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Abstract

Microbial communities inhabit spatial architectures that divide a global environment into isolated 

or semi-isolated local environments, which leads to the partitioning of a microbial community 

into a collection of local communities. Despite its ubiquity and great interest in related processes, 

how and to what extent spatial partitioning affects the structures and dynamics of microbial 

communities is poorly understood. Using modeling and quantitative experiments with simple 

and complex microbial communities, we demonstrate that spatial partitioning modulates the 

community dynamics by altering the local interaction types and global interaction strength. 

Partitioning promotes the persistence of populations with negative interactions but suppresses 

those with positive interactions. For a community consisting of populations with both positive 

and negative interactions, an intermediate level of partitioning maximizes the overall diversity of 
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the community. Our results reveal a general mechanism underlying the maintenance of microbial 

diversity and have implications for natural and engineered communities.

Introduction

Microbial communities are critical to natural ecological processes, such as biogeochemical 

cycling1, animal and human health2,3, and engineering applications4,5. Microbial community 

structure, meaning species identities and their abundance, is a primary feature that defines 

the functioning of microbial communities6. Along with internal factors, such as growth 

rate, death rate, and interactions, external factors, such as ecological factors and chemical 

environments also modulate microbial community structures7. However, our knowledge is 

still limited regarding what factors impact microbial community structures in a scalable and 

general manner and how they operate.

Survey-based studies of complex microbial communities using sequencing technologies 

provide large amounts of high-quality data and empirical insights8,9 but causal and 

mechanistic links are often missing between external factors and community structure10. 

In contrast, controlled assembly of a few species can provide mechanistic interpretations 

since specific variables related to community structure can be manipulated. These studies 

have investigated the contributions of different factors that are biological10–13, chemical14,15, 

or physical16–18. However, how the learned insights scale up to more complex communities, 

where diverse interaction types and higher-order interactions may be present, is difficult to 

test and remains unclear10.

Among these factors, spatial partitioning is ubiquitous yet mostly overlooked for microbial 

communities. Spatial partitioning describes the physical separation of a community into 

local communities. For example, the physical architectures of the gut19, plant root20, and 

soil21 all partition microbial communities into distinct local communities that are separated 

to different extents (Fig. 1a). Due to the complexity of the physical architecture of microbial 

communities, the partitioning can be mostly complete, such as the microbiota in two 

different animals or the local microbial communities in two separate droplets. It can also be 

partial, resulting from the cell mobility or dispersal across local environments18 or diffusion 

of signaling molecules across local communities16.

In the simplest case, where partitioning is complete, local environments each consists 

of only a subset of all members and partitioning restricts interactions within local 

communities. In general, spatial partitioning reduces the overall strength of interactions 

in the global microbial communities and lowers the number of interacting species for 

each individual member22. Moreover, the type of interactions experienced by a member 

can vary drastically depending on the random assembly of local environment23. In other 

words, spatial partitioning can modulate the dynamics of a microbial community by 

globally modulating the type and strength of interactions experienced by each member. 

This emphasis on interactions, derived from studying microbial communities, differs 

substantially from research in multicellular organisms, which places much greater emphasis 

on dispersal between local communities, abiotic factors, and neutral dynamics24. Focusing 
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on interactions therefore has potential to contribute to the historically organismal-level study 

of spatial effects on local and global community diversity.

It is yet unclear whether the effect of spatial partitioning is highly system specific or 

whether it follows general rules. Beyond the challenges of distilling causal mechanisms 

and general rules, defining spatial partitioning in a relevant and quantitative manner is also 

challenging. To address this question and overcome these challenges, we first established 

a theoretical framework to explain the mechanisms by which spatial partitioning affects 

community structure. Based on the theoretical framework, we formed a hypothesis that 

spatial partitioning reduces biodiversity for negative interaction dominated community 

and increases biodiversity for positive interaction dominated community, and biodiversity 

peaks at an intermediate partitioning level for communities with both positive and negative 

interactions. We then tested our hypothesis using precisely controlled top-down experiments 

of simple communities and scaled up to complex natural communities. The ability to control 

microbial community structures through modulation of spatial partitioning can address a 

wide range of challenges we face with natural and engineered microbial communities for 

ecological, medical, and engineering purposes.

Results

A theoretical framework to model spatial partitioning

Consider a microbial community residing in a global environment. In the absence of 

partitioning, all interactions between members are retained. If the environment is divided 

into N equal-sized local environments, the community members will be allocated to these 

local environments. We simplify the process by assuming seeding follows a Poisson 

distribution where the Poisson parameter λ dictates the average number of cells in one 

local community (Fig. 1b). On average, the local communities have the same total number 

of cells subject to random variations: the relative variation in this number increases as the 

total cell number in the overall community decreases. The parameter N measures the level of 

partitioning: a larger N corresponds to higher partitioning. We assume local communities are 

completely isolated from each other; as such, no interactions, dispersal, or migration occur 

across different local communities. For a sufficiently large N, some local communities will 

only have a subset of the members in the overall community. As a result, some members 

will experience fewer interactions in comparison with when they reside in an unpartitioned 

environment. With extreme partitioning where each local environment contains at most 

one cell, all interactions between members are eliminated. Thus, when interactions are 

considered, spatial partitioning, at its core, blocks interactions across local communities.

After partitioning, each local community grows separately, and the ensemble of local 

communities captures the global community dynamics (Fig. 1c). We model the temporal 

dynamics of each local community using a set of ordinary differential equations (ODEs) 

(Fig. 1d), where δ describes the intrinsic death rate of each species and β and γ describe 

positive and negative effects of species on others, respectively (Fig. 1e). 1/β is the density 

of a partner species to reduce death rate (δ) of this strain by 50%. When β increases, the 

positive interaction strength is higher (i.e. lower density of partner species is required to 

halve the stress) and when γ increases, the negative interaction strength is higher (i.e. lower 
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density of partner species is required to reach the same death rate). Thus, we use strength of 

interactions to indicate the magnitude of β and γ.

In contrast to the classic general Lotka-Volterra (gLV) model formulations that can generate 

unbounded growth with some parameter ranges25,26, our formulation generates bounded 

dynamics with the entire space of defined parameter domain (Fig. 1f, Supplementary Fig. 

1). Our model only incorporate competition in the pairwise γ term, instead of assuming 

all species have background negative interactions. Thus, our model formulation accounts 

for different types of negative interactions (including competition) explicitly. Note that our 

simulation condition implies that the interaction length scale is larger than or similar to 

the scale of the local environment and that the local communities are well-mixed. Another 

assumption is that the interaction logic and strengths are preserved regardless of the initial 

partitioning.

Through its effect on local community membership at t = 0, the spatial partitioning level 

N modulates the growth of populations and the pooled global community structure after 

growth at t = tf. This seeding and growth process capture the critical aspects of the temporal 

evolution of microbial communities in nature and in the laboratory setting. Examples include 

the inoculation and growth of communities in germ-free animal models27, infant guts28, 

cheese microbiome29, and so on. The pooling process is analogous to the mixing of samples 

when quantifying microbial communities in natural habitats.

Emergence of biphasic dependence of biodiversity

By varying N, we focus on examining how varying spatial partitioning affects biodiversity 

(Fig. 2a), which is a key parameter that influences community stability30, function31, and 

evolution32,33. Here we primarily use the inverse Simpson index (referred as Simpson index 

in the following texts) as the metric to serve as the proxy for effective number of members.

Inverse Simpson Index = 1
∑i = 1

M pi2
,

where pi is the relative abundance of species i and the community has M number of species. 

The index reaches the maximum, which is M, when all species have the same relative 

abundance. Whereas the index reaches the minimum, which is 1, when only one species 

persists.

Indeed, the same type of natural microbial community can reside in environments with 

different partitioning levels. Starting with two-member communities, when there is no 

interspecific interaction, spatial partitioning has no impact on final global community 

diversity and composition (Fig. 2b). However, increasing partitioning promotes the 

biodiversity of a pairwise community where one member suppresses the other, by shielding 

the suppressed strain from its suppressor (Fig. 2c, Extended Data Fig 1a). In contrast, 

increasing partitioning decreases the biodiversity a pairwise community when one member 

promotes the growth of the other. This is due to the partitioning of the dependent strain 

from its helper strain, which reduces its growth (Fig 2d, Extended Data Fig. 1b). This 
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observation extends to communities with more populations that are dominated by either 

positive interactions or negative interactions (Extended Data Fig. 1c). Even for a pairwise 

community, the degree by which partitioning affects biodiversity also depends on the 

strength of interactions (Supplementary Fig. 2).

When communities have both competition and cooperation, simulations reveal a biphasic 

dependence of biodiversity on the partitioning level for a large range of relative prevalence 

between cooperation and competition (Fig. 2e). When there is a balance of positive and 

negative interactions, biphasic dependence emerges with increasing number of species in the 

community, increasing overall interaction strength, and increasing interaction connectedness 

(Fig. 2f–i). Reaching the steady state is not a requirement for biphasic dependence to occur, 

though the biphasic dependence becomes more pronounced when approaching the steady 

state (Extended Data Fig. 1d).

