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Detection of DNA base modifications by deep
recurrent neural network on Oxford Nanopore
sequencing data
Qian Liu1, Li Fang 1, Guoliang Yu2,3, Depeng Wang3, Chuan-Le Xiao 2 & Kai Wang1,4

DNA base modifications, such as C5-methylcytosine (5mC) and N6-methyldeoxyadenosine

(6mA), are important types of epigenetic regulations. Short-read bisulfite sequencing and

long-read PacBio sequencing have inherent limitations to detect DNA modifications. Here,

using raw electric signals of Oxford Nanopore long-read sequencing data, we design Deep-

Mod, a bidirectional recurrent neural network (RNN) with long short-term memory (LSTM)

to detect DNA modifications. We sequence a human genome HX1 and a Chlamydomonas

reinhardtii genome using Nanopore sequencing, and then evaluate DeepMod on three types

of genomes (Escherichia coli, Chlamydomonas reinhardtii and human genomes). For 5mC

detection, DeepMod achieves average precision up to 0.99 for both synthetically introduced

and naturally occurring modifications. For 6mA detection, DeepMod achieves ~0.9 average

precision on Escherichia coli data, and have improved performance than existing methods

on Chlamydomonas reinhardtii data. In conclusion, DeepMod performs well for genome-scale

detection of DNA modifications and will facilitate epigenetic analysis on diverse species.
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DNA base modifications are modified versions of standard
nucleotides in a DNA molecule through the addition of
chemical groups. For example, DNA methylations,

including 5-methylcytosine (5mC), 5-hydroxymethylcytosine
(5hmC), and N6-methyldeoxyadenosine (6mA), are introduced
into a DNA molecule by adding methyl or hydroxymethyl groups
to nucleotides: 5mC is introduced by adding methyl group at the
5th position of the pyrimidine ring of cytosines, whereas 6mA is
introduced by adding methyl group at the 6th position of the
purine ring in adenines. There are also other different types of
methylations, named according to the nucleotide type, the added
molecule type and the modified position in nucleotides, such as
4mC (N4-methylcytosine), 5hmC (5-hydroxymethylcytosine),
5fC (5-formylcytosine), and 5caC (5-carboxylcytosine) intro-
duced by methyltransferases1, and they generally do not disrupt
base pairing. Some other modifications, such as 1mA (N1-
methyladenine), 3mA (N3-methyladenine), 7mA (N7-methyla-
denine), 3mC (N3-methylcytosine), 2mG (N2-methylguanine),
6mG (O6-methylguanine), 7mG (N7-methylguanine), 3mT (N3-
methylthymine), and 4mT (O4-methylthymine), may damage
hydrogen bonds in base pairs1,2. DNA base modifications widely
exist in different organisms3 and are essential in various biolo-
gical processes4,5, such as genomic imprinting, X-chromosome
inactivation, genome stability, gene regulation, repression of
transposable elements, aging, and carcinogenesis. For example,
hyper-methylation of 5mC in promoter regions usually represses
gene transcription, and thus may regulate cellular processes such
as cell differentiation and pluripotency. Local DNA 5mC hyper-
methylation and genome-wide hypo-methylation have been seen
in cancer6, and the differential methylation of CpG islands can
distinguish cancer cells from normal cells7 or different tumor
types8, and thus may be a potential cancer biomarker or a ther-
apeutic target.

DNA modifications, especially DNA methylations, could be
detected by both short-read sequencing and long-read sequencing
techniques. Bisulfite sequencing with short-read techniques is
widely used to call methylated cytosines9 by converting un-
methylated cytosines to uracil, but bisulfite sequencing and its
improved variations10 were limited by the efficiency in

conversion and the inability to assay repetitive genomic regions
by short-read sequencing. Immunoprecipitation followed by
short-read sequencing can detect DNA or RNA
modifications11,12 in genomic regions but it lacks single-base
resolution. PacBio long-read sequencing can be used to directly
detect DNA/RNA modifications13 based on altered polymerase
kinetics during sequencing14–19. However, this method has low
signal-to-noise ratio for 5mC modifications20, requires relatively
high coverage for calling modifications, and is biased by incom-
plete and context-dependent enzymatic treatment of 5mC
detection using Tet121.

Recently, several proof-of-concept studies on Oxford Nano-
pore sequencing techniques have demonstrated the feasibility to
detect DNA modifications based on the electric signal char-
acteristics when a modified DNA molecule passes through
nanopores22,23. DNA methylations at specific genomic positions
can be measured with higher accuracy by comparing raw electric
signals of methylated DNA copies with signals of the same un-
methylated DNA copies22–25 for known sequences without large
prior training data set3. Furthermore, DNA methylation detection
using Nanopore sequencing was used in a few studies4,26,27 with
the help of machine learning algorithms. Simpson et al. developed
a HMM (hidden Markov model) to measure long reads with
complete methylations and long reads without methylations
separately, and used the log-likelihood ratio to distinguish 5mC
from cytosine in Escherichia coli and Homo sapiens4. Similarly,
Rand et al. used HMM with a hierarchical Dirichlet process to
identify three types of cytosine methylations (i.e., cytosine, 5mC
and 5hmC) and also 6mA in E. coli with different phases20.
Mclntyre et al. further improved the detection of 6mA (imple-
mented in mCaller) in mouse, E. coli and Lambda phage DNA26

using signal deviation of six 6-mer around positions of interest
as input.

However, the sequential characteristic of Nanopore electric
signals was not fully utilized in previous studies, and the per-
formance of 5mC/6mA prediction may be improved using more
sophisticated deep neural networks. In the current study, we
developed a computational tool, DeepMod (Fig. 1), which takes a
reference genome and long-read electric signals together with
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event information generated from Nanopore sequencing as input,
and outputs modification summary for genomic positions of
interest in a reference genome, together with modification pre-
diction for bases of interest in a long read. The modification
prediction model in DeepMod is a well-trained bidirectional
recurrent neural network (RNN) with long short-term memory
(LSTM)28 units, which takes signal mean, standard deviation, and
the number of signals of an event together with base information
in the reference genome of an event and its neighbors as input,
and makes modification prediction for the event. Then, after
anchoring events with a reference genome based on the alignment
of long reads, predicted modification summary for reference
positions of interest can be generated in a BED format, indicating
how many reads cover each genomic position and how many
reads contain predicted modifications at genomic positions of
interest. The prediction of DNA modification by DeepMod is
thus strand-sensitive and has single-base resolution. We note that
one recent preprint29 also used the RNN framework (DeepSignal)
but with limited evaluations. In the current study, we sequence a
human genome HX1 and a Chlamydomonas reinhardtii genome
using Nanopore sequencing techniques, and together with
published Nanopore data for Escherichia coli and another human
genome NA12878, we evaluate DeepMod on three types of
genomes (E. coli, C. reinhardtii, and human genomes) and show
that it performs well on genome-scale detection of DNA
modifications.

