build a network based
on the whole dataset, by mapping each sample to node and the
similarity between samples to edges in the network, and then
use graph embedding (neighborhood-based node embedding)
methods to extract features in an unsupervised manner. The
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FIGURE 1 | The computational framework of our predictor m6AGE. There are two main stages in the construction of m6AGE. Stage 1. Sequence-derived features
are extracted, and graph embeddings are learned. Sequence-derived feature encoding methods directly encode RNA sequences into numerical vectors, including
CTD, NPS, PseKNC, NPPS, NCP-ND, EIIP, and BPB feature encoding method. All the sequences are mapped to nodes of a network, and then their graph
embeddings (SocDim, Node2Vec, and GraRep) are learned in an unsupervised manner. At last, the sequence features and graph embeddings are merged as input
features. Stage 2. We divide the data into training data and test data with a ratio of 4:1. The training data is used to train a CatBoost model. The test data is used to
evaluate the performance of our predictor.

computational framework of our predictor is illustrated in Figure
1. In the following, we will introduce the sequence-derived
features and the graph embeddings, respectively.

Sequence-Derived Features
CTD Feature
CTD (Tong and Liu, 2019) is one of the global sequence
descriptors. The first descriptor C (nucleotide composition)
describes the percentage composition of each nucleotide in
the sequence. The second descriptor T (nucleotide transition)
describes the frequency of four different nucleotides present
in adjacent positions. The third descriptor D (nucleotide
distribution) describes five relative positions of each nucleotide
along the RNA sequence which are the first one, 25%, 50%, 75%,
and the last one.

PseKNC Feature
With the successful application of the pseudo component method
in peptide sequence processing, its idea has been further extended
to the study of DNA and RNA sequences feature representation.
The Pseudo k-tuple Composition (PseKNC) combines the local
and global sequence information of RNA (Guo et al., 2014) and
transforms an RNA sequence into the following vector:

DPseKNC=
[
d1, d2, . . . ,d4k , d4k+1, . . . ,d4k+λ

]T (1)

where,

du =


fu∑4k

i=1 fi+w
∑λ

j=1 θj

(
1 ≤ u ≤ 4k

)
wθu−4k∑4k

i=1 fi+w
∑λ

j=1 θj

(
4k < u ≤ 4k + λ

) (2)

where du
(
u = 1, 2, ..., 4k

)
is the occurrence frequency of the

u-th k-nucleotide in this RNA sequence; the parameter w is the
weight factor; the parameter λ is the number of totals counted
tiers of the correlations along an RNA sequence. The j-tier
correlation factor θj is defined as follows:

θj =
1

L− j− 1

L−j−1∑
i=1

2
(
RiRi+1,Ri+jRi+j+1

)
,

(
j = 1, 2, . . . ,λ;λ < L

)
(3)

The correlation function 2 (, ) is calculated by the following
formula:

2
(
RiRi+1,Ri+jRi+j+1

)
=

1
µ

µ∑
ν=1

[
Pν (RiRi+1)− Pν

(
Ri+jRi+j+1

)]2

(4)
where µ is the number of RNA physicochemical properties
used. RiRi+1 is the dinucleotide at position i of this RNA.
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Pν (RiRi+1) is the standardized numerical value of the ν-th RNA
physicochemical properties for dinucleotide RiRi +1.

Six RNA physicochemical properties are considered: “Rise”,
“Roll”, “Shift”, “Slide”, “Tilt”, “Twist”.

NPS Feature
The nucleotide pair spectrum (NPS) (Zhou et al., 2016) encoding
method describes the RNA sequence context of the site by
calculating the occurrence frequency of all k-spaced nucleotide
pairs in the sequence. The k-spaced nucleotide pair n1{k}n2
means that there are k arbitrary nucleotides between n1 and n2,
and its occurrence frequency is calculated as follows:

dn1{k}n2=
C
(
n1{k}n2

)
L−k−1

(5)

where C
(
n1{k}n2

)
is the count of n1{k}n2 in this RNA sequence,

and L is the sequence length. The parameter k ranges from
1 to dmax. The parameter dmax is set to 3, so this encoding
method transforms an RNA sequence into a vector DNPS with a
dimension of 4 × 4 × 3 = 48.