The biphasic dependency can be explained from two aspects. One is the suboptimal 

biodiversity at both low or high partitioning levels, where the suppressed members or the 

dependent members have reduced growth or are unable to persist, respectively. The other 

aspect is that for each species, only a subset of initial local community compositions 

can enable its persistence (by excluding its competitors or providing its cooperators). 

Thus, increasing the number of unique local communities increases the chance for each 

species to persist in at least one local community. Since the highest count of unique local 

communities at t0 (Extended Data Fig. 1e) and the count of unique local community 

containing any species (Extended Data Fig. 1f) both peak at an intermediate partitioning 

level, the intermediate level can maintain the growth of the most species. Consistent with 

this notion, we find that indeed, the highest biodiversity overlaps with the highest diversity 

of local communities (Extended Data Fig. 1g). However, the biphasic dependency cannot be 

explained by local community biodiversity because it decreases with increasing partitioning 

levels regardless of interaction types (Extended Data Fig. 2).

Robustness of the biphasic dependence

So far, we have found that biphasic dependence arises when there is a balance of positive 

and negative interactions, including their magnitudes (Fig. 2). This behavior is widely 

applicable to a broad range of parameter settings (Supplementary Fig. 3). In nature, 

microbial communities often undergo successive mixing and partitioning. Our simulations 

indicate that, in the presence of intermittent mixing, the general impact of partitioning on 

biodiversity is similar to the case without mixing (Supplementary Fig. 4). That is, even when 

communities go through multiple cycles of partitioning, growth, and mixing, our conclusion 

holds.

We then examined the robustness of our conclusion with respect to the model formulation. 

We tested a modified gLV model formulation. Compared with our original formulation, 

the standard gLV model can generate unbounded growth of the community. To avoid this 

situation, we introduced a carrying capacity to cap each species’ growth. The results are 

consistent with results from our base model formulation (Supplementary Fig. 5).
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To test the effects of temporal stochasticity, we used a stochastic differential equation 

model. With a moderate level of noise, the stochastic model generates qualitatively the same 

results as simulations without temporal stochasticity (Supplementary Fig. 6). To simulate 

the variation of size and the level of nutrient of local communities, we implemented 

a randomization of local community carrying capacity within each partitioning level. 

Even when the local community carrying capacity has a normal distribution of sigma 

equals to 50% of mean, the results are qualitatively similar to the base simulation results 

(Supplementary Fig. 7). Taken together, these additional simulations demonstrate the 

robustness of the general conclusion as revealed by the base model simulation (Fig 2).

Biphasic dependence with simple communities

We use microtiter plates, each with 6, 24, 96, 384, or 1536 isolated wells, to implement 

various levels of spatial partitioning in experiments (Fig. 3a). In each experiment, we 

calibrated the initial density of each community such that the average number of cells in 

each local environment is ~0.5 at the highest partitioning level. We then allocated the same 

total volume of the same mixture of microbial community into different wells in each plate. 

After culturing for 30 hours, we pooled all the wells in each plate to measure the global 

community structure.

We first investigated two pairwise synthetic communities, which use quorum sensing (QS) 

to mediate one-directional positive interaction or one-directional negative interaction. To 

implement the interactions, we used an engineered strain 1 that produces 3OC6HSL, which 

is a QS signal (Extended Data Fig. 3a). 3OC6HSL induces the expression of CcdB in 

strain 2 that results in cell death, forming the negative interaction (Extended Data Fig. 

3b). 3OC6HSL induces the expression of CcdA which reduces the toxicity of CcdB that 

strain 3 produces, forming the positive interaction (Extended Data Fig. 3c). We designed 

each strain to have a different antibiotic resistance profile to use selection plating to 

quantify community composition. The circuit functions were validated using monocultures 

(Extended Data Fig. 3d) and interactions on agar plates (Extended Data Fig. 3e). Consistent 

with model predictions, increasing spatial partitioning promoted the biodiversity of the 

negative-interaction pair (Fig. 3b, Extended Data Fig. 3f) but suppressed that of the positive-

interaction pair (Fig. 3c, Extended Data Fig. 3g). Further details of these circuits are 

provided in Supplementary Table 1.

Many studies have tested the assembly of a group of species by coculturing all assemblages 

of a certain number of species out of a larger set of species. This experimental setup 

provides an alternative implementation of spatial partitioning where the physical separation 

is controlled through controlled initial seeding (Extended Data Fig. 4a). Consistent with 

our simulation and experimental results, simple experimental communities dominated with 

negative interactions demonstrate increasing biodiversity with increasing spatial partitioning, 

whereas communities dominated by positive interactions show an opposite trend. This 

is true for all 6 types of pairwise interaction diversities (Extended Data Fig. 4b) and 

for larger communities (Extended Data Fig. 4c). Communities with both negative and 

positive interactions also reveal biphasic dependence of diversity on partitioning level 

(Extended Data Fig. 4d). Previous studies have demonstrated that partitioning decreases 
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diversity for mutualistic pairs11,34; partitioning increases diversity for two-directional 

negative interactions35; partitioning increases35 or decreases the diversity of a pair with both 

positive and negative interactions. Previously published results of multi-member microbial 

communities also follow the same general principle (Extended Data Fig. 5).

Biphasic dependence with complex communities

We next examined the applicability of our insights (Fig. 2) to much more complex 

experimental communities. To this end, we generated a collection of plasmid-barcoded Keio 

strains36 to enable quantification of the community dynamics by next-generation sequencing 

(Extended Data Fig. 6). We constructed a community of 47 Keio strains that are auxotrophs 

(Supplementary Table 2). The auxotrophic strains were selected based on their final density 

in the minimum medium (MOPS) versus rich medium (LB) presented in the original Keio 

strain publication and we obtained 47 strains that were successfully barcoded.

These auxotrophs compete for the nutrient components other than the amino acids they 

provide to each other. Their positive interactions only emerge when these amino acids 

are absent. Therefore, increasing the concentrations of these amino acids attenuates the 

positive interactions, elevating the relative contribution of negative interactions (Fig 4a). 

This modulation of the relative magnitude of positive and negative interactions by adjusting 

amino acid concentrations has been demonstrated in previous auxotrophic communities14,15. 

In our system, the positive interaction in the absence of exogenously added amino acids 

was verified by collective survival of the community (Extended Data Fig. 7a). We also 

measured the distribution of OD in each plate to verify that sufficient level of partitioning 

was achieved (initial density of ~0.5 cells per well in 1536 plate), and an increase of OD was 

observed with increasing amino acid concentration (Extended Data Fig. 7b). Sequencing 

results revealed an increasing diversity at high casamino acid concentration and a decreasing 

diversity at low concentration, and a biphasic dependence at an intermediate concentration 

(Fig. 4b, c).

We also constructed one community consisting of 94 non-auxotrophic strains 

(Supplementary Table 3), where none of the strains overlap with the 47 auxotrophic 

strains. The culture medium was supplemented with 0.1% casamino acid, which is a 

typical casamino acid concentration for M9 medium. The 0.1% [CA] also provides a 

direct comparison between the 94-nonauxotrophic community and the first condition of 

the auxotrophic community. Since Keio strains are all derived from Escherichia coli K-12 

strain BW25113 with single gene deletions, the strains share similar genetic backgrounds 

and metabolic pathways, leading to primarily competition for nutrition in the community. 

Indeed, we have found that increasing partitioning level overall promotes the diversity of the 

non-auxotroph community (Extended Data Fig. 7c).

A previously-published dataset on natural groundwater bacterial communities also exhibits 

a biphasic dependence of biodiversity on partitioning37. The community underwent serial 

dilutions in microtiter plates where one well represents a local community and there are 

96 local communities for each dilution level (Extended Data Fig. 8a). The samples were 

then cultured in the presence and absence of oxygen. There are three variables that change 

across serial dilution: partitioning level, average initial density, and down-sampling of the 
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natural community. By accounting for both changes in initial density (Extended Data Fig. 

8b) and down-sampling (Extended Data Fig. 8c), we find that biodiversity indeed follows a 

biphasic dependence on partitioning level (Extended Data Fig. 8d). The biodiversity curves 

for anaerobic and aerobic conditions suggest that aerobic condition creates an environment 

that favors competition, which is consistent with the conclusions in the original publication 

(Extended Data Fig. 8e). Water content is another implementation of spatial partitioning that 

shows biphasic dependency of biodiversity for soil microbiomes at microscale level21.

Responses of archetypes and multilevel partitioning

Within each community, member species can be categorized in 8 archetypes based on fitness 

level and the interactions they receive (Extended Data Fig. 9a). Simulation of a 160-species 

community (20 species of each archetype) with a random interaction network shows how 

each archetype responds to various partitioning levels (Extended Data Fig. 9b). There are 

four types of responses (Extended Data Fig. 9c): flat, positive, negative, and biphasic. 