Results
A brief summary of the DeepMod algorithm. We designed
DeepMod to capture time-series characteristic of Nanopore sig-
nals for detecting DNA modifications. DeepMod takes FAST5
files and a reference genome as inputs, where the FAST5 files are
generated from Nanopore sequencer and must include event
information after basecalling. The output files of DeepMod
include BED files with coverage and methylation percentage
information for genomic positions of interest. DeepMod works
through several steps as illustrated in Fig. 1.

First, a sequence of bases is extracted from events in each
FAST5 file, and then aligned with a reference genome. Second,
the raw signals of the events and the mapped reference base type
of the events is obtained, and the summary of the raw signals of
each of w events (by default, w= 21) with the reference base type
of events (A or C or G or T) is used as input of a LSTM RNN to
predict whether the center event of the w events is generated from

a modified base (the left part of Fig. 1). After repeating the
prediction process by the LSTM RNN for events of interest in a
long read and then for all long reads, the sequence coverage and
the methylation coverage are generated for genomic positions of
interest in the reference genome. The whole-genome modification
summary is formatted as BED files for performance evaluation
and other analysis. In addition, a second neural network is also
used for some types of modifications, such as 5mC30 to
incorporate high correlation of methylation of a CpG site and
its nearby CpG sites. The second neural network takes the
predicted methylation percentage of a reference position of
interest in the genome and the methylation percentage of its
neighboring sites in both strands as input and generates a new
methylation percentage of the position of interest. In this study,
DeepMod was evaluated on three types of genomes with two
types of modifications (5mC and 6mA), and the performance
evaluations were described in detail below.

Performance of 5mC detection on Nanopore sequencing data
on E. coli. DeepMod was first trained on a published Nanopore
sequencing data on E. coli with positive and negative controls4

(See the Methods section and Supplementary Notes). The nega-
tive control (UMR for short) were amplified by polymerase chain
reaction (PCR) and thus the reads contain no modifications; in
comparison, reads in the positive control (CG_MSssI for short)
were treated by the M.SssI methyltransferase after PCR amplifi-
cation and thus the majority of CpG sites were methylated2. The
summary of the two data sets was described in Table 1. To select
suitable hyper-parameters in DeepMod for the tradeoff between
prediction performance and running time/consuming resources,
two independent validation strategies were used on UMR and
CG_MSssI. The first strategy is read-based-independent valida-
tion, where 90% of the reads from the negative control and 90%
of the reads from the positive control were randomly selected and
used to train DeepMod, whereas the rest (10%) of the reads were
used for testing. Under this validation strategy, reads in the
training and testing groups might be aligned to the same genomic
regions. In parallel, in the second region-based independent
validation strategy, reads mapped to the genomic positions from
1,000,000 to 2,000,000 of E. coli reference genome were used for
testing, whereas reads mapped to other genomic regions were
used for training. We also evaluated two additional hyper-
parameters in DeepMod: different w (i.e., the number of LSTM
units ranging from 7 to 51), 7-feature description of an event

Table 1 Nanopore sequencing data sets used to evaluate DeepMod

Genome Data set name Motif # reads Coverage Metha Reference

Escherichia coli UMR NAd 111,238 110X Negb Simpson et al. 4

CG_MsssI CGc 69,899 67X 5mC
CG_SssI CGc 8679 19X 5mC
CG_MpeI CGc 23,593 39X 5mC
GCGC_HhaI GCGCc 18,180 50X 5mC
gaAttc_EcoRI GAATTCc 16,661 27X 6mA Stoiber et al. 3

gAtc_dam GATCc 17,557 33X 6mA
tcgA_TaqI TCGAc 16,249 22X 6mA
Con1 NAd 23,762 34X Negb

Con2 NAd 34,170 40X Negb

Homo sapiens NA12878 CGc 30X 5mC Jain et al. 31

HX1 CGc 4,827,155 30X 5mC Current study
Chlamydomonas reinhardtii C. reinhardtii NAd 772,817 126X 6mA Current study

a Methylation types
b Negative control without any modifications
c Underlined nucleotides in motifs were potential modified target.
d No modifications or no motif information
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(base information, signal mean, standard deviation, and the
number of signals associated with an event) and 57-feature
description of an event (7-features description plus 50 discretized
bins of signals). The performance was measured using accuracy,
precision, recall, and F1-score (See Eqs. (3–6) in the Methods
section for their definitions). The results of the two independent
validation above were shown in Supplementary Table 1 for per-
call performance (where the prediction of a base in each long read
was considered separately without alignment). We found that (i)
57-feature description produced similar performance to 7-feature
description, and (ii) larger w generated increasing accuracy, recall
and F1-score, but the memory usage and running time were
much higher beyond w= 21. We thus used 7-feature description
and w= 21 as the default setting in DeepMod. Cross-validation of
region-based independent validation strategy was also provided
in Supplementary Table 2 for DeepMod with 7-feature descrip-
tion and w= 21, and the performance values in five different
regions ([0, 1000000], [1000000, 2000000], [2000000, 3000000],
[3000000, 4000000], [4000000, 4700000]) were similar to each
other.

DeepMod’s cross-data set performance was further evaluated
on another independent E. coli Nanopore data set3 where there
were two negative control samples without any modifications
(denoted as Con1 and Con2 for short), and three positive control
samples with 5mC modifications. On the three positive control
samples, three methylases (M.Hhal, M.Mpel, and M.Sssl) were
used separately to synthetically introduce 5mC for 70,180 GCGC
motifs (the underlined bases represents modified cytosines by
enzymes hereafter) and 693,586 CG motifs in E. coli, and thus the
samples were denoted as GCGC_Hhal, CG_MpeI, and CG_SssI
for short. DeepMod was used to make the modification
predictions on the five Nanopore sequencing data sets (the three
positive control data with 5mC and two negative control without
modifications). We mixed each of three positive control data with
both Con1 and Con2 for performance evaluation of DeepMod.

