Supplementary Information

Nlrc3 signaling is indispensable for hematopoietic stem cell emergence via Notch signaling in vertebrates

Shuyang Cai. et al

Corresponding authors:

*He Huang

Professor/MD/Ph.D.

Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine,

E-mail: huanghe@zju.edu.cn

*Pengxu Qian

Investigator

School of Medicine, Zhejiang University

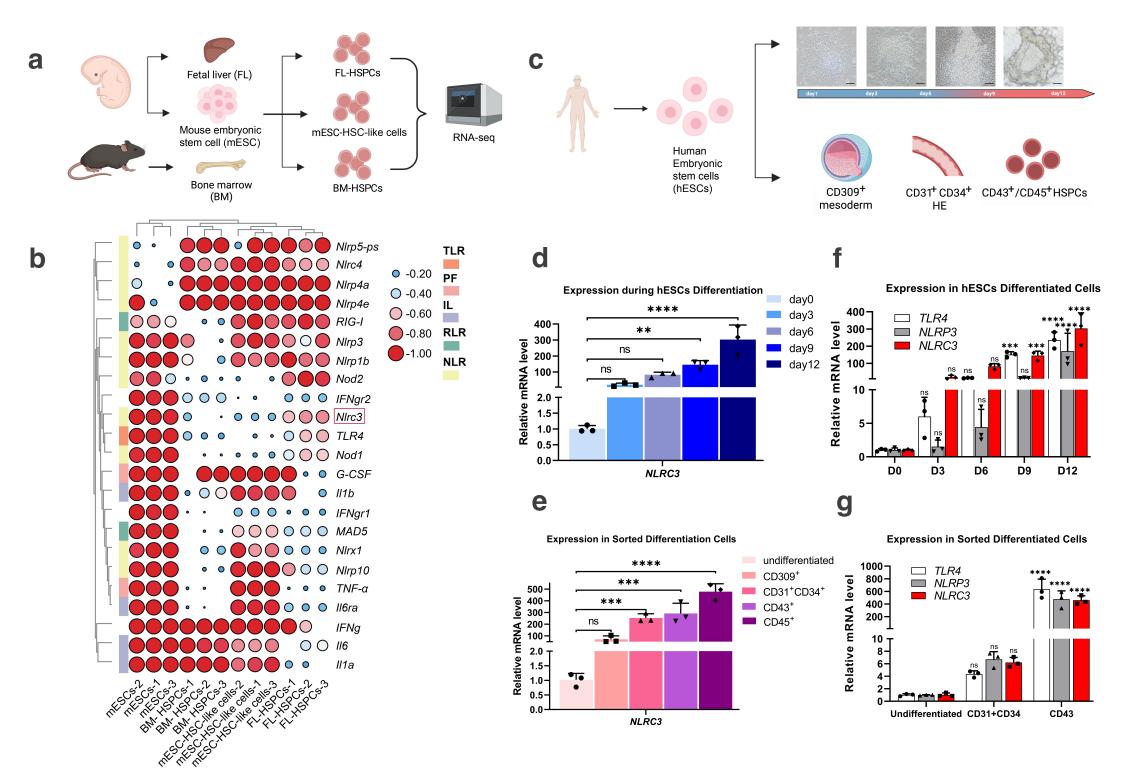
Email: axu@zju.edu.cn

*Jiahui Lu

Professor

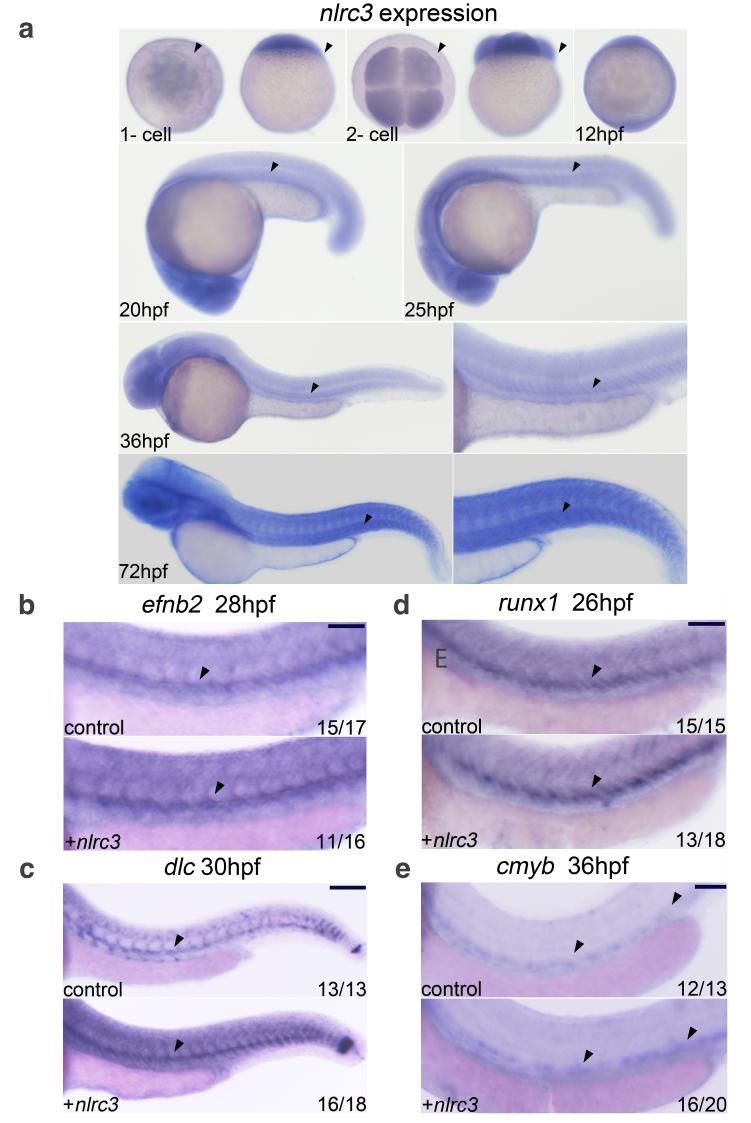
Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of