Flat curve corresponds to species receiving no interactions. Positive and negative curves 

correspond to species receiving negative and positive interactions, respectively, whereas 

biphasic curve corresponds to species receiving both types of interactions. Note the parallel 

between the response of individual archetypes and how the biodiversity of communities of 

one archetype changes across partitioning levels.

The diversity of responses by different archetypes suggests that a single partitioning level 

cannot accommodate all species. Although there exists a level of partitioning that optimizes 

the biodiversity of microbial communities, this optimal biodiversity may not ensure the 

persistence of all species (Fig. 5a). Furthermore, without a priori characterization of the 

interactions within the community, the optimal partitioning level is unknown. To this end, 

we reasoned that a mixed partitioning level could ensure the maximum possibility for all 

species of any archetype to persist. Simulation results show that when more partitioning 

level are included, more species will be able to persist (Fig. 5b) and mixed partitioning level 

provides a robust strategy to maintain high community diversity (Extended Data Fig. 9d).

We tested this notion using cellulose sponges to create multi-level partitioning due to the 

wide distribution of pore sizes inside a sponge38 (Fig. 5c). We used the same microbial 

community shown in Fig. 4 to test if submerging a sponge in the liquid culture with low 

initial cell density will increase the biodiversity of the final community compared with a 

shaken liquid culture. In addition, we used three casamino acid concentrations to test how 

well the sponge can maintain a higher biodiversity with different overall strengths of positive 

and negative interactions. Indeed, our results show that the global diversity of communities 

cultured in sponge was overall significantly higher than those grown in liquid culture (Fig. 

5d).

In nature, the physical architectures of microbial habitats indeed impose multiple levels of 

partitioning through interconnected local communities, varying sizes of local environments, 

and self-assembled local patches. Our results demonstrate a robust mechanism that can 

explain the high biodiversity observed in natural microbial communities. Following this 

mechanism, multi-level partitioning also facilitates the emergence of spatial heterogeneity 

and niche differentiation, which are key mechanisms that maintain biodiversity39. Since 
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spatial partitioning is important to maintaining the biodiversity of natural microbial 

communities, its disruption in laboratory cultures most likely reduces biodiversity of the 

community of interest. Gut and soil microbiome diversity may be better maintained with 

culturing methods implementing multi-level spatial partitioning.

Discussion

Our study reveals a simple principle that dictates how spatial partitioning modulates 

microbial community structure through global modulation of interactions. Although spatial 

partitioning modulates the growth of populations receiving negative versus positive 

interactions in opposite directions, it is robust that complex communities with both negative 

and positive interactions reach the highest biodiversity at an intermediate partitioning level. 

Previous studies that use precisely controlled assembly primarily focus on characterizing 

pairwise interactions, which limits the scalability of the experiments23. In contrast, 

we leveraged seeding stochasticity and community-level interaction characteristics to 

demonstrate the robustness and scalability of this principle. Further, this community-level 

principle is the result of the collective response of single species in the community.

For experimentalists, our study suggests the importance of the explicit consideration of 

physical arrangement of communities in experimental designs. For example, serial dilutions 

not only modulate the initial density of communities but also increase the spatial partitioning 

level of the community. Our study also suggests that to maintain the highest biodiversity of 

a natural community, beyond the design of chemical environment, the design of the physical 

environment is also crucial. For natural microbial communities that arise from complex 

spatial partitioning environments, spatial design of lab cultures can be especially important 

for maintaining their structure and biodiversity.

Engineering of habitat by spatial partitioning can be an effective strategy to modulate and 

control microbial community structures. Beyond using microtiter plates, other engineering 

methods can also be used to impose spatial partitioning that has not been fully tested yet, 

such as encapsulation40 and inkjet printing41. The modulation of community structure can 

happen at three levels. First the relative abundance of a single population can be modulated 

based on archetype. Second, the proportions of interactions can be modulated through 

increasing or decreasing partitioning. Third, the biodiversity can be modulated or maintained 

through the modulation of spatial partitioning level or a mixed level of partitioning. Beyond 

being a general and robust modulator, spatial partitioning, as a physical factor, is orthogonal 

to chemical and biological factors and can be used in parallel.

The role of space in maintaining biodiversity is a central question beyond microbial ecology, 

as exemplified by classic Island Biogeography Theory42, debate regarding the optimal 

design of biodiversity reserves43,44, and the subsequent flowering of metacommunity 

ecology24,45,46. Many specific aspects of partitioning, such as nestedness47, stochastic 

extinction48, and migration rate49 have been investigated. However, most studies largely 

overlook interactions, in particular cooperation. Our general principle of spatial partitioning 

accounts for both types of interactions, addressing a critical gap in our understanding 

of spatial mechanisms for the maintenance and promotion of biological diversity. 

Wu et al. Page 9

Nat Chem Biol. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This helps to clarify the role of spatial mechanisms alongside temporal mechanisms 

of biodiversity maintenance and spatiotemporal mechanisms, such as the intermediate 

disturbance hypothesis50. Finally, the insights presented here and offers a fresh perspective 

for interpreting, screening, and controlling microbial community structures and the relative 

abundance of individual population.

Methods

Data availability

Experimental data generated for this manuscript are provided as source data files, and 

deposited to GitHub at: https://github.com/youlab/partitioning_NCB2021.

Code availability

The simulation and data-analysis codes used in this the study are deposited to GitHub at 

https://github.com/youlab/partitioning_NCB2021.

QS-based and synthetic E. coli strains

The strains are constructed from previously published strains and their antibiotic resistance 

are verified using antibiotic plates. Strain 1 is previously published as QS-CAT strain in51. 

Strain 2 is identical to the circuit of prey strain except that the CcdBs is replaced with 

the wild-type CcdB gene52. Strain 3 is previously published in11 as M2 in the synthetic 

mutualistic pair.

Growth conditions

M9 medium contained standard M9 salt (6.8 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 

and 0.5/L NaCl), 0.5% (w/v) glucose, 1 mM MgSO4, 0.1 mM CaCl2, 1 μg/ml thiamine, and 

0.1% (w/v) casamino acid. It was buffered with 0.1M of MOPS and adjusted to a pH of 

7.0 with NaOH. The antibiotic concentrations used in this study to maintain the plasmids 

during overnight culture are: 100 μg/ml chloramphenicol, 50 μg/ml kanamycin, 100 μg/ml 

ampicillin, and 50 μg/ml spectinomycin. The agar plates were made with 1.5% agar and 

standard Luria-Bertani (LB; Miller) broth, containing the same antibiotic concentrations.

We grew the strains with M9 medium at 30°C for 8~12 hours from glycerol stocks to create 

overnight cultures. We then calibrate the OD of the overnight culture to 0.1 and mix each 

strain by equal ratio followed by 2×106fold dilution. This calibration and dilution procedure 

ensures a starting total cell concentration of 50~200 cells/ml. Each well contains 2.56 ml, 

640 μl, 160 μl, 40 μl, and 10 μl for 6, 24, 96, 384, and 1536 well plates, respectively. 

QS-based synthetic systems were cultured using M9 medium supplemented with aTc and 

IPTG but no antibiotics. The Keio strains were cultured with 100 μg/ml chloramphenicol 

to maintain the barcoded plasmids. The Keio auxotroph strains were cultured in the same 

M9 medium except for the concentration of added casamino acid. The strains did not lose 

antibiotic resistances over the experiments. The plates were sealed using both AeraSeal 

(Excel Scientific) and Breathe‐Easy membrane (Diversified Biotech) and are covered by 

plastic lids. The microtiter plates were shaken at 225 rpm at 30 °C. for 24 hours for the 
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QS-based strains. We cultured the regular Keio strains for 30 hours and auxotrophic Keio 

strains for 48 hours to reach sufficient cell density.

Quantifying community structure of QS-based communities

After culturing, we pooled all wells within each microtiter plate and measured the OD of 

each pooled community. Each sample was diluted and plated on multiple types of antibiotic 

plates with 4 replicate plates. The antibiotic plates were cultured at 37°C overnight before 

CFU counting. Since each strain has a unique antibiotic resistance profile, all strains can 

be measured using the correct type of antibiotic plates. For each pairwise community, 

the replicate plating gave 16 pairs (4×4) of measurements, which were used to determine 

community structure and biodiversity index.

Construction of barcoded Keio strains

The 96 non-auxotrophic strains were selected randomly from the Keio collection. We 

identified autotrophs by screen all Keio strains with OD in LB greater than 0.45 and OD 

in MOPS below 0.05. Among the total of 76 auxotroph strains that were screened, we 

randomly picked 47 to construct the auxotrophic community.

A library of barcoded plasmids was generated using Gibson Assembly cloning. Briefly, 

a plasmid vector backbone was generated by linearizing a plasmid vector (p15A-GFP-

Carbenicillin, Extended Data Fig 6a) using PCR amplification (P1 and 2, Q5 MasterMix). 

Using lower amount of template DNA (as low as 0.1 ng of DNA) reduced the background of 

unmodified vectors downstream. The vectors were gel purified and underwent an overnight 

restriction enzyme digested using NOTI and PVUI, based on manufacturer’s instructions, to 

generate end that overlap two synthesized DNA fragments for Gibson Assembly.