There were two types of evaluations on this independent E. coli
data set. One type of evaluation was based on methylated
cytosines within specific sequence motifs of interest. Under this
type of evaluation, the number of the cytosines of interest in
motifs from positive control is roughly equal to that from Con1
and Con2 as shown in Table 2. In Table 2, there are ~ 1.4 million
CpG sites and ~ 0.14 million GCGC sites, where about half were
5mC from positive control and the other half have no
modification from the negative control. The performance of
DeepMod was then evaluated using AUC and AP (AUC: area
under curve, and AP: average precision. See more details in
Methods). The performance of DeepMod was shown in Fig. 2a
and the confusion matrices were provided in Supplementary
Table 3. It can be seen from Fig. 2a that DeepMod achieved AP
values of 0.990, 0.921 and 0.993, and AUC values of 0.987, 0.906,
and 0.988 for GCGC_Hhal, CG_MpeI, and CG_SssI, respectively,
for all motif sites of interest (Fig. 2a) for coverage ≥ 1. In
particular, given a threshold of prediction methylation percentage
≥ 0.1 for a genomic position of interest, DeepMod gave precision

= 0.945 and recall= 0.97 for GCGC_Hhal, precision= 0.835 and
recall= 0.879 for CG_MpeI and precision= 0.848 and recall=
0.986 for CG_SssI. As CG_SssI (19X) has much lower coverage
than GCGC_Hhal (50X) and C G_MpeI (39X), if the threshold of
prediction methylation percentage was set to a larger value for
CG_SssI, i.e., ≥ 0.2, DeepMod achieved precision= 0.96 and
recall= 0.985 with significant improvement of precision but a
slight (0.001 point) decrease of recall. Meanwhile, a larger
coverage threshold such as 5 can yield better performance,
although the improvement is not significant as shown in Fig. 2a.

Besides the evaluation on methylated cytosines within
sequence motifs of interest above, the second type of evaluation
on the independent E. coli data were based on all cytosines from
both positive control and negative control, and the results were
illustrated in Fig. 2b, c: DeepMod achieved AUC of 0.985, 0.953,
and 0.992 for all cytosines in the GCGC_Hhal data set, the
CG_MpeI data set, and the CG_SssI data set, respectively,
suggesting similar AUC values when moving the classification of
motif (GCGC or CG)-based cytosines to the classification of all
cytosines. However, from Fig. 2c, the AP values of DeepMod to
classify all cytosines are 0.771, 0.890, and 0.983 in the
GCGC_Hhal data set, the CG_MpeI data set and the CG_SssI
data set, respectively, which were lower than the performance for
the prediction of cytosines in sequence motifs, indicating
misclassifications for cytosines that are not present in motifs.
When we checked which cytosines might be more likely to be
misclassified, we found that cytosines closely adjacent to modified
cytosines (i.e., one or two upstream/downstream cytosines) has
much higher likelihood to be misclassified than cytosines in other
positions, suggesting possible neighborhood effect caused by
modifications. In fact, the misclassification of cytosines adjacent
to modified cytosines may not be wrong but merely indicates the
existence of modified cytosines that are adjacent to each other,
and thus the prediction power of our method may be under-
estimated in these scenarios. In summary, this analysis on several
independent data sets clearly demonstrated the satisfactory
performance of DeepMod in genome-wide, single-base resolution
detection of 5mC.

Performance of 5mC prediction on independent Nanopore
sequencing data on human genomes. Cross-species 5mC pre-
diction performance of DeepMod was further evaluated on a
human Nanopore sequencing data set. Under this evaluation, a
DeepMod model, which was trained on E. coli data, were used to
make 5mC prediction on the NA12878 human cell line. Recently,
NA12878 was sequenced by Jain et al. mainly using Nanopore
R9.4 with ~ 30X coverage31. On this human Nanopore sequen-
cing data, the well-trained DeepMod model on E. coli data were
used to make 5mC prediction for each Nanopore long read, and
each cytosine in a long read was associated with a label indicating
whether it was predicted to be 5mC or not. Then, after all long
reads were aligned against a reference genome, predicted
methylation summary for the whole-genome was generated for
each cytosine in the genome with a percentage to indicate how

Table 2 The number of modified and un-modified bases of interest used for evaluation on E. coli when coverage ≥ 1

Data set name Base of interest Modification # modified base in motif # non-modified base in motif # base not in motif

CG_MpeI cytosine (C) 5mC 693,518 693,427 3,326,971
CG_SssI 682,526 693,427 3,297,528
GCGC_HhaI 70,172 70,160 4,573,777
gaAttc_EcoRI adenine (A) 6mA 277 280 1,003,885
gAtc_dam 7816 7831 989,363
tcgA_TaqI 6351 6403 989,375
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many modification predictions were made for that position,
compared with the number of reads mapped to that position.
Furthermore, to account for the high correlations of nearby 5mC
in CpG sites30, we designed another deep neural network, and the
second neural network incorporates the predicted methylation
percentages of a CpG site, the prediction on the opposite strand
and the methylation prediction of its neighboring CpG sites, and
outputs a final prediction percentage for a genomic position. This

second deep neural network could improve AP by 1–3% points
and AUC by 3–5% for all chromosomes when coverage ≥ 1.

To evaluate DeepMod prediction performance on NA12878,
we used 5mC calls from bisulfite sequencing of NA12878 as
benchmark32. Owing to the heterogeneity of sequenced samples,
we used completely methylated and completely un-methylated
bases for the evaluation: a genomic position of a base was
considered to be completely methylated if its methylation
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Fig. 2 Evaluation of the performance of DeepMod on 5mC prediction on E. coli, NA12878, and HX1. a AP (the outer) and AUC (the inner) plots for 5mC
within sequence motifs in E. coli for three synthetically introduced 5mC data sets by M.Mpel (CG_MpeI for CG motif), M.Sssl (CG_SssI for CG motif), and
M.Hhal (GCGC_HhaI for GCGC motif), respectively. b, c AUC and AP plots for 5mC prediction of all cytosines in E. coli. d, e AP and AUC of 5mC prediction
by DeepMod on NA12878. f, g AP and AUC of 5mC prediction by DeepMod on HX1. Cov: coverage. # base: total number of bases used in the evaluation
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percentage ≥ 90% in both replicates of bisulfite sequencing with
coverage ≥ c (c could be 1, 5, or 10), and to be completely un-
methylated if its methylation is 0% in both replicates. The
number of completely methylated and un-methylated bases for
each chromosome in NA12878 were given in Supplementary
Table 4. We compared methylation percentage of DeepMod
prediction against the completely methylated and un-methylated
cytosines at reference positions of interest for each chromosome.
The results on AP were shown in Fig. 2d, and the AUC was given
in Fig. 2e, where both AP and AUC with coverage ≥ 1 were ~0.99,
yet when coverage ≥ 5, the values of AP and AUC were > 0.99.
For example, on the chromosome 1, when coverage ≥ 5,
DeepMod achieved the AP value of 0.998 and the AUC value
of 0.993, while on the chromosome 20, when coverage ≥ 5,
DeepMod had the AP value of 0.998 and the AUC value of 0.995,
indicating accurate prediction on human genome, even when
using a DeepMod model trained on E. coli data.