Traditional Chinese Medicine

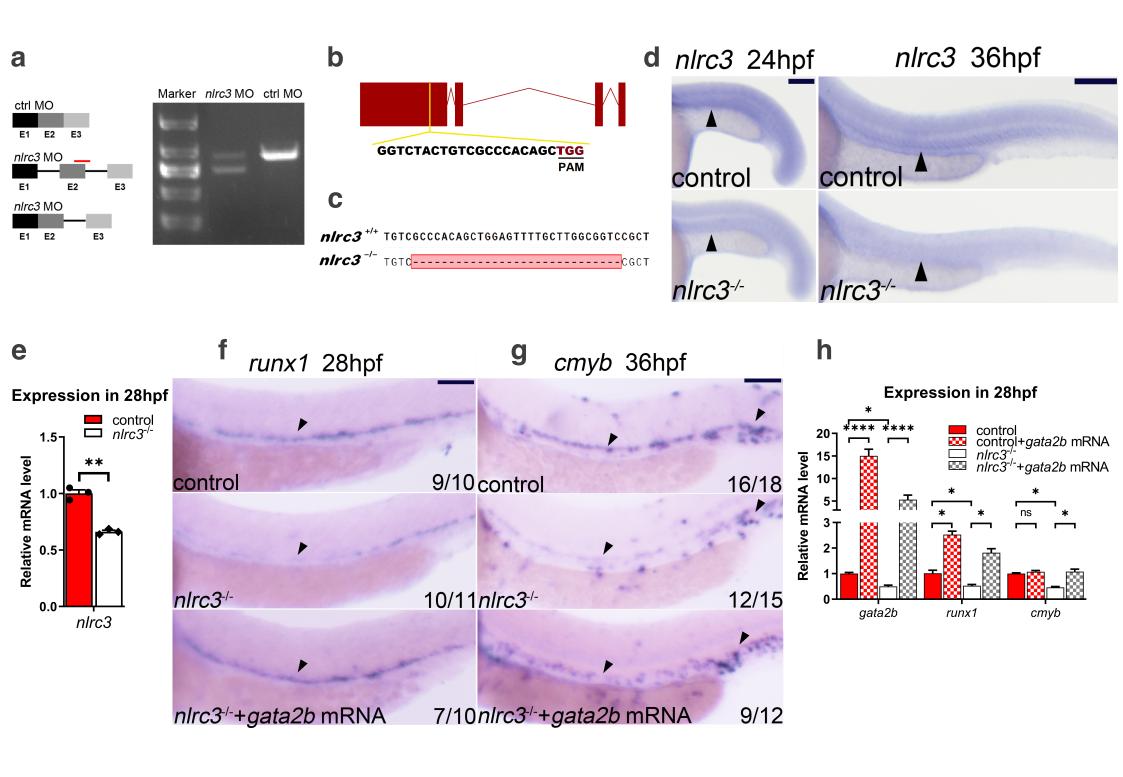

E-mail: <u>lujiahui sci@126.com</u>

The PDF file includes:

Supplementary Figure 1 to 10

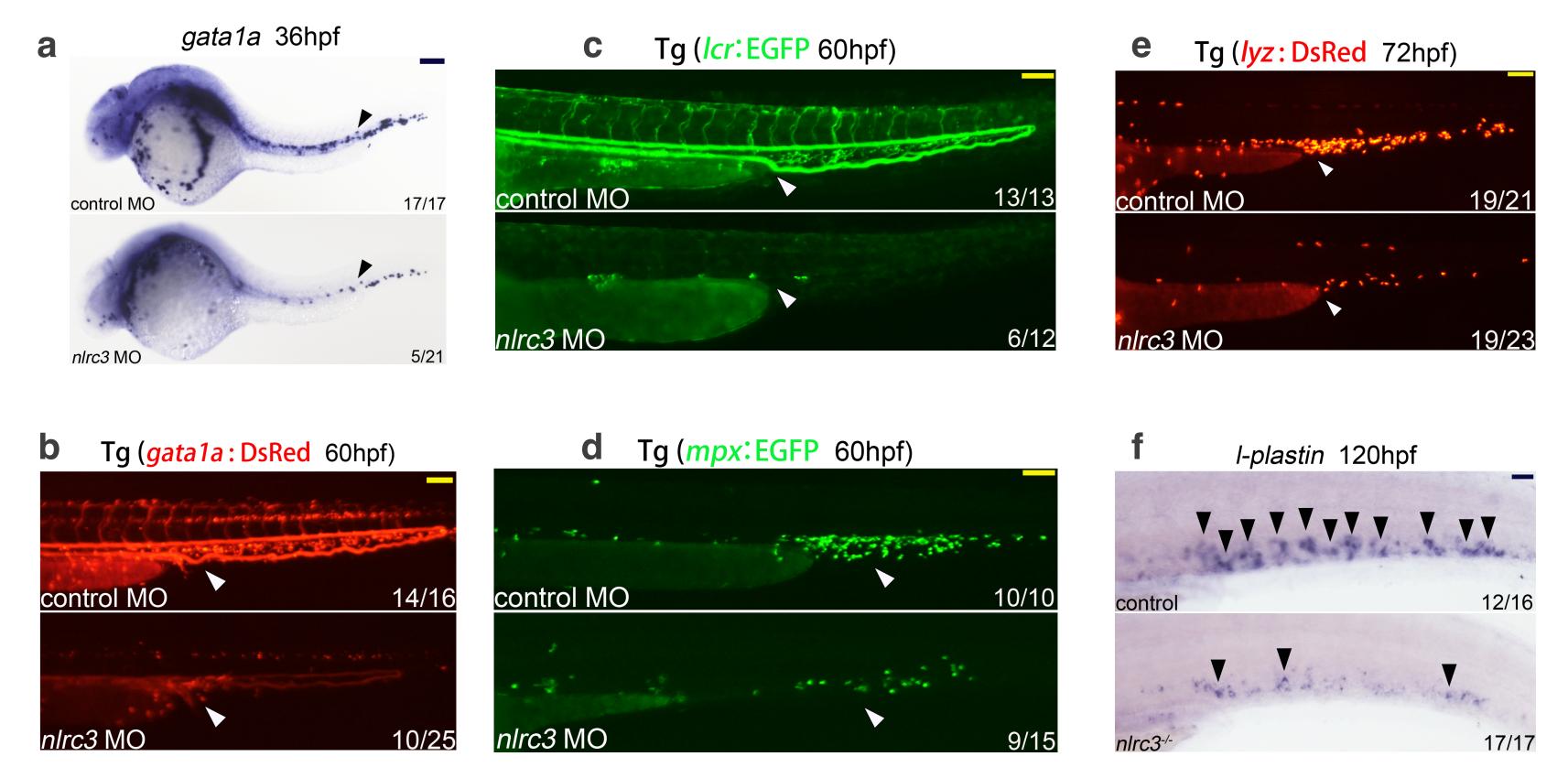

Supplementary Table 1 to 5

Supplementary Figures