Sequences of the synthesized DNA fragments are provided below. Each part contains a 

15–20 base pair overlap with the plasmid vector (yellow) and with each other (red) for 

Gibson Assembly, one of the Illumina® adapter sequences in green (part 1 contains the i5 

adapter and part 2 contains the i7 adapter sequence) and 18 random base pairs making up the 

barcode regions.

Part 1:

5’ 
-GCCTCAGGGCCCGATAGTACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN
NNNNNNNNNNNNNCCTCAGGGTCACTAGG -3’

Part 2:

5’ 
-CTCAGGGTCACTAGGNNNNNNNNNNNNNNNNNNAGATCGGAAGAGCACACGT

CTGAACTCCAGTCACGTGGGCCGCTTAATTAATTAATC -3’

Following Gibson Assembly cloning, the barcode DNA fragment was assembled into the 

vector backbone in the following structure:
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5’…

GCCTCAGGGCCCGATAGTACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN

NNNNNNNNNNNNNCCTCAGGGTCACTAGGGNNNNNNNNNNNNNNNNNNAGATC

GGAAGAGCACACGTCTGAACTCCAGTCACGTGGGCCGCTTAATTAATTAATC…

3’

A library of barcoded plasmids was generated by transforming the Gibson Assembly 

reaction into electrically competent cells, allowing an overnight outgrowth of the 

transformed cells and harvesting the plasmid library by plasmid midiprep kit (Qiagen), 

based on the manufacturer’s instructions. Plasmids were then be transformed into target 

strains by chemical transformation53. Barcoded strains were validated by colony PCR 

(Supplementary Table 4, Primers 3 and 4, Q5 MasterMix). Following enzymatic clean-up, 

PCR products were sent for Sanger Sequencing to validate the barcode sequence of each 

strain.

A collection of strains from the Keio collection were uniquely barcoded, including more 

than 94 non-auxotroph strains and 47 auxotrophs. All barcoded strains were validated 

by sanger sequencing to contain a single unique barcode sequence. Sanger sequencing 

validation of all barcoded strains allowed for simplification of downstream data processing 

as all barcode sequences and associated strain identifies are known. The sequencing also 

allowed us to remove strains carrying duplicate or multiple barcodes as a result of double 

transformation.

NGS library preparation

Plasmid DNA was extracted from experimental samples by miniprep kit (Zymo Research), 

using the manufacturer’s instructions, or by boiling lysis of bacteria (95°C for 10 m in 

nuclease-free water). Extracted DNA was stored at −20°C until use in downstream NGS 

library preparation.

Libraries for NGS sequencing were prepared using a two-step PCR protocol using 

NEBNext® Ultra™ II Q5® Master Mix. The first PCR step is composed of 2 PCR cycles 

and is used to extract barcode sequences from the vector backbones using primers that bind 

the conserved Illumina adapter sequences flanking either end of unique barcode sequences 

(Green in sequences above). In addition, unique molecular identifiers (UMIs) and dual 

sample indexes are introduced during this PCR protocol. Primer sequences are provided in 

Supplementary Table 4, where the 10-base pair UMI sequence is represented as Y’s and the 

8-base pair index sequences are represented as X’s in red. UMIs are used to uniquely label 

each template DNA molecular in the initial sample and allow for downstream correction for 

sequencing errors introduce by PCR amplification.

PCR 1 conditions:

Initial denature – 30 sec– 98°C

2x PCR cycles

10 sec – 98°C

Wu et al. Page 12

Nat Chem Biol. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30 sec – 67°C

20 sec – 72°C

Final extension – 5 min 72 C

Infinite Hold 4°C

Following PCR 1, PCR clean-up and size selection were achieved using SPRIselect 

magnetic beads (Beckman Coulter). Two-step size selection was used (0.95X → supernatant 

saved →0.8X → DNA eluted from bead) based on the manufacturer’s instructions. The 

cleaned-up PCR products are then pooled together and amplified using a second round of 

PCR using the conditions described below.

PCR 2 conditions:

Initial denature - 30s– 98°C

20x PCR cycles

10 sec – 98°C

30 sec – 66°C

20 sec – 72°C

Final extension – 5 min 72 C

Infinite Hold 4°C

The product from PCR 2 was run on a 2% agarose gel for PCR clean-up and final validation 

of the library size. DNA was extracted and purified from the gel using the Zymoclean Gel 

DNA Recovery Kit, based on the manufacturer’s instructions. The cleaned PCR product 

is the final sequencing amplicon which is compatible for sequencing on standard Illumina 

sequencing platforms. The DNA libraries were sequenced using 151 base pair, paired-end 

reads either through a sequencing facility on an Illumina MiSeq or in house using an 

Illumina MiniSeq. The data collection was performed in either MiSeq Software Suite or 

MiniSeq Software Suite. For in house sequencing, DNA libraries were denatured, diluted 

and mixed with a Phi-X spike-in of 30% based on standard Illumina protocols for library 

preparation of 16S Library on the Illumina Miniseq Platform.

Final NGS Library:

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXYYYYYYYYYYACACTCT

TTCCCTACACGACGCTCTTCCGATCTNNNNNNNNNNNNNNNNNNCCTCAGGGTC

ACTAGGGNNNNNNNNNNNNNNNNNNGATCGGAAGAGCACACGTCTGAACTCCA

GTCACAXXXXXXXXATCTCGTATGCCGTCTTCTGCTTG

Where N’s represent barcode sequences, X’s represent sample indexes and Y’s represent 

UMIs.
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Data analysis pipeline

Reads from NGS sequencing were analyzed using tools available on the open source, 

web-based platform, Galaxy (Galaxy version 20.05). Data analysis was simplified due to the 

fact that all sequencing reads are the same size, all barcode sequences are known a priori and 

forward and reverse reads are fully overlapping. Sequencing reads take the following format:

Read 1:

NNNNNNNNNNNNNNNNNNCCTCAGGGTCACTAGGNNNNNNNNNNNNNNNNNN

AGATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXXXATCGCGGATGCC

GGCTTATGGTTGGGAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGG

Read 2:

NNNNNNNNNNNNNNNNNNCCTAGTGACCCTGAGGNNNNNNNNNNNNNNNNNN

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTTYYYYYYYYYYXXXXXXXXT

TTAGAAATACGTTGTACCCCTAACAATAAAAAAAAAAAAAGGGGGG

Where N’s represent barcode sequences, X’s represent sample indexes and Y’s represent 

UMIs.

Following quality control using FastQC software (Galaxy Version .72+galaxy1)54, pooled 

paired end reads were demultipelexed into different experimental conditions (Barcode 

Splitter Galaxy Version 1.0.155, Trim Sequences Galaxy Version 1.0.2+galaxy055, and 

FASTQ joiner Galaxy Version 2.0.1.1+galaxy0)56.

Next, paired end reads were merged using the software BBMerge. A high merge rate of 

95% or above was achieved for all reads since forward and reverse reads are completely 

overlapping. Correction for PCR amplification error was performed on the Galaxy Platform 

using the following selection of tools: Sort Collection (Galaxy Version 1.0.0), FASTQ joiner 

(Galaxy Version .0.1.1+galaxy0)56, UMI-Tools extract and deduplicate (Galaxy Version 

0.5.5.1)57, Bowtie2 (Galaxy Version .3.4.3+galaxy0)58,59, and Samtools fastx (Galaxy 

Version 1.9+galaxy1)60.

Finally, strain-specific barcodes were counting in each sample using a custom python script. 

Up to two mismatched base pairs were allow per barcode during barcode counting. This 

was selected as a reasonable number of mismatched bases that may result from PCR 

amplification error using Q5 high fidelity master mix and NGS sequencing error and 

considering that the minimum hamming distance between any two barcode sequences was 

17 base pairs.

Calibration and replicates

Calibration samples were generated with barcoded strains prepared at known concentrations. 

As such, cultures were grown to a similar, low OD (0.3–0.4) and mixed at three different 

known ratios as well as one sample where all strains were mixed at an equal ratio (Extended 

Data Fig 6b). Samples were prepared through the experimental workflow, NGS sequencing 

and data analysis. The resulting sequencing reads correlated with the expected relative 
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sample concentrations (Extended Data Fig 6d) demonstrating the reliability of the barcode 

sequencing approach. Normalizing the number of sequencing reads in each of the mixed 

ratio samples by the number of reads counts obtain in the equal ratio sample for each 

respective barcode improved the correlation between known and expected barcode counts. 

This normalization likely corrects for differences in actual strain abundance at the time of 

sample preparation, (i.e. variations in ODs at sampling time and differences in OD values 

and actual cell numbers for samples with similar OD may vary depending on cell size, 

etc.). There was one outlier data point in the ‘ratio 2’ sample. This strain did not appear as 

an outlier in other samples and was present in technical replicate sequencing of the same 

biological sample. As such, this error was most likely a result of human error in sample and 

was not associated to a problem with PCR amplification of the species barcode sequence.