NPPS Feature
The nucleotide pair position specificity (NPPS) (Xing et al., 2017)
encoding method extracts statistical information by calculating
the frequency of single nucleotide and k-spaced nucleotide pairs
at specific locations. Based on the positive training dataset, we can
get the frequency matrix

F+s =


f+s(A,1) · · · f

+

s(A,L)
...

. . .
...

f+s(G,1) · · · f
+

s(G,L)

 (6)

F+d =


f+d(AA,1)

· · · f+d(AA,L−k−1)
...

. . .
...

f+d(GG,1)
· · · f+d(GG,L−k−1)

 (7)

where the element of F+s is the frequency of single nucleotide
appearing at each location in the positive training dataset; the
element of F+d is the frequency of k-spaced nucleotide pair
appearing at each location in the positive training dataset; and
L is the sequence length. The frequency matrix F−s and F−d are
calculated similarly on the negative training dataset.

Assuming that the i-th nucleotide is “A” and the
(
i+ k

)
-

th nucleotide is “C”, p+i is calculated through conditional
probability formula and frequency matrix:

p+i =
f+d(AC,i)

f+s(C,i+k)

(8)

NPPS encoding method transforms a sequence into a vector
DNPPS =

[
pk+2, ..., pL

]
with a dimension of L− k− 1, where

pi = p+i − p−i .

NCP-ND Feature
Different nucleotides have different chemical properties.
According to the difference of ring structure (purine or

pyrimidine), hydrogen bond (strong or weak), and functional
group (amino or keto), nucleotide A, U, C, and G can be
represented by (1, 1, 1), (0, 1, 0), (0, 0, 1), and (1, 0, 0),
respectively (Golam Bari et al., 2013).

The nucleotide density (ND) is used to measure the relevance
between the frequency and position of the i-th nucleotide ni in
the sequence:

dni =
1
i

L∑
j=1

t
(
nj
)
, t

(
q
)
=

{
1, if nj = q
0, othercase

(9)

where L is the sequence length. Combined with the chemical
properties of nucleotides, each sequence is transformed into a
vector DNCP−ND with a dimension of L × 4.

EIIP Feature
This encoding method uses the electron-ion interaction
pseudopotentials (EIIP) values (Nair and Sreenadhan, 2006) to
represent the nucleotide in the sequence. The EIIP values of
nucleotides A, T (we replace T with U), C, G are 0.1260, 0.1340,
0.0806, and 0.1335, respectively. Thus the dimension of the
vector DEIIP is equal to the sequence length.

BPB Feature
The Bi-profile Bayes (BPB) encoding method was first proposed
by (Shao et al., 2009), and then has been successfully applied in
other fields of bioinformatics. This method uses the occurrence
frequency fi,n of the i-th nucleotide n to estimate the posterior
probability pi,n, and transforms a sequence into the following
vector:

DBPB=
[
f+1,n, f

−

1,n, f
+

2,n, f
−

2,n, . . . ,f
+

L,n, f
−

L,n
]

(10)

where n is the i-th nucleotide of the sequence; f+i,n denotes
the frequency of nucleotide n appearing at the i-th position of
the sequence in the positive training dataset, while f−i,n denotes
the frequency of nucleotide n appearing at the i-th position of
sequence in the negative training dataset. L is the sequence length.
The dimension of the vector DBPB is 2 × L.

Graph Embeddings
Network Construction
To extract the graph embedding feature of each sample, we
construct a network based on the whole dataset. Each sample
in the dataset is taken as a node, and the relationships between
samples are taken as edges. Generally, edges exist two similar
sample nodes. The fast linear neighbor similarity approach
(FLNSA) (Zhang et al., 2017, 2019) is a method to extract
“sample-sample” similarity, which has been successfully applied
to many bioinformatics classification tasks. In this study, FLNSA
is utilized to calculate the similarity between samples.