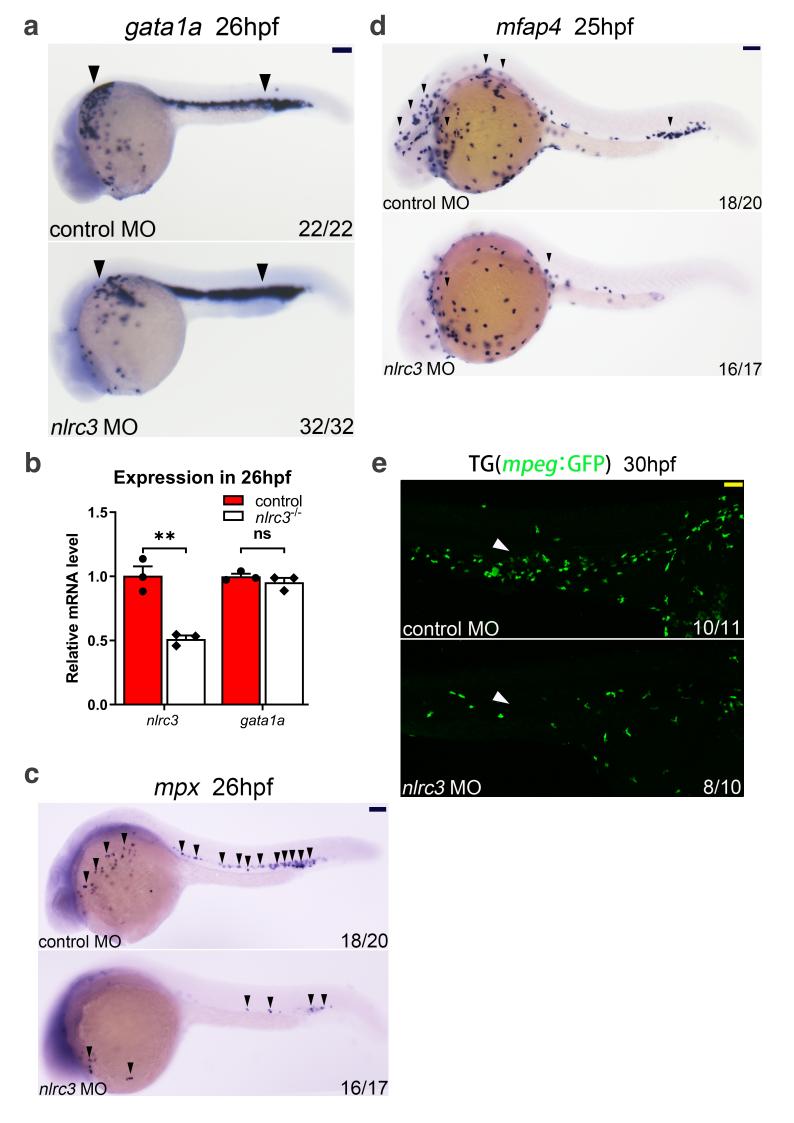

Supplemental Figure 1. *NLRC3* is highly expressed in induced HSPC differentiated from mouse ESCs or human ESCs.