Keio collection experiments

The characterization of Keio auxotrophic community (Extended Data Fig 7a–b) was 

generated with an array of initial densities and varying the concentrations of casamino acids.

The overnight monocultures of the 47 auxotrophic Keio strains were mixed by equal volume 

and calibrated to a cell density of 100 cells/ml. The medium is the same as the M9 

medium described in section IV.2, except we adjusted the concentration of amino acid to 

0%, 0.0002%, 0.001%, 0.005%, 0.02%, and 0.1%. The 3 replicates were generated in two 

separate days. The distribution of OD of the end points are shown in Extended Data Fig 7b.

The overnight monocultures of the 94 regular Keio strains were mixed by equal volume 

and calibrated to a cell density of 120 cells/ml, which is verified using CFU counting. M9 

medium was used (see section IV.2). 6, 24, 96, 384, and 1536 plates were used to create 5 

levels of partitioning. All microtiter plates were shaken at 225 r.p.m. at 30°C for 30 hours. 

The OD of the pooled samples were 0.375, 0.320, 0.220, 0.294, 0.179 for 6, 24, 96, 384, 

1536 well plates. The measurements of the biodiversity are shown in Extended Data Fig 7c.

Sponge experiment

We used kitchen sponge from Scotch Brite and cut the sponge into 3 pieces with dimensions 

of 1.2 cm by 1.2 cm by 4cm. The sponges were sterilized in 15ml falcon tubes by 

autoclaving. We checked the sterilization of the sponges by adding LB growth medium 

to the sponge and shaken at 225rpm at 30 °C for 48 hours in a 15ml falcon tube. No cell 

growth was detected based on OD measurement.

We mixed the 47 Keio auxotroph strains by equal volume in M9-glucose medium and 

diluted the mixture to a cell density of around 300/ml, which is verified by CFU counting. 

M9-glucose medium with no casamino acid contains standard M9 salt (6.8 g/L Na2HPO4, 

3 g/L KH2PO4, 1 g/L NH4Cl, and 0.5/L NaCl), 0.5% (w/v) glucose, 1 mM MgSO4, 0.1 

mM CaCl2, 1 μg/ml thiamine. The M9-glucose medium is buffered with 0.1M of MOPS and 

adjusted to a pH of 7.0 with NaOH. We then created three variations of the M9 medium by 

adding 0.001%, 0.005%, and 0.02% casamino acid. 7ml of cell culture was added to 15ml 

falcon tubes with or without sponge. The cell cultures were shaken for 20 hours at 30°C to 

enable the cells to reach a higher cell density, then the cell cultures were cultured at 30°C for 
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another 14 hours. We first applied physical pressure to the sponge multiple times to mix the 

cell culture and then we collected the supernatant for downstream processing.

Extended Data

Extended Data Fig. 1. Intuition of the dependence of community diversity on partitioning level
a. Local community behaviors for one-directional negative interaction. Low partitioning 

allows the interaction between the two populations, leading to the collapse of the green 

population. High partitioning separates the two populations and enables the growth of the 

green population.

b. Local community behaviors for one-directional positive interaction. Low partitioning 

levels enable the growth of the green population, whereas the green population cannot grow 

well at high partitioning levels in absence of the other population.

c. The same principle applies to 12-member communities with all negative interactions 
(red) or all positive interactions (blue). Increasing partitioning increases the diversity of 

communities with negative interactions but decreases the diversity of communities with 

positive interactions. Data are represented as mean values +/− SD, with n=10, error bar 

represents standard deviation.

d. Steady state is not required to generate biphasic response. The simulation results of 

a fully connected 15-member community at different tf values: 50 (dark grey), 100 (grey), 

and 200 (light grey). The community has 50% of negative interactions and 50% of positive 

interactions, with a maximum δ of 1.5, a maximum γ value of 1, and a maximum β of 5.

e. Biphasic dependence of diversity of local communities, which is quantified as the count 

of local communities that have unique combinations of members. The plot is generated with 

a 10-member community; each dot represents one randomization of the initial seeding. The 
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solid trace represents the average number +/− SD (error bars) and n=10 and the same as 

panel f.

f. Biphasic dependence of diversity of local communities containing a population. The 

plot is generated with the same 10-member community in panel e, with one set of initial 

seeding. Each dot represents the diversity of local communities containing a population at a 

partitioning level. The solid trace represents the average number across 10 members.

g. More unique types of local communities lead to higher diversity. For communities 

with both positive and negative interactions, types of local communities correlate with final 

community diversity. The lighter the trace, the more members there are in a community.

Extended Data Fig. 2. Distribution of the biodiversity of local communities.
The patterns of the distribution of local patch biodiversity are similar regardless of the nature 

of interactions. Intermediate partitioning levels lead to bimodal distributions. The black lines 

indicate the biodiversity of the global community; the light purple lines show the average 

of local community biodiversity and error bars show the standard deviation of the local 

community diversity with N = # of partitions. The histogram shows the distribution of local 

community biodiversity corresponding to each portioning level. Normalized count is the 

count of local communities in each bin normalized by the total number of local communities 

in the partitioning level.
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a. 20-species communities with all negative interactions. The interaction networks have 

100% connectedness. δ is generated by a uniform distribution with minimum equals to 0 and 

maximum equals to 2. β is generated by a uniform distribution with minimum equals to 0 

and maximum equals to 3. γ is generated by a uniform distribution with minimum equals to 

0 and maximum equals to 0.8.

b. 20-species communities with 1:1 count of negative to positive interactions. All 

parameter settings are the same as panel a, except for the split between negative and positive 

interactions.

c. 20-species communities with all positive interactions. Intermediate partitioning levels 

lead to bimodal distributions. All parameter settings are the same as panel a, except for the 

split between negative and positive interactions.

Extended Data Fig. 3. Characterizations of the synthetic strains
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a.-c. Circuit diagrams of strains 1, 2, and 3
d. Monoculture response to inducers and QS signals. Growth of strain 1 was not strongly 

impacted by inducers and QS signals. Growth of strain 2 was inhibited by 3OC6HSL, as 

well as the induction of circuit by aTc and IPTG. The growth of strain 3 was inhibited by 

IPTG that induces CcdB but rescued by addition of 3OC6HSL. The experiments were done 

with 1000-fold dilution of overnight monocultures. The strains were cultured in M9 medium 

at 30°C in a plate reader. “-” indicates no inducers or QS signals were added. “a” indicates 

the addition of [aTc] of 10nM. “I” indicates the addition of [IPTG] of 1mM. “C6” indicates 

the addition of [3OC6HSL] of 10nM.

e. Response of strain 2 and 3 to supernatant of 1. The supernatant of strain 1 (introduced 

in the center) inhibited growth of strain 2 (initially spread on the entire plate) around the 

center. The rescue strain 3 by strain 1 was confirmed by the elevated growth at the center of 

the plate. The agar plates were made with LB medium, 1.5% agar. 1mM IPTG and 100nM 

of aTc were also added to induce circuit functions. The overnight culture of strain 1 was 

induced by 1mM of IPTG and 100nM of aTc to produce 3OC6HSL.

f. Community structure of the pair with negative interaction. Strain 2 had an increased 

relative abundance with increasing partitioning level. The community structures were 

measured by selective plating. Data are represented as mean values +/− SD and n=16.

g. Community structure of the pair with positive interaction. Strain 3 has a reduced 

relative abundance with increasing partitioning level. The slight reduction of biodiversity at 

the low partitioning was due to the slight decrease of relative abundance of strain 3 possibly 

driven by background competition between the two strains. Data are represented as mean 

values +/− SD and n=16.
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Extended Data Fig. 4. Spatial partitioning by controlled seeding
a. Partitioning based on controlled seeding. Number of species in local communities 

(group size) decreases with increasing partitioning. All combinations of the same group size 

were tested and pooled after growth to determine the richness of the pooled community -- 

the total number of populations. Due to the exponential nature of combination, controlled 

seeding is difficult to implement in an exhaustive manner for communities with large 

number of populations.

b. Simulations of all 6 major types of interactions in monocultures and cocultures. 

A check (cross) mark indicates that a population can (cannot) survive by itself. Overall, 

partitioning promotes coexistence for negative interaction-dominated pairs and impedes that 

for positive interaction-dominated pairs. The predator-prey interaction shows both trends, 

depending on whether the populations survive by themselves. Previously published data are 

consistent with these simulation results.

c. Spatial partitioning by controlled seeding in large communities with only negative or 
positive interactions. Increasing partitioning increases diversity for communities with only 

negative interactions and decreases for communities with only positive interactions. Each 

dot represents a randomly generated interaction network, and 10 networks are generated 

for negative interaction (red trace) and positive interaction (blue trace) networks. The 

open circles represent the mean across the 10 random interaction networks and error bars 

represent the standard deviations.
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d. Robust biphasic dependence is observed with controlled seeding. Partitioning 

implemented by controlled seeding also generates robust biphasic dependence for 

communities with both negative and positive interactions. Simulations are done on 10 

randomly generated interaction networks of 10 populations with 1:1 ratio of positive versus 

negative interactions (grey dots). Open circles represent the mean and error bars represent 

the standard deviation.