With NA12878 Nanopore data, DeepMod was also evaluated
on those 5mC sites where the methylation percentage has small
difference (< 0.25) between the two replicates of bisulfite
sequencing to account for the heterogeneity of two bisulfite
sequencing batches. We found that the prediction methylation
percentage has high correlation with the methylation percentage
in both replicates (> 0.85 for the majority of chromosomes when
coverage ≥ 5). We also noted that DeepSignal29 trained on E. coli
tried to make cross-species prediction of CpG methylation
on NA12878, which achieved F1= 0.949 (with precision= 0.97
and recall= 0.93) on synthetically introduced 5mC in human,
whereas nanopolish achieved F1= 0.89 (with precision= 0.944
and recall= 0.844). Both methods required a CpG site
with signals in both the template and complement strands and
only output final prediction on template strand by summarizing
predictions from both strands, and the prediction was based on
synthetically introduced 5mC (complete methylation and un-
methylation). Our method on native 5mC prediction in NA12878
achieved F1= 0.983 (with precision= 0.988 and recall= 0.979)
and F1 values on each individual chromosome (calculated based
on precision and recall in Supplementary Table 4) were ~ 0.98.
Although this is not a direct comparison, DeepMod still
demonstrated its highly accurate prediction on NA12878.

DeepMod was further evaluated on another independent
human data set HX1, by sequencing whole-blood sample33

with ~ 30X coverage on the Nanopore platform and by two
replicates of bisulfite sequencing of the same sample. To make
5mC prediction on HX1, we trained a model using completely
methylated and completely un-methylated cytosines of chro-
mosome 1–10 of NA12878, so that NA12878 and HX1
were basecalled with the same version of Albacore. Then,
similar to the evaluation on NA12878, we compared
5mC prediction by DeepMod on Nanopore sequencing data
against completely methylated and un-methylated cytosines
determined from two replicates of bisulfite sequencing data
for HX1 (see Supplementary Table 5 for details). After that,
we calculated AP (Fig. 2f) and AUC (Fig. 2g) and precision
and recall (Supplementary Table 5) for coverage ≥ 3, where
the AP of DeepMod is > 0.99 and the AUC is generally
higher than 0.97 except on chromosomes X and Y. The
performance was comparable to nanopolish, but both methods
have already achieved excellent 5mC methylation prediction
on HX1. For example, on the chromosome 1, the AP value of
DeepMod is 0.998 and the AUC value is 0.979, demonstrating
highly accurate predictions. We note that nanopolish
was designed for those CpG sites which were completely
methylated/un-methylated CpG sites within 10 bps and not
semi-methylated, while DeepMod does not have this
limitation.

Cross-species independent evaluation of 5mC prediction on E.
coli. To further evaluate cross-species performance of DeepMod
on the E. coli data, we trained a model using chromosome 1–10 of
NA12878 (where both NA12878 and E. coli data were basecalled
with the same version of Albacore). We then used DeepMod to
make methylation prediction on several E. coli data sets, including
Con1, Con2, GCGC_Hhal, CG_MpeI, and CG_SssI3. For each of
three positive data set (GCGC_Hhal or CG_MpeI or CG_SssI),
we mixed motif-based 5mC with the corresponding motif sites in
both Con1 and Con2 for performance evaluation of DeepMod,
and the number of the cytosines of interest in motifs from
positive control and from Con1 and Con2 were shown in Table 2.
With a coverage ≥ 1, DeepMod achieved AP= 0.95 on
GCGC_Hhal, AP= 0.807 on CG_MpeI, and AP= 0.973 on
CG_SssI. The AUC values achieved by DeepMod are 0.942, 0.809,
and 0.965 on GCGC_Hhal, CG_MpeI, and CG_SssI, respectively.
On GCGC_Hhal and CG_SssI, the AP values were 2–4% points
lower than the prediction by DeepMod trained on the E. coli data
of CG_MSssI and UMR4, whereas the AP value (0.807) was 0.11
lower on CG_MpeI. In summary, the cross-species testing sug-
gested that DeepMod trained on one species can make accurate
prediction on the other species, when the same basecalling
algorithm was used. We note that the data from NA12878 was
generated from native DNA while the data from Stoiber et al.3

were treated by PCR and enzymes: native DNAs may contain
incompletely methylated cytosines due to cellular heterogeneity,
which may result in slightly lower performance when training
a model.

Performance of 6mA prediction on Nanopore sequencing data
on E. coli. To evaluate DeepMod on 6mA modifications within
specific sequence motifs, we used three positive control data sets
by Nanopore sequencing of E. coli with synthetically introduced
6mA3, where M.Taql, M.EcoRI and M.dam were used separately
to methylase 30,914 TCGA motifs (denoted tcgA_TaqI for short),
1290 GAATTC motifs (denoted gaAttc_EcoRI for short), and
38,240 GATC motifs (denoted gAtc_dam for short), respectively.
With region-based independent validation strategy, we evaluated
DeepMod for the genomic positions from 1,000,000 to 2,000,000,
whereas reads mapped outside of this region was used for
training. After predicting methylation percentage for bases of
interest in this region, we calculated AP and AUC values by
combining each of the three 6mA positive control with Con1 and
Con2 in Fig. 3a for those adenines in motifs, and the number of
6mA in motifs and the corresponding non-methylated adenines
were given in Table 2. Figure 3a showed that DeepMod achieved
AP= 0.884 and AUC= 0.874 on gaAttc_EcoRI, AP= 0.858, and
AUC= 0.857 on tcgA_TaqI, and AP= 0.913 and AUC= 0.903
on gAtc_dam with coverage ≥ 5, suggesting that DeepMod per-
formed well for 6mA modification detections. In particular, given
a threshold of predicted methylation percentage ≥ 0.1 for a
genomic position of interest, DeepMod achieved precision= 1.0
and recall= 0.788 on gaAttc_EcoRI, precision= 0.859 and recall
= 0.841 on tcgA_TaqI, and precision= 0.748 and recall= 0.929
on gAtc_dam. We also conducted cross-validation of the five
different regions in E. coli reference genome (i.e., [0, 1000000],
[1000000, 2000000], [2000000, 3000000], [3000000, 4000000],
[4000000, 4700000]), and DeepMod achieved AP= 0.83 ± 0.037
on gaAttc_EcoRI, AP= 0.89 ± 0.073 on gAtc_dam, and AP=
0.81 ± 0.041 on tcgA_TaqI, showing varying but similar perfor-
mance in different genomic regions.