a Schematic overview of mouse embryonic stem cells (ESCs) sorted for culture in various differentiation systems. **b** Bubble plot of sequencing data demonstrating the expression of nucleotide-binding domain leucine-rich repeat (NLR) family members including Nlrc3 and related inflammatory genes as mouse ESCs matured into hematopoietic differentiation in various cell types, including undifferentiated ESCs, ESCs derived LSKCD201⁺ HSC-like cells, fetal liver (FL) derived HSPCs and bone marrow (BM) derived HSPCs. c Schematic overview of the chemical defined system to induce HSPCs from hESCs. d Dynamic analysis of NLRC3 expression by qPCR during hematopoietic differentiation of hESCs. Relative expression is normalized to the expression level of undifferentiated hESCs. ns = 0.9740, 0.1579, **P = 0.0084, ****P < 0.0001. e qPCR analysis of NLRC3 expression in undifferentiated hESCs, mesoderm (APLNR⁺), HE (CD31⁺ and CD34⁺), and HSPCs (CD43⁺ and CD45⁺) derived from hESCs. Relative expression normalized to the expression level in undifferentiated hESCs. ns = 0.4688, ***P = 0.0007, 0.0002, ****P < 0.0001. f Dynamic expression of NLRC3, NLRP3, and TLR4 by qPCR during hematopoietic differentiation of hESCs. Relative expression is normalized relative to undifferentiated hESCs. ns = 0.9999, $0.9918,\, 0.9734,\, 0.0986,\, 0.9907,\, > 0.9999,\, ***P = 0.0004,\, 0.0007,\, ****P < 0.0001.\,\mathbf{g}$ qPCR analysis of NLRC3, NLRP3, and TLR4 in undifferentiated hESCs, HE (CD31⁺ and CD34⁺), and HSPCs (CD43⁺) derived from hESCs. Relative expression is normalized to the expression levels of undifferentiated hESCs. ns = 0.9983, 0.9949, 0.9958, ****P < 0.0001. Error bars, mean \pm s.d., the exact p-values mentioned above are listed from left to right, by using one-way ANOVA – Sidak test in d, e, two-way ANOVA with Tukey's post hoc test in \mathbf{f} , \mathbf{g} . n=3 biological replicates in \mathbf{d} , \mathbf{e} , \mathbf{f} , \mathbf{g} . Source data are provided as a Source Data file.

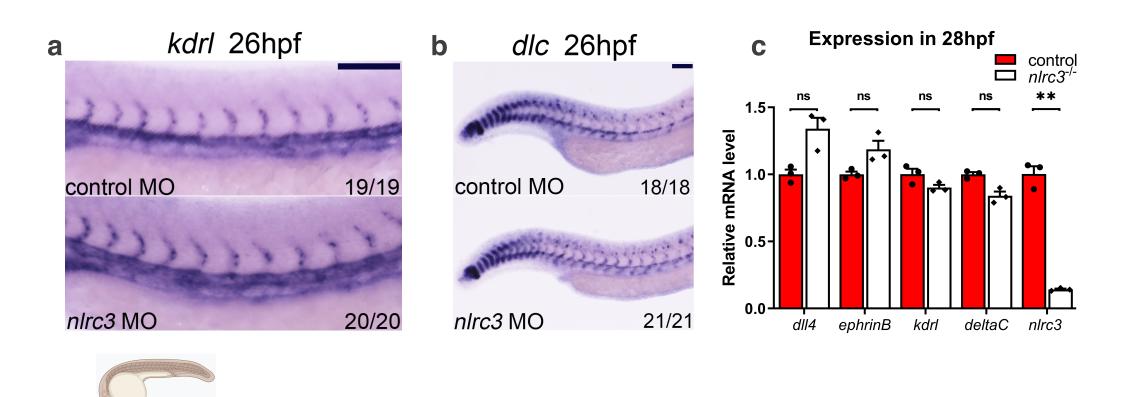
Supplemental Figure 2. The expression of *nlrc3* pattern in zebrafish.