Extended Data Fig. 5. Controlled seeding as an alternative implementation of spatial 
partitioning.
Local group size refers to the number of populations that are seeded into a local community 

at t0. Reducing group size is effectively increasing partitioning level.

a. An 8-member community that is dominated by negative interactions reaches higher 
diversity with increasing. The previous study has collected eight soil bacterial species and 

found that the final community compositions are primarily driven by competitive exclusion. 

We have used the published data that are generated by co-culturing all possible combinations 

of a specific number of species to test our theory.

b. A 14-member auxotroph community reaches maximum diversity at an intermediate 
partitioning level, with a sharp drop of diversity from local group size of 2 to 1. 
This previous publication investigated 14 E. coli auxotrophs where none can grow as 

monocultures but some pairs grow collectively in cocultures. When all 14 auxotrophs are 

cocultured, only a few coexist whereas others are competed out due to competition.

c. The biodiversity of a 12-member synthetic human gut microbiome consortia that has 
both positive and negative interactions follow a biphasic dependence on partitioning. 
This previous study has cultured the single species, all pairwise assemblages, all single-

species dropout communities, and all 12-member community. For each community, the 

abundance is measured using 16S rRNA gene sequencing.
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Extended Data Fig. 6. Construction of barcoded Keio strains and sequencing quantification.
a. The backbone of barcoded plasmids. b. Calibration experiment. Samples prepared at 

known fixed concentrations were generated and prepared through the entire workflow of 

NGS library preparation, sequencing and data analysis, as described in the methods. The 

image represents the layout of sample prepared at known ratios for sequencing where daker 

shading indicates higher relative strain concentrations in mixture. Samples were prepared 

based on 2-fold dilution between each group.

c. Identifying outliers. A box and whisker plot of 94 samples sequences at equal ratio 

was used to identify barcodes that amplified poorly or over-amplified as compared to 

other barcode sequences. The center of the box and whisker plot is 762. Outlier barcodes 

were defined as those giving sequencing counts with a distance greater than 1.5 times 

below the 1st quartile’s interquartile range (distance between the 1st and 3rd quartile) or 1.5 

times above the 3rd quartile’s interquartile range. Eight barcodes were removed from future 

analysis.
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d. Overall calibration results. Normalized relative abundance of sequencing counts obtain 

for each barcode plotted versus the expected sample ratio shows a good correlation between 

expected and actual barcode abundances. Each data point represents a single barcoded Keio 

strain.

e. Correlation between NGS measurements of technical replicate experiments. 
Sequencing technical replicate of three different samples sequences independently.

f. Correlation between replicate NGS measurements on the same biological samples. 
Sample preparation and sequencing replicate for three sample starting from the same 

template DNA that were processed independently through sample preparation and 

sequencing protocols.

Extended Data Fig. 7. Characterizations of the Keio auxotrophic (a & b) and non-auxotrophic (c) 
communities.
a. Community growth response to amino acid concentrations and initial density. 
Collective growth demonstrates the presence of positive interactions among 47 Keio 
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auxotroph strains. With no casamino acids added (the darkest trace) and 0.0002% of 

casamino acid, the auxotroph Keio community shows no significant growth at 48 hours in 

M9 medium at 30°C despite having an initial density above 0. However, with higher initial 

cell densities, the community began to grow, which is a typical behavior of cooperative 

communities. The data are represented as mean with error bars representing standard 

deviations across 7 replicate wells (N = 7). From the darkest to lightest, the lines casamino 

acid concentrations of 0%, 0.0002%, 0.001%, 0.005%, 0.02%, and 0.1%.

b. The distribution of OD600 of each well at different casamino acid concentrations 
and partitioning levels. As expected, there is systematic increase in OD600 with increasing 

casamino acid concentrations (labeled at each row). Based on the initial cell density and 

Poisson distribution, 96 and 384-well plates are almost always are seeded with at least 

one cell in each well. However, at low casamino concentrations (0.0002% and 0.001%), 

bimodal distributions occur at 96 and 384-well plates indicating that the initial community 

compositions and their interactions play a crucial role in the growth of a strain. At the 1536 

partitioning level, high casamino acid concentrations (0.1% and 0.02%) also show bi-modal 

distributions, which is expected due to a probability of ~30% wells being empty at a λ = 1.2.

c. Increased diversity with a 94-member community dominated by negative 
interactions. The strains were randomly selected from the Keio collection with auxotrophic 

strains excluded. Since all strains share the same genetic background, strong negative 

interactions are expected due to competition for nutrients and space.

Extended Data Fig. 8. Deducing the effect of spatial partitioning on a groundwater community
a. The experimental setup of the groundwater study. Partitioning increases with higher 

dilution due to the decrease of local community sizes and reduced number of interactions. 

Serial dilution introduces two additional variables: the decrease of initial cell densities and 

subsampling of the initial community that occurs with increasing levels of dilution.

b. Negligible impact of initial cell density on final community diversity. 10 randomly 
generated 1000-member community were simulated with increasing dilution rate, 
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which is equivalent to decreasing density of the initial community (grey dots). Data 
are represented as mean values +/− SD with N=10.
c. Estimated global initial community structure. The population abundance distribution 

loosely follows power law, which approximates the distribution pooled final communities of 

different dilution levels, especially at 10X and 102X. The estimated abundance distribution 

of the original sample is based on power-law distribution and an estimate of 5000 

total OTUs, which is feasible compared with 399 OTUs that are sequenced in the final 

communities that account for both 10X dilution and OTUs that were not able to grow.

d. Comparison between the measured richness at each dilution level and the estimated 
richness of initial communities. The baseline is the mean sampled from the estimated 
community composition of the original sample by simulating serial dilution. The error 
bars of the baseline are the standard deviation across 10 simulated samplings (n=10). 
The # of OTU present was calculated from the published data. Dilution of 104 in 
anaerobic condition has no OTU present and it is thus not shown.
e. Biphasic dependence of a groundwater community. The community was analyzed in 

both anaerobic (NO3) and aerobic (O2) culture conditions. Down sampling due to dilution 

was accounted for to estimate the number of OTUs sampled at t0. Y-axes indicate the 

percentage of OTUs that are present at tf (after culturing) out of the number of sampled 

OTUs at t0 (see SI for detailed method). Data are represented as mean values +/− SD with 
N=10.
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Extended Data Fig. 9. Response of members of different architypes to spatial partitioning
a. Eight archetypes of species based on fitness, competition, and cooperation, using 

three metrics: fitness (1 – δ), positive interaction it receives (β), and negative interaction it 

receives (γ). The color of each archetype is determined by the level of fitness, the strength 

of positive interaction received, and the strength of positive interaction received, which 

correspond to the level of blue, red, and green. Each archetype is named to reflect their 

characteristics.

b. A 160-member community comprised of all eight archetypes. The same simulation 

framework described in Figure 2 was used to simulate how each archetype responds 

to partitioning. 20 populations were defined for each archetype. The interaction matrix 

was randomized while constraining the strength of interactions each population receives 

according to its archetype. The size of each dot represents the final population density.

c. Relative abundance of the eight archetypes. Each trace is the average relative 

abundance of all 20 species that belong to the same archetype. Higher partitioning 

level enriches species receiving negative interactions (traces with colors that have 

red components) whereas lower partitioning level enriches species receiving positive 

interactions (traces with colors that have red components). Instead of white, we plotted 
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the relative abundance of “Drama Queens” in grey. Data are represented as mean values 
+/− SD with N=20.
d. Mixed partitioning level provides a robust way to maintain community biodiversity. 
From the top left to bottom right panel, proportion of negative interaction change from 

0 to 1.0 for a 40-species community. Even though the biodiversity response changes 

from negative monotonic dependence to biphasic dependence, and to positive monotonic 

dependence, mixed partitioning, which in this set of simulation is even volume mix across 

partitioning levels, creates a robust way to maintain biodiversity of the community (bar on 

the right). Data are represented as mean values +/− SD with N=10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

This work is partially supported by grants from US National Institutes of Health (LY: R01GM098642, 
R01GM110494), National Science Foundation (LY: MCB-1412459, LY: MCB-1937259, CL: DEB 1257882), 
Office of Naval Research (LY: N00014-12-1-0631), Army Research Office (LY: W911NF-14-1-0490), and a David 
and Lucile Packard Fellowship (LY).