First, we extract sequence-derived features and use the feature
fusion strategy to transform all the samples in the dataset into
n-dimensional vector {x1, x2, ..., xm}, where xi (0 < i ≤ m) is
the vector of the i-th sample. Then these vectors are concentrated
into a matrix X∈ Rm × n, each row of which represents a sample
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vector. FLNSA tries to minimize the objective function:

min
w

1
2

∣∣∣∣∣∣X− (C⊙W
)
X
∣∣∣∣∣∣2
F
+

µ

2

m∑
i=1

∣∣∣∣∣∣(C⊙W
)

e
∣∣∣∣∣∣2
F

(11)

s.t.
(
C
⊙

W
)

e = e,W ≥ 0

where
⊙

is the Hadamard product operator; ||·||F represents the
Frobenius norm and µ is the regularization coefficient. e is an
m-dimensional column vector with all elements equal to 1. The
element wi,j of matrix W ∈ Rm × m represents the reconstruction
contribution weight of the sample xj to the sample xi, and is used
to quantify the similarity between two samples. The element of
indicator C ∈ Rm × m is

ci,j =
{

1 xj ∈ N (xi)
0 xj /∈ N (xi)

(12)

where N (xi) denotes the set of all neighbors of xi. The Euclidean
distances between xi and other samples are calculated and the
nearest c (0 < c < m) samples are selected to form N (xi).
FLNSA uses the Lagrange method to get matrix W. After
mathematical derivation, the Equation (13) is obtained.

Wij=


Wij

(
XXT
+µeeT

)
ij

((C
⊙

W)XXT+µ(C
⊙

W)eeT)ij
xj ∈ N (xi)

0 xj /∈ N (xi)
(13)

Randomly generated matrix W was updated according to
Equation (13) until convergence. Taking W as the adjacency
matrix, an undirected weighted graph G is obtained. The graph
embedding methods require a connected graph as input. Note
that if G is not connected, we can increase c (the number of
neighborhoods of a sample). Under the condition of ensuring the
connectivity of the graph, the edges whose weights are lower than
the threshold t are removed and the weights of the remaining
edges are set to 1. Finally, an undirected unweighted graph is
constructed based on the dataset.

SocDim
The social-dimension-based (SocDim) (Tang and Liu, 2009)
method is proposed by Lei Tang and Huan Liu to solve the
relational learning between nodes in social networks. This
method extracts latent dimensions from networks and uses
them as distributed representations, which involves community
detection tasks.

SocDim uses Modularity (Newman, 2006) which measures
community structure through degree distribution to extract
potential dimensions. Modularity considers dividing the network
into non-overlapping communities, measures the deviation
between the network and uniform random graphs with the same
degree distribution, and then obtains the modularity matrix B
defined as follows:

B=A−
ddT

2m
(14)

where A is the interaction matrix of the network; d is a column
vector composed of the degrees of each node; m is the number of
nodes. Subsequently, SocioDim extracts the dimensions from the
top eigenvectors of the modularity matrix B.

Node2Vec
Node2Vec (Grover and Leskovec, 2016) attempts to design a
graph embedding model that can train efficiently and retain the
neighborhood information of nodes to the maximum extent.
The embedding vectors of nodes are learned through the skip-
gram model. Different from DeepWalk, Node2Vec proposes
biased random walk instead of truncated random walk to
control the search space. Node2vec considers the homophily
(nodes from the same community have similar embeddings)
and structural equivalence (nodes that share similar roles have
similar embeddings), thus there are two classic search strategies:
Breadth-first Sampling (BFS) and Depth-first Sampling (DFS).