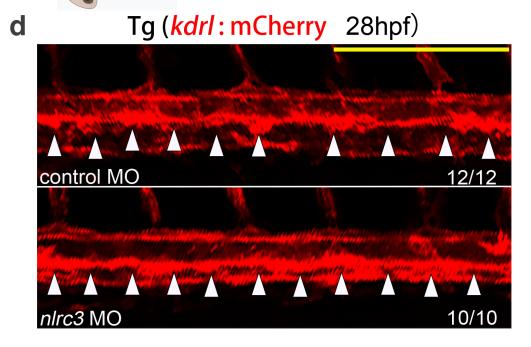

a Expression pattern of *nlrc3* during zebrafish embryogenesis: The stage examined by whole-mount in situ hybridization (WISH) is shown in each panel: 1 - cell stage, 4 - cell stage, 12 hours postfertilization (hpf), 20 hpf (Scale bars: 200 μ m), 25 hpf, 36 hpf and 72 hpf. **b** Expression of arterial marker *efnb2* in control embryos and control embryos with co-expression of *nlrc3* probe at 28 hpf by WISH. **c** Expression of arterial marker *dlc* in control embryos and control embryos with co-expression of *nlrc3* probe at 30 hpf by WISH. **d** Expression of HSPC marker *runx1* in control embryos and control embryos with co-expression of *nlrc3* probe at 26 hpf by WISH. **e** Expression of HSPC marker *cmyb* in control embryos and control embryos with co-expression of *nlrc3* probe at 36 hpf by WISH. Scale bars, 100 μm in **b**, **c**, **d**, **e**. Source data are provided as a Source Data file.

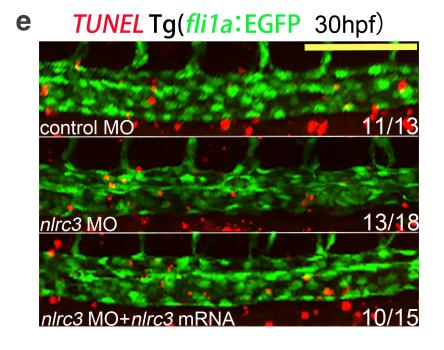
Supplemental Figure 3. Generation and validation of *nlrc3* morphants and mutants.


a Schematic diagram of splice morpholino knockdown target in second exon of *nlrc3*. **b** The panel showing the target site in the second exon of *nlrc3* designed for the CRISPR–Cas9 mutants. **c** The panel revealing the 29 bp deletion in the *nlrc3* target site. **d** The expression of *nlrc3* in the dorsal aorta (DA) during EHT stage of the WT and *nlrc3* mutants. **e** Expression of *nlrc3* in control and *nlrc3* mutants at 28 hpf by qPCR.

P = 0.0012. **f Expression of HSPC marker *runx1* in control embryos, *nlrc3* mutants, *nlrc3* mutants with overexpression of *gata2b* mRNA at 28 hpf by WISH. **g** Expression of HSPC marker *cmyb* in control embryos, *nlrc3* mutants, *nlrc3* mutants with overexpression of *gata2b* mRNA at 36 hpf by WISH. **h** Expression of *gata2b*, *runx1* and *cmyb* in control, control with overexpression of *gata2b* mRNA, *nlrc3* mutants, and *nlrc3* mutants with overexpression of *gata2b* mRNA at 28 hpf by qPCR. ns = 0.9997, *P = 0.0418, 0.0261, 0.0213, 0.0204, 0.0133, 0.0155, ****P < 0.0001. Error bars, mean \pm s.d., the exact p-values mentioned above are listed from left to right, by using two-tailed, unpaired student's *t*-test in **e**, **h**, *n* = 3 biological replicates in **e**, **h**. Source data are provided as a Source Data file.

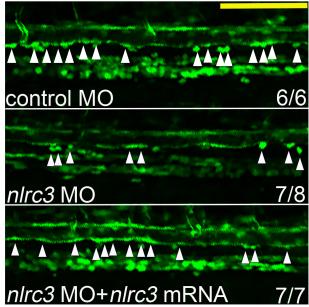

Supplement Figure 4. *Nlrc3* signaling is imperative for HSPC differentiation in zebrafish.