References

1. Schimel JP & Schaeffer SM Microbial control over carbon cycling in soil. Frontiers in Microbiology 
3(2012).

2. Althani AA et al. Human Microbiome and its Association With Health and Diseases. Journal of 
Cellular Physiology 231, 1688–1694 (2016). [PubMed: 26660761] 

3. Ezenwa VO, Gerardo NM, Inouye DW, Medina M & Xavier JB Microbiology. Animal behavior and 
the microbiome. Science 338, 198–9 (2012). [PubMed: 23066064] 

4. Cydzik-Kwiatkowska A & Zielinska M Bacterial communities in full-scale wastewater treatment 
systems. World J Microbiol Biotechnol 32, 66 (2016). [PubMed: 26931606] 

5. Che S & Men Y Synthetic microbial consortia for biosynthesis and biodegradation: promises and 
challenges. J Ind Microbiol Biotechnol 46, 1343–1358 (2019). [PubMed: 31278525] 

6. Fuhrman JA Microbial community structure and its functional implications. Nature 459, 193–9 
(2009). [PubMed: 19444205] 

7. Widder S et al. Challenges in microbial ecology: building predictive understanding of community 
function and dynamics. ISME J 10, 2557–2568 (2016). [PubMed: 27022995] 

8. Huttenhower C et al. Structure, function and diversity of the healthy human microbiome. Nature 
486, 207–214 (2012). [PubMed: 22699609] 

9. Sunagawa S et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 
348, 1261359 (2015). [PubMed: 25999513] 

10. Goldford JE et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 
(2018). [PubMed: 30072533] 

11. Wu F et al. A unifying framework for interpreting and predicting mutualistic systems. Nature 
Communications 10, 242 (2019).

12. Friedman J, Higgins LM & Gore J Community structure follows simple assembly rules in 
microbial microcosms. Nature Ecology & Evolution 1(2017).

13. Lopatkin AJ et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nature 
Communications 8(2017).

14. Hoek TA et al. Resource Availability Modulates the Cooperative and Competitive Nature of a 
Microbial Cross-Feeding Mutualism. Plos Biology 14(2016).

Wu et al. Page 27

Nat Chem Biol. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Ratzke C, Barrere J & Gore J Strength of species interactions determines biodiversity and stability 
in microbial communities. Nat Ecol Evol 4, 376–383 (2020). [PubMed: 32042124] 

16. Song H, Payne S, Gray M & You LC Spatiotemporal modulation of biodiversity in a synthetic 
chemical-mediated ecosystem. Nature Chemical Biology 5, 929–935 (2009). [PubMed: 19915540] 

17. Tei M, Perkins ML, Hsia J, Arcak M & Arkin AP Designing Spatially Distributed Gene Regulatory 
Networks To Elicit Contrasting Patterns. Acs Synthetic Biology 8, 119–126 (2019). [PubMed: 
30540439] 

18. Reichenbach T, Mobilia M & Frey E Mobility promotes and jeopardizes biodiversity in rock-
paper-scissors games. Nature 448, 1046–1049 (2007). [PubMed: 17728757] 

19. Welch JLM, Hasegawa Y, McNulty NP, Gordon JI & Borisy GG Spatial organization of a model 
15-member human gut microbiota established in gnotobiotic mice. Proceedings of the National 
Academy of Sciences of the United States of America 114, E9105–E9114 (2017). [PubMed: 
29073107] 

20. Edwards J et al. Structure, variation, and assembly of the root-associated microbiomes of rice. 
Proceedings of the National Academy of Sciences of the United States of America 112, E911–
E920 (2015). [PubMed: 25605935] 

21. Bickel S & Or D Soil bacterial diversity mediated by microscale aqueous-phase processes across 
biomes. Nat Commun 11, 116 (2020). [PubMed: 31913270] 

22. Dal Co A, van Vliet S, Kiviet DJ, Schlegel S & Ackermann M Short-range interactions govern 
the dynamics and functions of microbial communities. Nature Ecology & Evolution 4, 366–375 
(2020). [PubMed: 32042125] 

23. Hsu RH et al. Microbial Interaction Network Inference in Microfluidic Droplets. Cell Systems 9, 
229–+ (2019). [PubMed: 31494089] 

24. Leibold MA Metacommunity ecology, pages cm (Princeton University Press, Princeton, NJ, 2018).

25. Coyte KZ, Schluter J & Foster KR The ecology of the microbiome: Networks, competition, and 
stability. Science 350, 663–666 (2015). [PubMed: 26542567] 

26. Venturelli OS et al. Deciphering microbial interactions in synthetic human gut microbiome 
communities. Molecular Systems Biology 14(2018).

27. Stephens WZ et al. Identification of Population Bottlenecks and Colonization Factors during 
Assembly of Bacterial Communities within the Zebrafish Intestine. mBio 6, e01163–15 (2015). 
[PubMed: 26507229] 

28. Houghteling PD & Walker WA Why is initial bacterial colonization of the intestine important 
to infants’ and children’s health? J Pediatr Gastroenterol Nutr 60, 294–307 (2015). [PubMed: 
25313849] 

29. Wolfe BE, Button JE, Santarelli M & Dutton RJ Cheese rind communities provide tractable 
systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014). [PubMed: 
25036636] 

30. Loreau M & de Mazancourt C Biodiversity and ecosystem stability: a synthesis of underlying 
mechanisms. Ecology Letters 16, 106–115 (2013). [PubMed: 23346947] 

31. Handa IT et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 
509, 218–+ (2014). [PubMed: 24805346] 

32. Schloter M, Lebuhn M, Heulin T & Hartmann A Ecology and evolution of bacterial microdiversity. 
FEMS Microbiol Rev 24, 647–60 (2000). [PubMed: 11077156] 

33. Nemergut DR et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol 
Rev 77, 342–56 (2013). [PubMed: 24006468] 

34. Mee MT, Collins JJ, Church GM & Wang HH Syntrophic exchange in synthetic microbial 
communities. Proc Natl Acad Sci U S A 111, E2149–56 (2014). [PubMed: 24778240] 

35. Kong W, Meldgin DR, Collins JJ & Lu T Designing microbial consortia with defined social 
interactions. Nat Chem Biol 14, 821–829 (2018). [PubMed: 29942078] 

36. Baba T et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the 
Keio collection. Mol Syst Biol 2, 2006 0008 (2006).

Wu et al. Page 28

Nat Chem Biol. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Justice NB, Sczesnak A, Hazen TC & Arkin AP Environmental Selection, Dispersal, and Organism 
Interactions Shape Community Assembly in High-Throughput Enrichment Culturing. Applied and 
Environmental Microbiology 83(2017).

38. Ha J et al. Poro-elasto-capillary wicking of cellulose sponges. Sci Adv 4, eaao7051 (2018). 
[PubMed: 29682606] 

39. Fierer N & Lennon JT The Generation and Maintenance of Diversity in Microbial Communities. 
American Journal of Botany 98, 439–448 (2011). [PubMed: 21613137] 

40. Dai Z et al. Versatile biomanufacturing through stimulus-responsive cell-material feedback. Nat 
Chem Biol 15, 1017–1024 (2019). [PubMed: 31527836] 

41. Cao Y et al. Collective Space-Sensing Coordinates Pattern Scaling in Engineered Bacteria. Cell 
165, 620–30 (2016). [PubMed: 27104979] 

42. MacArthur RH, Wilson EO & Whittaker RH The theory of island biogeography, xi, 203 p. 
(Princeton University Press, Princeton, N.J.,, 1967).

43. Wilcox BA & Murphy DD Conservation Strategy - the Effects of Fragmentation on Extinction. 
American Naturalist 125, 879–887 (1985).

44. Simberloff D & Abele LG Refuge Design and Island Biogeographic Theory - Effects of 
Fragmentation. American Naturalist 120, 41–50 (1982).

45. Weiher E et al. Advances, challenges and a developing synthesis of ecological community 
assembly theory. Philosophical Transactions of the Royal Society B-Biological Sciences 366, 
2403–2413 (2011).

46. Brown BL, Sokol ER, Skelton J & Tornwall B Making sense of metacommunities: dispelling the 
mythology of a metacommunity typology. Oecologia 183, 643–652 (2017). [PubMed: 28008474] 

47. Wright DH & Reeves JH On the Meaning and Measurement of Nestedness of Species 
Assemblages. Oecologia 92, 416–428 (1992). [PubMed: 28312609] 

48. Burkey TV Extinction in Nature Reserves - the Effect of Fragmentation and the Importance of 
Migration between Reserve Fragments. Oikos 55, 75–81 (1989).

49. Storch D The theory of the nested species-area relationship: geometric foundations of biodiversity 
scaling. Journal of Vegetation Science 27, 880–891 (2016).