GraRep
GraRep (Cao et al., 2015) proposes a graph embedding model
that can be learned from weighted graphs and integrate global
structure information of the graph. GraRep forms k different
vectors by separating k kinds of relationships. For a specific k,
GraRep samples a set of k-step paths from the graph. The k-
step path which starts with node vw and ends with node vc is
denoted as (vw, vc). For all pairs, it increases the probability of
the pairs come from the graph and decreases the probability of
the pairs do not come from the graph. Based on the normalized
adjacency matrix, GraRep obtains Wk for different values of
k, and each column vector of Wk represents an embedding
of the node. Finally, this method concatenates all the k-step
representations W1,W2, ...,Wk.

CatBoost Classifier
CatBoost (Dorogush et al., 2018; Prokhorenkova et al., 2018) is
an improved implementation of gradient enhanced decision trees
(GDBT) algorithm developed by Yandex. It has demonstrated
excellent performance on many classification and regression
tasks. Compared with other advanced gradient boosting
algorithms such as XGBoost (Chen and Guestrin, 2016)
and lightBGM (Ke et al., 2017), CatBoost has the following
advantages: (1) It can better process categorical features. (2) To
solve the problem of gradient bias and prediction shift, ordered
boosting is proposed instead of the classic GDBT gradient
estimation algorithm. (3) The requirement of super parameter
tuning is reduced.

CatBoost uses oblivious decision trees (Langley and Sage,
1994) as base predictors. As oblivious decision trees are
balanced, they can prevent overfitting. Moreover, it optimizes
the traditional boosting algorithm which transforms the category
features into numerical features, and the algorithm of calculating
the leaf value to improve the generalization ability of the model.
Since the CatBoost algorithm is running on GPU, the model is
trained efficiently and parallelly.

Evaluation Metrics
Our predictor predicts whether the adenosine at the center of an
RNA sequence segment is an m6A site. We used the following
metrics to evaluate the performance of binary classification
predictors: accuracy (ACC), Matthew’s correlation coefficient
(MCC), sensitivity (SEN), specificity (SPE), and F1. These metrics
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are calculated as follows:

ACC =
TP+TN

TP+FN+TN+FP
× 100% (15)

MCC=
TP×TN−FP×FN

√
(TP+FN) (TN+FP) (TP+FP) (TN+FN)

(16)

SEN =
TP

TP+FN
× 100% (17)

SPE =
TN

TN+FP
× 100% (18)

F1 =
2TP

2TP + FP + FN
(19)

where TP is the number of true positive samples; TN is the
number of true negative samples; FP is the number of false
positive samples; FN is the number of false negative samples.

Additionally, the receiver operating characteristic (ROC)
curve is also an important measurement to evaluate the
performance of classifiers, and the area under receiver operating
characteristic curve (AUC) is the quantitative indicator. High
values of AUC indicate better performance of predictors.

RESULTS

We redivided the four datasets introduced in section “Datasets”
into the training sets and test sets with the ratio of 4:1,
respectively. The training datasets were used to train models and
the test datasets were utilized to evaluate model performance.

TABLE 1 | The performance of m6AGE against other existing predictors.

Datasets Predictors Metrics

ACC (%) MCC SEN (%) SPE (%) AUC

A101 m6AGE 89.11 0.7822 90.49 87.68 0.9500

M6A-HPCS 86.43 0.7286 86.64 86.22 0.9284

Targetm6A 87.36 0.7471 87.65 87.06 0.9358

RAM-NPPS 83.86 0.6777 86.44 81.21 0.9077

M6APred-EL 86.02 0.7205 85.63 86.43 0.9055

DeepM6ASeq 87.77 0.7595 93.32 82.05 0.9419

A25 m6AGE 87.97 0.7708 74.65 98.85 0.8867

M6A-HPCS 68.35 0.3577 61.97 73.56 0.7238

Targetm6A 82.91 0.6542 76.06 88.51 0.8370

RAM-NPPS 82.91 0.6538 77.46 87.36 0.8621

M6APred-EL 87.34 0.7642 71.83 100.00 0.8464

DeepM6ASeq 77.85 0.5515 67.61 86.21 0.8054

H41 m6AGE 90.93 0.8325 81.94 100.00 0.9181

M6A-HPCS 71.46 0.4336 64.76 78.22 0.7765

Targetm6A 90.49 0.8249 81.06 100.00 0.9205

RAM-NPPS 90.49 0.8249 81.06 100.00 0.9051

M6APred-EL 89.82 0.8136 79.74 100.00 0.9132

DeepM6ASeq 86.50 0.7566 73.57 99.56 0.9051

The optimal value of each evaluation metric is marked in bold.