We next evaluated the performance of our methods on all
methylated adenines regardless of whether adenines are within
specific sequence motifs or not. When we calculated AUC using
the predictions for all adenines, the AUC values increased from
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0.874 to 0.898 for gaAttc_EcoRI, 0.857 to 0.92 for tcgA_TaqI, and
0.903 to 0.973 for gAtc_dam, indicating lower overall prediction
errors. However, the AP values decreased. For example, for
coverage ≥ 5, when we classified all adenines rather than gAtc-
based adenines, the AP value decreased to 0.874, whereas the AP
value decreased to 0.66 when we classified all adenines rather
than tcgA-based adenines. This suggested a fraction of false
positive predictions of 6mA not in motifs of interest, compared
with a small number of true positive modifications. For example,
there was only 277 6mA on gaAttc_EcoRI and 1,003,885 un-
modified adenines, and even 1% misclassification of un-modified
adenines is much larger than the number (277) of 6mA, and will
lower the overall AP values.

Cross-species independent evaluation of 6mA prediction on C.
reinhardtii. As C. reinhardtii is among the first eukaryotes19,34,35

with detailed characterization of 6mA modifications, to further
evaluate 6mA prediction of DeepMod, we sequenced C. rein-
hardtii using Nanopore sequencing with ~ 126X coverage, and
then used the model trained on E. coli to make 6mA prediction
for C. reinhardtii. The predictions were compared with the
existing work of DA-6mA-seq results34,35 where genomic DNA
was digested in 0.5 h and 12 h. We plotted AUC for the DeepMod
prediction together with the prediction by mCaller26 with cov-
erage ≥ 15 in Fig. 3b. mCaller used current deviations of six
consecutive 6-mers around a position of interest as input of a
neural network for 6mA prediction and it is known to be a highly
accurate 6mA predictor. In this evaluation, mCaller achieved 0.74
AUC values for both DA-6mA-seq results, and DeepMod
achieved slightly higher AUC value of 0.77 AUC. When we used
coverage > 50 for both tools (since this data has ~ 126X coverage),
DeepMod achieved AUC= ~ 0.8, whereas mCaller achieved
AUC= ~ 0.75 for both DA-6mA-seq results. In summary,
DeepMod can make accurate inferences on detection of 6mA
modifications in cross-species evaluation studies.

Discussion
DeepMod developed in this study bridges the gap between the
rapid growth of Nanopore sequencing data and the increasing
need of detecting DNA modifications at a genomic scale. DNA
modifications are not consistent through biological cell cycle and

may vary between cell types. DNA modifications, such as 5mC,
could be introduced by methyltransferases during cell develop-
ment, and might also be de-methylated in some other biological
processes such as cell differentiation. Specific enzymes are
necessary to methylate cytosine or de-methylate 5mC, which
plays a critical role in epigenetic reprogramming, whereas aber-
rant DNA modifications have been found to play important roles
in human diseases such as various cancers36. Although bisulfite
sequencing and PacBio long-read techniques have achieved great
progress to detect some types of DNA modifications, especially
5mC, the advent of Nanopore long-read sequencing has sig-
nificant potential to detect major types of DNA modifications
from Nanopore raw electric signals. However, Nanopore
sequencing data contains context-dependent electric signals
which complicates the ability to pinpoint where modifications are
located. Therefore, in this study, we propose a deep learning
framework, DeepMod, to detect DNA modifications from raw
electric signals of events (together with mapped base types) from
Nanopore sequencing in a context-dependent manner via the use
of LSTM. Evaluation on three types of species with two major
type of DNA modifications demonstrates that DeepMod per-
forms accurately to identify both types of DNA modifications and
has great potential to be extended to other types of DNA mod-
ifications. DeepMod thus can be used as a genomic tool to detect
genomic modifications for the increasing volume of Nanopore
sequencing data without additional sequencing cost.

There are several current limitations in DeepMod that we wish
to discuss here. First, DeepMod is trained and evaluated on 5mC
and 6mA, two common DNA modifications, and it might not
work well with other types of modifications or other different
motifs before sufficient amounts of training data is available.
Nevertheless, DeepMod provides a simple extension framework,
and the model of other types of DNA modifications could be
easily trained. This limitation could be further addressed when
unsupervised or one-class learning are used to build a prediction
model in the future, with a tradeoff that the specific modification
types might not be predicted. Second, DeepMod can only work
on DNA data of Nanopore sequencing currently. RNA data of
direct Nanopore sequencing contains natural RNA modifications,
which are informative to interpret gene expression and gene
regulation, but large-scale ground-truth RNA modification data
are currently lacking for supervised machine learning. In
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Fig. 3 Evaluation of the performance of DeepMod on 6mA prediction on E. coli and C. reinhardtii. a AP (the outer) and AUC (the inner) plots on E. coli for
three synthetically introduced 6mA data sets by EcoRI (gaAttc_EcoRI for GAATTC motif), TaqI (tcgA_TaqI for TCGA motif), and dam (gAtc_dam for
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for genomic DNA digested in 12 h34). Cov: coverage. # base: total number of bases used in the evaluation
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addition, uracil in RNA may make Nanopore electric signals in
RNA data different from that in DNA data, and thus additional
work is needed to see whether the DeepMod framework needs
modification to handle direct RNA Nanopore sequencing data.
Third, DNA modifications could affect Nanopore signals of
several neighboring bases, and the impacts from nearby mod-
ifications within a few bases away may influence the prediction of
a given base, yet this fact is not currently considered in DeepMod.
Fourth, DeepMod relied on alignment tool to find correct refer-
ence positions of bases in long reads. Now, DeepMod supports
two widely used aligners: BWA-MEM and minimap232. If dif-
ferent aligners or improper parameters are used with poor
alignment performance, DeepMod’s prediction will also be
affected. Re-alignments with different tools or parameters might
bring in new examined sites or exclude previously examined sites.
This effect contributes much less to false modification prediction
for those frequent modification types, but may become significant
for those rarely occurring modifications. However, the majority of
those limitations can be addressed by having more ground-truth
modifications data sets for training the prediction models with
proper parameters. When more and more modifications data sets
become available, we believe that improved model in DeepMod
could be learned to generate better prediction models.

In summary, DeepMod together with Oxford Nanopore
sequencing provide a useful tool to identify DNA modifications at
a genomic scale. We expect that DeepMod can be used in whole-
genome epigenetics analysis with more types of modifications in
future, with appropriately trained prediction models on addi-
tional gold standard data sets generated by the community.

Methods
We developed DeepMod for the detection of DNA modifications from Nanopore
sequencing data. DeepMod is a supervised deep RNN with Nanopore sequencing
data as input. In this section, several Nanopore sequencing data sets used in this
study were described below together with how to build, train and evaluate Deep-
Mod on Nanopore sequencing data generated for E. coli, C. reinhardtii, and two
human genomes (NA12878 and HX1).