50. Connell JH Diversity in tropical rain forests and coral reefs. Science 199, 1302–10 (1978). 
[PubMed: 17840770] 

51. Huang S et al. Coupling spatial segregation with synthetic circuits to control bacterial survival. Mol 
Syst Biol 12, 859 (2016). [PubMed: 26925805] 

52. Balagadde FK et al. A synthetic Escherichia coli predator-prey ecosystem. Molecular Systems 
Biology 4(2008).

53. Chung CT & Miller RH Preparation and storage of competent Escherichia coli cells. Methods 
Enzymol 218, 621–7 (1993). [PubMed: 8510550] 

54. Andrews S FastQC A Quality Control tool for High Throughput Sequence Data.

55. Gordon A FASTQ/A short-reads pre-processing tools. (2010).

56. Blankenberg D et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783–5 (2010). 
[PubMed: 20562416] 

57. Smith T, Heger A & Sudbery I UMI-tools: modeling sequencing errors in Unique Molecular 
Identifiers to improve quantification accuracy. Genome Res 27, 491–499 (2017). [PubMed: 
28100584] 

58. Langmead B & Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–9 
(2012). [PubMed: 22388286] 

59. Langmead B, Trapnell C, Pop M & Salzberg SL Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome. Genome Biol 10, R25 (2009). [PubMed: 19261174] 

60. Li H et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–9 
(2009). [PubMed: 19505943] 

Wu et al. Page 29

Nat Chem Biol. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Spatial partitioning and simulation framework
a. Partitioning of microbial communities in natural habitats. The structures of natural 

habitats including colons, soil, and droplets prohibit global interactions by physically 

separating a global community into local communities that only contain subsets of the global 

populations.

b. Depiction of the partitioning concept. At t0, a community of interest is sampled into 

completely isolated local environments. Because of partitioning, many local communities 

are subsets of the global community, where some populations and interactions are missing. 

We use the number of local communities (N) to quantify the degree of partitioning. A 

partitioning of N = 5 is shown.

c. The impact of spatial partitioning on local and pooled communities. Communities 

in each local environment grow independently and the final local community structures are 

quantified at tf. Local communities at tf are pooled to determine the final global community 

structure.

d. Modeling growth of local communities. Each equation describes temporal dynamics 

a population (Xi) by accounting for its logistic growth, positive interactions (by removing 

stress), and negative interactions.

e. Three sets of model parameters. Stress (δ), positive interactions (β), and negative 

interactions (γ) are shown in matrix forms. Fitness is equivalent to 1 – δ.

Wu et al. Page 30

Nat Chem Biol. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f. A typical temporal dynamic of a local community simulated using our model. 
The simulated time courses are bounded for any parameter combinations that satisfy: non-

negative initial condition (Xi ≥ 0 at t0), δi ≥ 0, γij
+ ≥ 0, and γij− ≥ 0. The time course shown is 

generated using a 10-population community, with an interaction matrix generated from: δ ∈ 
[0, 1.5], β = [0, 5], and γ ∈ [0, 0.5].
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Fig. 2. An emerging biphasic dependence of biodiversity on partitioning level
a. Overall framework of spatial partitioning. The number of local communities (N) 

changes while the total initial cell number and total volume keeps constant.

b. Simulations show that the partitioning level has no impact on the biodiversity of two 
populations with no interaction. δ1 = 0.1 and δ2 = 0.8 and all elements in the interaction 

matrix are zero. Data are presented as mean values +/− SD and the same applies to all the 

following panels and figures. Simulations were repeated 10 times (n=10) to calculate the 

mean and SD and the same with panel e-i.

c. Simulations of a pairwise one-directional negative interaction show that increased 

partitioning reduces the negative impact from A on B that leads to higher relative abundance 

of B and an increased biodiversity.

d. Simulations of a pairwise one-directional positive interaction show that increased 

partitioning reduces the positive impact from A on B and leads to decreased biodiversity.

e. Biphasic response emerges with both positive and negative interactions in 20-
member communities with 100% connectedness. The panel titles indicate the fraction 

of negative interactions among all interactions. δi, βij, and γij are sampled from uniform 

distributions of interval (0, 1.5), (0, 3), and (0, 0.8). The following panels share the same 

parameter setting while assuming 1:1 ratio of positive to negative interaction and varying the 

corresponding parameter and its specific value is indicated as panel titles. In panels e-i, grey 
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dots represent the responses of a random interaction network, and the black dots are average 

response.

f. Increasing number of species increases the amplitude of biphasic response.
g. Increasing connectedness increases the amplitude of biphasic response.
h. Increasing interaction strengths increases dynamic range of the response. Interaction 

strength is used as a multiplier to scale the range of interaction parameters in panel e.

i. Biphasic dependence also emerges with intermediate ratio of positive and negative 
interaction strengths. The total interaction strength is held constant at 2. The ratio of 

maximum positive to maximum negative interaction strength ranges from 0.1 to 10.

Wu et al. Page 33

Nat Chem Biol. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Experimental demonstration of the predicted principle with simple communities
a. Spatial partitioning implemented with microtiter plates. The same starting cell culture 

was dispensed into wells of 6, 24, 96, 384, and 1536 plates. The total volume was constant 

across all plates and evenly distributed into all wells within the plate. After culturing, each 

plate was pooled to measure the overall community structure.

b-c. Schematic of the one-directional negative (strain 1 and 2) and positive (strain 1 and 3) 

pairwise interaction.

d. Increased biodiversity for pairwise negative interactions. The final community 

structures of are quantified by selection plating and CFU counting. Data are represented 

as mean values +/− SD and n=16. The same method applies to panel e. 10 nM of aTc and 

100 mM of IPTG were used to control circuit functions, and the same with panel e.

e. Decreased biodiversity for pairwise positive interactions. The QS signal from strain 1 

promotes the growth of the receiver strain 3 by inducing the production of CcdA, which is 

the antitoxin to CcdB. Data are represented as mean values +/− SD and n=16. The slight 

increase in at low partitioning level was likely due to background-level negative interactions 

when the two strains compete for nutrition and space.

f. Simulated results of experimental pairwise negative community response to 
partitioning. Both simulations have been run 10 times and the mean (black open circle 

and grey trace) and standard deviation (grey error bars) are shown. The negative interaction 

has δ = [0,0], γ = [0,0;0.7,0], and β = [0,0;0,0]. Data represented as mean values +/− SD 

with n=10 (the same applies to panel g)

g. Simulated results of experimental pairwise positive community response to 
partitioning. The positive interaction is simulated using δ = [0,1.1], γ = [0,0.15;0.15,0], 

and β = [0,0;0.8,0].
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Fig. 4. Biphasic dependence observed with complex communities.
a. Schematic of a 47-member auxotroph community. The interactions in the community 

are modulated by the concentration of casamino acid. When the casamino acid concentration 

is low, the primary interaction is cooperation; when the concentration is high, the primary 

interaction is competition.

b. Partitioning experiment using an auxotrophic complex community. A selection 

of 47 auxotrophic strains were identified from the Keio collection and barcoded for 

NGS quantification. Complex communities were developed and grown at five levels of 

partitioning and varying amino acid concentration for 30 hours. Decreasing amino acid 

concentration shifts communities from negative interaction dominated to positive interaction 

dominated while transitioning through a state where both negative and positive interactions 

are strong. The panel presents representative relative abundance of each strain at the end of 

the experiment, as measured by NGS, for a single biological replicate.
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c. Validation of the principle by a 47-member auxotroph community. Simpson index 

of communities demonstrates the effects of partitioning and amino acid concentration 

on population biodiversity. Each dark open circle represents the average among the 2 

sequencing runs of 3 biological replicates (grey dots). Error bars represent standard 

deviation of the 6 replicates (N=6) and error bar centers represent the means. One-sided 

t test was used to test against a null hypothesis of a 0 slope. Degrees of freedom of the 

three-piece models are 10, 16, and 10 and all other panels are 28. The p values are: 0.1%: 

0.1078, 0.02%: 0.0199, 0.005%: 0.0060 (left), 0.4980 (middle), 0.0168 (right); 0.001%: 

0.0132, 0.0002%: 0.2371. The asterisks indicate that the trends of data points enclosed by 

the corresponding brackets have p-values less than 0.05.
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Fig. 5. Multilevel partitioning is a robust strategy to maintain community biodiversity
a. Sub-optimal maintenance of diversity with a homogeneous partitioning level. We 

simulated the impact of spatial partitioning on a random 20-member community with both 

positive and negative interactions and non-archetypical species. The populations persist 

at different partitioning levels. Although an intermediate partitioning level maintains the 

highest diversity, it does not maintain all 20 species.

b. Robust maintenance of diversity through mixed level of partitioning. With more 

partitioning levels included, the persistence of more species can be maintained. When all 5 

partitioning levels are included, all 20 species can be maintained. Instead of using any single 

partitioning level, a mixed level of partitioning allows most populations to persist.

c. The cross-section of the cellulose sponge and experimental procedure. The pore 

size has a wide distribution that naturally creates multi-level partitioning for the global 

community. The sponge is then fit into an autoclavable culture tube. After autoclaving, the 

same initial cell culture as used in Fig. 4 is added to the tube and saturates the sponge.

d. Multilevel partitioning to maintain biodiversity. Without prior knowledge of the 

interactions within a community, it is challenging to choose a single partitioning level 

that best maintain the community diversity. Multilevel partitioning can promote the chance 

for any archetype to thrive in the partitioning level it prefers. We cultured the Keio 
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collection auxotroph community either as a homogeneous liquid culture (−) or with a sponge 

(+) that has varying pore sizes that provide a multilevel partitioning. Three amino acid 

concentrations (x axis labels) were tested, and all have shown an increase in community 

diversity with multilevel partitioning compared with liquid culture (no partitioning).
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