FIGURE 2 | The ROC curves of m6AGE and comparing predictors on three datasets. (A) The ROC curves on the A101 dataset. (B) The ROC curves on the A25
dataset. (C) The ROC curves on the H41 dataset.
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Due to the difference between datasets, we selected suitable
sequence-derived features for each dataset. For A101, the
PseKNC, CTD, and NPS features were selected; For A25, the
EIIP, NPPS, NPS, PseKNC, and NCP-ND were selected; For S21,
the NPPS and NCP-ND features were selected; For H41, the
NCP-ND, PseKNC, and NPPS features were selected.

Comparison With Existing Predictors
In this section, we compared the performance of our predictor
m6AGE with several other state-of-the-art predictors, including
M6A-HPCS (Zhang et al., 2016), Targetm6A(Li et al., 2016),
RAM-NPPS (Xing et al., 2017), M6APred-EL (Wei et al.,
2018), and DeepM6ASeq (Zhang and Hamada, 2018). M6A-
HPCS uses PseDNC and DACC features and a support vector
machine (SVM) classifier to identify m6A sites. Targetm6A
utilizes position-specific kmer propensities (PSKP) feature and
SVM classifier. RAM-NPPS uses the NPPS feature and SVM
classifier to identify m6A sites. M6APred-EL creates an ensemble
model with PseKNC, PSKP, and NCP-ND features. DeepM6ASeq
develops a deep learning framework and uses one-hot encoding
for the identification of m6A sites. The predictor M6A-HPCS,
M6APred-EL, Targetm6A, and RAM-NPPS were reproduced
faithfully, and their parameters were optimized by grid search
with five-fold cross-validation. All predictors were trained and
evaluated on the same dataset for fairness of comparison.

The evaluation results were summarized in Table 1. We
employed ACC, MCC, SEN, SPE, and AUC as evaluation metrics,
and compared the evaluation metrics of m6AGE with five other
predictors on three datasets: A101, A25, and H41. As shown in
Table 1, our predictor m6AGE achieved all optimal values on
three datasets, except for SEN and SPE on the A25 dataset, and
AUC on the H41 dataset.

TABLE 2 | The performance of different predictors on S21 dataset.

Predictors Metrics

SEN (%) SPE (%) F1 MCC AUC

m6AGE 68.68 83.02 0.5723 0.4593 0.8103

HPCS 71.70 46.63 0.3622 0.1459 0.6330

Targetm6A 70.57 76.73 0.5260 0.3984 0.7818

RAM-NPPS 66.42 81.49 0.5440 0.4218 0.7778

M6APred-EL 78.59 75.20 0.5554 0.4433 0.7899

DeepM6ASeq 63.77 83.38 0.5460 0.4253 0.8056

The optimal value of each evaluation metric is marked in bold.

On the A101 dataset, m6AGE obtained the optimal ACC,
MCC, SPE, and AUC with 89.11%, 0.7822, 87.68%, and 0.9500,
which is 1.34%, 0.0227, 5.63%, and 0.0081 higher than the
suboptimal predictor DeepM6ASeq, respectively.

On the A25 dataset, m6AGE obtained the optimal ACC, MCC,
and AUC with 87.97%, 0.7708, and 0.8867. Its Acc and MCC is
0.63% and 0.0066 higher than the suboptimal value of predictor
M6APred-EL. Its AUC is 0.0246 higher than the suboptimal value
of predictor RAM-NPPS.

FIGURE 3 | The ROC curves of m6AGE and comparing predictors on the S21
datasets.