Existing Nanopore sequencing data. Several Nanopore sequencing data sets were
used in this study, including seven published positive and three negative control
data sets for E. coli sequenced by Simpson et al.4 and by Stoiber et al.3, one
published Nanopore sequencing data set for a human genome NA12878 sequenced
by Jain et al.31, a new Nanopore sequencing data set on HX1 and a new sequencing
data set on C. reinhardtii both generated in this study.

The positive control samples for E. coli contain four data sets for 5mC and three
data sets for 6mA where methylations were synthetically introduced by specific
enzymes, whereas three negative control samples were amplified by PCR and thus
contain no modified bases. A positive control of 5mC data set (with the short name
CG_MsssI) and a negative control data set (with a short name of UMR) were
sequenced by Simpson et al.4, whereas the three 5mC data sets (with short names of
GCGC_Hhal, CG_MpeI, and CG_SssI) and three 6mA data sets (with short names
of tcgA_TaqI, gAtc_dam, and gaAttc_EcoRI) and two negative control data sets
(with short names of Con1 and Con2) were sequenced by Stoiber et al.3. The detail
description of these data sets can be found in Supplementary Notes and3,4. The
sequencing data sets on two human genomes and on C. reinhardtii were based on
native DNA molecules, and thus contain native modifications. Below, we will
introduce Nanopore sequencing process for HX1 and C. reinhardtii, whereas the
Nanopore sequencing data of NA12878 can be downloaded online.

Nanopore sequencing data on HX1. HX1 is a well-studied genome from a Chi-
nese individual who has been sequenced by Illumina short-read sequencing and
PacBio long-read sequencing33. Native human genomic DNA was extracted from
fresh blood, and size selection was performed using Blue Pippin (Cassette kit:
BUF7510; size range: 30–40 kb). DNA quality was assessed by running 1 µl on a
genomic ScreenTape on the TapeStation 2200 (Agilent) to ensure a DNA Integrity
Number > 7. Concentration of DNA was assessed using the dsDNA HS assay on a
Qubit fluorometer (Thermo Fisher).

For library preparation, 2.0 µg size-selected (> 20 kb) genomic DNA was used as
the input DNA of each library. End repair and dA-tailing was performed using
NEBNext Ultra II End Repair/dA-tailing Module (catalog No. E7546). In all, 7 µl
Ultra II End-Prep buffer, 3 µl Ultra II End-Prep enzyme mix were added to the
input DNA. The total volume was adjusted to 60 µl by adding nuclease-free water
(NFW). The mixture was incubated at 20 °C for 5 min and 65 °C for 5 min. A 1 ×

volume (60 µl) AMPure XP clean-up was performed and the DNA was eluted in 31
µl NFW. One microliter of the eluted dA-tailed DNA was quantified using the
Qubit fluorometer. A total of ≥ 1.0 µg DNA should be retained if the process is
successful.

Adaptor ligation was performed using the following steps. Twenty microliter
Adaptor Mix (ONT, SQK-LSK108 Ligation Sequencing Kit) and 50 µl NEB Blunt/
TA Master Mix (NEB, catalog No. M0367) were added to the 30 µl dA-tailed DNA.
The mixture was incubated at room temperature for 10 min. The adaptor-ligated
DNA was cleaned up using 40 µl of AMPure XP beads. The mixture of DNA and
AMPure XP beads was incubated for 5 min at room temperature and the pellet was
washed twice by 140 µl ABB (SQK-LSK108). The purified-ligated DNA was
resuspended in 15.5 µl ELB (SQK-LSK108). A 1-µl aliquot was quantified by
fluorometry (Qubit) to ensure ≥ 500 ng DNA was retained. The final library was
prepared by mixing 35.0 µl RBF (SQK-LSK108), 25.5 µl LBB (SQK-LSK108), and
14.5 µl purified-ligated DNA. The library was loaded to R9.4 flow cells (FLO-
MIN106, ONT) according to the manufacturer’s guidelines. GridION sequencing
was performed using default settings for the R9.4 flow cell and SQK-LSK108 library
preparation kit. The sequencing was controlled and monitored using the
MinKNOW software developed by ONT. Nanopore sequencing generated
4,827,155 FAST5 files in total after using Albacore v2.3.1 basecalling, and there
were ~ 91G bases in total.

Nanopore sequencing data on C. reinhardtii. C. reinhardtii has been used to
study 6mA modification using DA-6mA-seq techinques34 where a region con-
taining 6mA modifications were detected. In the current study, we sequenced the
same strain of C. reinhardtii as previously published, using Nanopore sequencing
techniques as described above. We generated 772,817 FAST5 files after using
Albacore v2.31 for basecalling, there were 15G bases in total, corresponding to ~
126X genome-wide coverage.

DeepMod framework. DeepMod is a deep learning tool of bidirectional RNN with
long short-term memory (LSTM) units. LSTM RNN is a class of artificial neural
network for modeling sequential behaviors with LSTM to preclude vanishing
gradient problem, and has achieved superior performance in handwriting recog-
nition37, speech recognition38, and computational biology39. LSTM RNN would
also be a better method to model series of raw signals generated in Nanopore
sequencing.

In DeepMod, the input is a reference genome and FAST5 files generated by
Nanopore sequencers with raw signals and base calls, and the output includes
modification prediction for bases of interest in a long read and modification
summary for genomic positions of interest in a reference genome in BED format.
DeepMod contains several steps as shown in Fig. 1: (i) the alignment of long reads
to a reference genome, (ii) feature extraction from inputs, (iii) a deep learning
framework for modification prediction, and (iv) an optional second neural network
for considering methylation cluster effect of 5mC in CpG sites, and (v) the
modification summary for outputs. Each of the five steps was described below.

(i) The input to DeepMod includes a reference genome and FAST5 files
containing raw signals and events, which were generated by Nanopore
sequencers with base calls. Each event is associated with a k-mer (e.g., 5-mer).
In DeepMod, stay events without move were merged with the adjacent
previous non-stay event with move to generate a single event. A sequence of
bases associated with the resultant events was aligned to a reference genome
using BWA-MEM with Nanopore-specific parameters40 or minimap2. Each
non-insertion base in long reads can be anchored with a genomic position in
a reference genome for further analysis.

(ii) In a FAST5 file, each event is associated with several sequential raw signals,
and raw signals for all aligned bases in a long read were normalized using the
method proposed by3 and the normalized range was rescaled from −5 to 5.
Then, the signal mean, standard deviation, and the number of signals
associated with an event were extracted, plus a 4-vector feature for mapped
reference bases. In the 4-vector feature, 1 indicates the mapped reference
base is a specific nucleotide type, whereas 0 means otherwise. Thus, 7
features were used to describe an event (7-feature description for short and
denoted by xi = [fm, fd, fl, fA, fC, fG, fT]). In the training and testing process,
events were also labeled by modification or non-modification inferred from
synthetically introduced modifications for motifs of interest or from bisulfite
sequencing (Please refer to the Supplementary Methods for more detail).

(iii) The deep learning framework in DeepMod is a bidirectional RNN of LSTM
units as shown in Fig. 1. RNN is used to capture the Nanopore sequencing
characteristic of that a signal would be affected by several neighborhood
bases, and LSTM can overcome the effect of vanishing gradient problem in
RNN training process28. LSTM RNN has been widely used in those fields
where sequential order need to be preserved in training process of a deep
learning framework such as handwriting recognition37, speech recogni-
tion38, and protein sequence analysis41.

In DeepMod, bidirectional RNN with LSTM units was used with three
hidden layers, where bidirectional RNN were used to take into consideration
both forward and reverse data flow from neighborhood bases, and each
LSTM unit contains multiple hidden nodes. In detail, an event and its ⌊w/2⌋
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upstream and ⌊w/2⌋ downstream events (i.e.,
x ¼ fxi�bw=2c; � � � xi; � � � xiþbw=2cg, where w is an odd number and ⌊w/2⌋ is
the floor of w/2) were used as the inputs of w LSTM units in RNN according
to the sequential order in a long read, and 7 features (xi) of each event was
the input of a LSTM unit. In a LSTM unit with xj as input, i−⌊w/2⌋≤j≤i
+⌊w/2⌋, then, the output pj is

pj ¼ tanhðf i1 � f fi2 þ vj�1 � f f Þ � f p ð1Þ

where f p ¼ sigmodðf ð ap bp cp ÞÞ is activation function for output gate,
f f ¼ sigmodðfð af bf cf ÞÞ is activation function for forgot gate, vj−1 is
inner delay state, f i1 ¼ tanhðf ð ai1 bi1 ci1 ÞÞ is activation function for
input, f i2 ¼ sigmodðf ð ai2 bi2 ci2 ÞÞ is activation function for input gate,

f a b cð Þ ¼ a b c½ � � xj pj�1 1
� �T

, where superscript T is
the tranpose of a matrix, pj−1 is the previous output, and ∘ is
the element-wise multiplication.

Then, both forward and backward data flow were captured as shown in
Fig. 1, and 3-layer RNN with full connections was used to capture
complicated relationship between signals and prediction target of
modifications. Given a long read with sequential events, an event and its
neighborhood could be used as input of this neural network, and a
prediction label was generated for this event. This process can be repeated
one by one for events of interest in a long read and then for all long reads
available. In the training process, the prediction labels ŷ is treated by the
softmax function, and cross-entropy E would be minimized to tune the
parameters in RNN.

E ¼ y � � log �yð Þ þ 1� yð Þ � � logð1� �yÞ ð2Þ

where y is the true labels of events regarding modifications, and

�y ¼ e ŷ
n

e ŷ mþe ŷ n
e ŷ

m

e ŷ mþe ŷ n

h i
, and ŷn is non-modification component for a

prediction and ŷm is modification component.
(iv) A second deep neural network was also designed for considering high

correlation of 5mC modifications. Existing works30 have demonstrated that
5mC modification in human genome are highly correlated with nearby CpG
sites and with the corresponding sites at the opposite strand. We also
investigated the methylation percentage of a CpG site and of its nearby CpG
sites and the corresponding sites at the opposite strand in both replicates of
bisulfite sequencing of NA12878, and found higher Pearson correlations
between the methylation percentages of a CpG site and of its nearby CpG
sites. To consider this effect, we designed the second deep neural network
with four layers including an input layer, two hidden layers, and an output
layer. The input of this layer is a 14-value vector: the predicted methylation
percentage of a position, that of corresponding position of CpG site at the
opposite strand, the number of nearby CpG sites within 25 bp, and the 11
discretized bins ([0, 0.05], [0.05, 0.15], [0.15, 0.25],…. [0.95, 1.0]) with value
of how much percentage of nearby CpG sites has corresponding predicted
methylation percentage. The first hidden layer has 100 hidden nodes,
whereas the second hidden layer has 20 hidden nodes. Different layers were
connected by full network with dropout (dropout rate= 0.7), and the output
layer has sigmoid activation for outputting final methylation percentage for
a CpG site. This network was only trained on the chromosome 1 of
NA12878 with 100 epochs, and tested on all other chromosomes of
NA12878 and HX1.

(v) In a real application, given a set of FAST5 files, DeepMod needs a reference
genome to generate prediction modification for events of interest in a long
read, and a sequence of bases from events were aligned with a reference
genome. After the alignment, a genomic position of interest in a reference
genome was aligned with a set of events each from a long read and with a
prediction modification label. The modification information of genomic
positions of interest was summarized in a BED format in a strand-specific
manner with single-base resolution, and contained total coverage, modifica-
tion coverage and modification percentage: if a position of interest was
covered by a long read with forward strand alignment, its forward coverage
was increased by 1, and further if the aligned base in the long read was
predicted to be modified, its forward modification coverage was increased by
1; similarly, if a position of interest was covered by a long read with reverse
strand alignment, its reverse coverage was increased by 1, and further if the
aligned base in the long read was predicted to be modified, its reverse
modification coverage was increased by 1. Modification percentage of
genomic positions of interest was calculated using its modification coverage
divided by its coverage in total. In a real-world application, there is no filter
for prediction sites, and reads with mapped quality < 10 would not be used
(only tens of reads among thousands of passed reads had poor mapped
quality in our experiments.).

Performance measurements. For M completely modified and N completely un-
modified bases (or motifs of interest), assume that DeepMod generated P modified
predictions and Q un-modified predictions, accuracy, precision, recall, AP, and

AUC are used to evaluate the performance.

accuracy ¼ P \Mj j þ Q \ Nj j
M þ N

ð3Þ

precision ¼ P \M
P

ð4Þ

recall ¼ P \Mj j
M

ð5Þ

F1� score ¼ 2 � precison � recall
precisionþ recall

ð6Þ

where |*| is the size of *. Thus, accuracy is the fraction of correct predictions over
all modified/un-modified cases in a data set, precision is a percentage of correct
predictions of completely modified cases over all modified predictions, while recall
is the number of correct prediction of completely modified cases divided by the
number of completely modified cases in a data set. F1−score is a tradeoff metric of
precision and recall. To evaluate binary classification of completely methylated
positions and completely un-methylated positions in a reference genome, AP
(which has been widely used in information retrieval) is weighted mean of preci-
sions achieved at each threshold of predicted methylation percentage. As predicted
methylation percentage decreases from 1 to 0, recall usually increases, whereas
precision might decrease, and AP is in practice calculated by summing all precision
with the recall difference at two adjacent thresholds in an ordered list as weights by
scikit-learn. AP could evaluate how a classifier performs for the predictions of
modifications (The prediction of un-modifications is not fully considered in this
measurement). The range of the five measurements above is from 0.0 to 1.0. AUC
is area under receiver operating characteristic curve, usually ranging from 0.5 to
1.0, and AUC can evaluate how a classifier performs for all predictions (considering
both modifications and un-modifications). For all the measurements, the larger the
value, the better the classification is.