On theH41 dataset, m6AGE obtained the optimal ACC, MCC,
SEN, and SPE with 90.93%, 0.8325, 81.94%, and 100%, which is
0.44%, 0.0076, 0.88%, and 0 higher than the predictor Targetm6A
and RAM-NPPS, respectively.

The ROC curves of these predictors on three datasets were
plotted in Figure 2. As shown in Figure 2, our predictor
outperformed other predictors on the A101 and A25 datasets.
Although the AUC of m6AGE on dataset H41 is lower than
other predictors, m6AGE achieved the optimal value of ACC,
MCC, SEN, and SPE. These evaluation results demonstrate that
our predictor m6AGE is superior to other predictors in terms of
these three datasets.

Performance on Imbalanced Dataset
The non-m6a sites on mRNA are much more than m6A sites, so
testing the performance of our predictor on imbalanced datasets
is of great importance. The imbalance ratio of the S21 dataset is
about 1:4. We redivided the S21 dataset, and randomly selected
80% samples as the training set, and the remaining 20% samples
as the test set.

CatBoost solves the imbalance data issues by setting weights
for each class or sample. The weight of each class is generally
inversely proportional to the number of its samples. The metrics
F1 and MCC are usually used as the evaluation criteria for
imbalanced datasets (Zhao et al., 2018; Wang et al., 2019; Dou
et al., 2020). We compared m6AGE with five other predictors on
the S21 dataset.

The evaluation results were summarized in Table 2. The
optimal value of each evaluation metric is marked in bold. As
shown in Table 2, our predictor m6AGE got the optimal values
of F1, MCC, and AUC with 0.5723, 0.4593, and 0.8103.

The ROC curves of these predictors on the S21 dataset
were plotted in Figure 3. As shown in Figure 3, our predictor
outperformed other predictors on the S21 dataset.
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TABLE 3 | The performance of different classifiers.

Datasets Classifiers Metrics

ACC (%) MCC SEN (%) SPE (%) AUC

A101 CatBoost 89.11 0.7822 90.49 87.68 0.9500

Random forest 87.67 0.7534 87.04 88.31 0.9377

Logistic regression 89.00 0.7800 89.07 88.94 0.9489

Decision tree 80.99 0.6197 82.39 79.54 0.8096

A25 CatBoost 87.97 0.7708 74.65 98.85 0.8867

Random forest 87.34 0.7642 71.83 100.00 0.8729

Logistic regression 79.11 0.5767 74.65 82.76 0.8562

Decision tree 81.65 0.6349 84.51 79.31 0.8191

H41 CatBoost 90.93 0.8325 81.94 100.00 0.9181

random forest 89.38 0.8031 79.74 99.11 0.9098

Logistic regression 86.95 0.7422 82.38 91.56 0.9125

Decision tree 86.28 0.7258 85.46 87.11 0.8629

The optimal value of each evaluation metric is marked in bold.

FIGURE 4 | The feature importance scores on the four datasets. (A) The feature importance scores on the A101 datasets. (B) The feature importance scores on the
A25 datasets. (C) The feature importance scores on the H41 datasets. (D) The feature importance scores on the S21 datasets.

Comparison With Different Classifiers
To further demonstrate the effectiveness of CatBoost, we
compared it with other popular classifiers, including Random
Forest, Logistic Regression, and Decision Tree, which are
commonly and widely used in bioinformatics classification

tasks. All classifiers were trained and assessed under the same
conditions for a fair comparison.

The prediction results were summarized in Table 3. We
compared the prediction results with three other classifiers on
the A101, A25, and H41 dataset. The evaluation metrics used are
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ACC, MCC, SEN, SPE, and AUC. As shown in Table 3, CatBoost
achieved all optimal metrics on three datasets, except for SPE on
the A101 dataset and SEN on the A25 and H41 dataset.

Feature Importance Analysis
CatBoost can output the scores of feature importance, which
reflect the contributions of the features in specific feature space
for identifying m6A sites. The first 20 important features and their
scores on the four datasets were plotted in Figure 4.

On the A101 dataset, the first three important sequence-
derived features are “PseKNC_44”, “PseKNC_59”, and
“PseKNC_40”, which correspond to the occurrence frequency
of “GUA”, “UGU”, and PseKNC_40 respectively, On the A25
dataset, the first three important sequence-derived features are
“NCP_ND_58”, “NPPS_xi2_14”, and “NPPS_xi1_14,” which
correspond to the position +1 (Assuming that the position of
m6A site is 0), +2 and +4, +2 and +3, respectively; On the H41
dataset, the first three important sequence-derived features
are “NPPS_xi1_20”, “NPPS_xi1_22”, and “NCP_ND_72”,
which correspond to the position 0 and +1, +2 and +3, −3,
respectively; On the S21 dataset, the first three important
sequence-derived features are “NPPS_xi1_17”, “NPPS_xi2_17”,
and “NPPS_xi1_18,” which correspond to the position +6 and
+7, +6 and +8, +7 and +9, respectively.

In addition, graph embeddings account for 20%, 25%, 35%,
and 50% of the top 20 important features in the four datasets,
respectively, which indicates that graph embeddings could
supplement the information of the sequence-derived features.

DISCUSSION

The methods for extracting sequence features are indispensable
for building a reliable predictor. Contributing sequence features,
such as the physical and chemical properties of nucleotides,
the frequency of k-nucleotides, and the frequency of specific
positions, can fully reflect the information related to the m6A
site recognition. In this study, we integrated and selected
suitable sequence-derived features for each dataset. However,
most of the feature encoding methods are based on the primary
sequence, and only a few of them calculate the frequency of
nucleotides in the training dataset, so it is difficult to obtain
more helpful information from the whole dataset. This paper
innovatively introduces a feature extraction method based on the
graph embedding methods as a supplement to sequence-derived
features. First of all, a network is constructed based on the whole
dataset and sequence-derived features. Samples are abstracted as
nodes of the network, and the similarity relationships between
samples are abstracted as edges. This network reflects global
information of the whole dataset. Then, graph embedding
(neighborhood-based node embedding) methods are used to
learn the feature representation of each node in an unsupervised
manner. The graph embedding features of samples contain the
related information with other samples. Finally, we integrate
sequence-derived features and graph embeddings based with the
feature fusion strategy. Therefore, the final input features can
reflect the information of samples more comprehensively.

It is also significant to choose an appropriate classifier.
CatBoost is a GBDT algorithm, which shows excellent
performance in many classification tasks. Because of its
good effect of restraining overfitting and fast running, the
CatBoost algorithm is selected to train our predictor m6AGE.

To further prove the effectiveness of our predictor, we
compare the evaluation results with that of other existing m6A
site predictors. The results show that our predictor m6AGE
outperforms other existing methods. In the future, we will apply
m6AGE to more m6A site datasets and seek more suitable
graph embedding methods. It is worth mentioning that the
computational framework proposed in this study is possible to
extend to other bioinformatics site identification tasks.

The source code of m6AGE is available at https://github.com/
bokunoBike/m6AGE. Users can download and run it on the local
machines. The data is imported through the file paths of the
positive training set, negative training set, and test set. Then
m6AGE is trained and generates prediction results. Note that
the corresponding python packages need to be installed first (see
GitHub page for details). For a new dataset, our predictor will
automatically select the appropriate sequence-derived features
(or specified by the users in the corresponding configuration file)
according to the feature importance scores.

CONCLUSION

The identification of N6-methyladenosine (m6A) modification
sites on RNA is of biological significance. In this study, a
novel computational framework called “m6AGE” is proposed
to predict and identify the m6A sites on mRNA. Our predictor
combines sequence-derived features with the features extracted
by graph embedding methods. The context information of sites
is directly extracted from primary sequences by the sequence-
derived features, and the global information is extracted by
the graph embeddings. Experiments showed that the proposed
m6AGE achieved successful prediction performance on four
datasets across three species. It could be expected that m6AGE
would be a powerful computational tool for predicting and
identifying the m6A modification sites on mRNA.
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