Training DeepMod. We trained a 5mC model of DeepMod on the positive control
CG_MSssI and the negative control UMR of E. coli4. To validate the deep learning
model and select optimal hyper-parameters, two independent validation strategies
were used on CG_MSssI and UMR. One strategy is read-based, where all long
reads were divided into two groups: one group was used to train DeepMod with
90% positive-control long reads and 90% negative-control long reads, and the other
group was used for testing DeepMod with 10% positive-control long reads and 10%
negative-control long reads. Since the data set has thousands of bases in each of
thousands of long reads, each time, a small portion of training data of positive
control and another small portion of training data of negative control were loaded
to train DeepMod, and this process was repeated until negative control data were
loaded multiple times. Then, DeepMod was tested on the testing group. In this
strategy, long reads in testing groups might align with same reference sequences as
some reads in training data. Thus, we also employed a second strategy, which is a
region-based independent validation, where all long reads or bases of long reads
mapped to the genomic positions from 1,000,000 to 2,000,000 of E. coli were used
for testing, no matter whether the long reads were from positive control or negative
control; the rest of long reads were used for training DeepMod. The loading
process for training DeepMod was similar to read-based independent validation
strategy did above.

As no prior knowledge can guarantee which hyper-parameters would be
optimal, to build a well-trained model for modification prediction, different hyper-
parameters were tested during this training and validation process, such as window
size w from 7, to 11, to 15, to 21, to 31, and then to 51 with a step of 10. The detail
performance of this validation was shown in Supplementary Table 1. According to
the detail performance, the final well-trained model was selected for making
methylation prediction on other data sets for 5mC prediction. A 6mA model of
DeepMod was trained in a similar way on Con1, Con2, tcgA_TaqI, gAtc_dam, and
gaAttc_EcoRI.

Testing 5mC model of DeepMod on an independent E. coli data set. 5mC and
negative control Nanopore sequencing data sets from another research group3 were
used for cross-data set performance evaluation of DeepMod: the three 5mC data
sets are GCGC_Hhal, CG_MpeI, and CG_SssI, whereas the negative control data
sets are Con1 and Con2 (Please refer to the Supplementary Notes for their detail
description). FAST5 files for each testing group (5mC data or negative control)
together with a reference genome (E. coli strand K-12 sub-strand MG165542) were
taken as input of DeepMod, and each base of interest in long reads was predicted
with a label to indicate whether it was methylated. Then, methylation prediction
was summarized for each reference position of interest associated with a coverage,
a methylation coverage and a methylation percentage. As in a positive control, a
nucleotide of a specific motif were all methylated and negative control has no
modification for all bases, we mixed each positive control with the negative control
(Con1 and Con2), and calculated AP and AUC to evaluate the performance of
DeepMod.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10168-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2449 | https://doi.org/10.1038/s41467-019-10168-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Testing 5mC model of DeepMod on human data sets of NA12878 and HX1. All
long reads of NA12878 in FAST5 files together with a reference genome GRCh38
were used as input of DeepMod, and DeepMod made modification prediction for
each base of interest in long reads with a label to indicate whether it was methy-
lated. Then, predicted methylation was summarized for each genomic position of
interest in GRCh38 associated with a total coverage, a methylation coverage and a
methylation percentage. As native DNA sequencing in NA12878 contain naturally
occurring modifications, and heterogeneity of sequenced DNA molecules generally
exists, the criteria below was used to obtain high-quality methylation and non-
methylation labels from bisulfite sequencing32 of NA12878 for bases in long reads:
for a cytosine of a position in GRCh38 with both > 90% of methylations and
coverage ≥ c (c would be 1, 3, 5, or 10) in two replicates of bisulfite sequencing, a
cytosine in a long reads aligned with that position was considered to be modified
and the cytosine at that position in the reference genome was called complete
methylation; and if a cytosine of a position in GRCh38 has 0% methylations in
both replicates of bisulfite sequencing, a cytosine in a long read aligned with that
position was considered to be un-modified and the cytosine at that position in the
reference genome was called complete un-methylation. Bases in long reads aligned
with all other positions were not considered, and other positions of interest in
GRCh38 without complete (un)-methylations were not used for binary classifica-
tion performance. Then, the DeepMod prediction percentage of methylation at
reference positions of interest (for example, CpG sites for 5mC) was compared
against completely methylated or completely un-methylated reference positions,
and AP and AUC were calculated to evaluate binary classification performance of
DeepMod. The testing of DeepMod on HX1 data had the similar process to what
we did for NA12878.

Testing 6mA model of DeepMod on C. reinhardtii. To test 6mA prediction on C.
reinhardtii, we downloaded version 4.0 of C. reinhardtii43 from JGI (Joint Genome
Institute) as the reference genome, and input all FAST5 files of C. reinhardtii
Nanopore sequencing data to DeepMod to obtain methylation prediction for each
genomic position of interest in C. reinhardtii. The prediction results were com-
pared with DA-6mA-seq results34,35 for all GATC, TCGA. and GAATTCC motifs.
In DA-6mA-seq, an adenine in motifs, which has an absolute score larger than 5
was considered as 6mA modifications, whereas other adenine in motifs is con-
sidered to not be modified. mCaller was run with a coverage ≥ 15 and motifs of
interest.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All Nanopore sequencing data on C. reinhardtii have been deposited to the EMBL-
EBI European nucleotide archive under study PRJEB31789 [http://www.ebi.ac.uk/ena/
data/view/PRJEB31789]. The raw human genome sequencing data sets on HX1 are
available at http://hx1.wglab.org/. HX1 bisulfite sequencing data is available at the NCBI
Sequence Read Archive (SRA) under the study PRJNA301527 [https://www.ncbi.nlm.
nih.gov/bioproject/?term=PRJNA301527], while HX1 Nanopore sequencing data is
available at the NCBI Sequence Read Archive (SRA) under the study PRJNA533926
[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA533926].

Code availability
DeepMod is publicly available at https://github.com/WGLab/DeepMod and will be
regularly maintained and updated. A detailed description of installing/running DeepMod
and reproducible pipelines have also been documented in the GitHub repository.
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