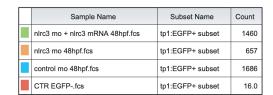

a Expression of erythroid marker *gata1a* in control embryos and *nlrc3* morphants at 36 hpf by WISH. **b** Snapshot of erythroid marker Tg (*gata1a*:DsRed) in control embryos and *nlrc3* morphants at 60 hpf. **c** Snapshot of erythroid marker Tg (*lcr*:EGFP) in control embryos and *nlrc3* morphants at 60 hpf. **d** Snapshot of myeloid marker Tg (*mpx*:EGFP) in control embryos and *nlrc3* morphants at 60 hpf. **e** Snapshot of myeloid marker Tg (*lyz*:DsRed) in control embryos and *nlrc3* morphants at 72 hpf. **f** Expression of myeloid marker *l-plastin* in control embryos and *nlrc3* mtants at 120 hpf by WISH. Each sample was composed of at least 5 embryos and Scale bars, 100 μm in **a**, **b**, **c**, **d**, **e**, **f**. Source data are provided as a Source Data file.

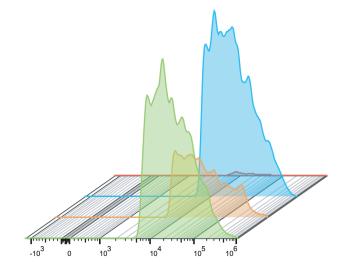


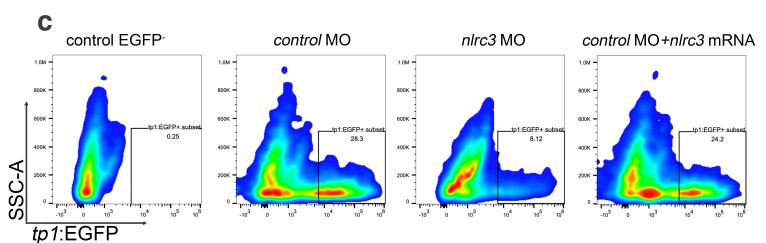
Supplement Figure 5. *Nlrc3* signaling was indispensable for primitive neutrophils and macrophages but not erythropoiesis.

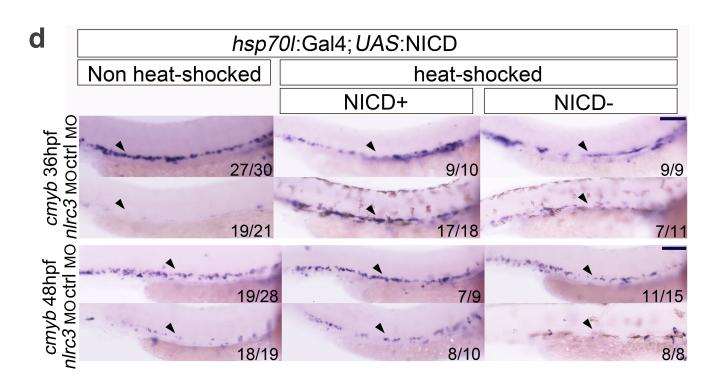
a Expression of erythroid marker *gata1a* in control embryos and *nlrc3* morphants at 26 hpf by WISH. **b** Expression of erythroid gene *gata1a* in control embryos and *nlrc3* mutants at 26 hpf by qPCR. ns = 0.4808, **P = 0.0075. Error bars, mean ± s.d., by using two-tailed, unpaired student's *t*-test. *n* = 3 biological replicates. **c** Expression of myeloid marker *mpx* in control embryos and *nlrc3* morphants at 26 hpf by WISH. **d** Expression of macrophage marker *mfap4* in control embryos and *nlrc3* morphants at 25 hpf by WISH. **e** Confocal imaging showing the macrophage marker *mpeg*:GFP in control embryos and *nlrc3* morphants at 30 hpf. Scale bars, 100 μm and each sample was composed of at least 5 embryos in **a**, **c**, **d**, **e**. Source data are provided as a Source Data file.

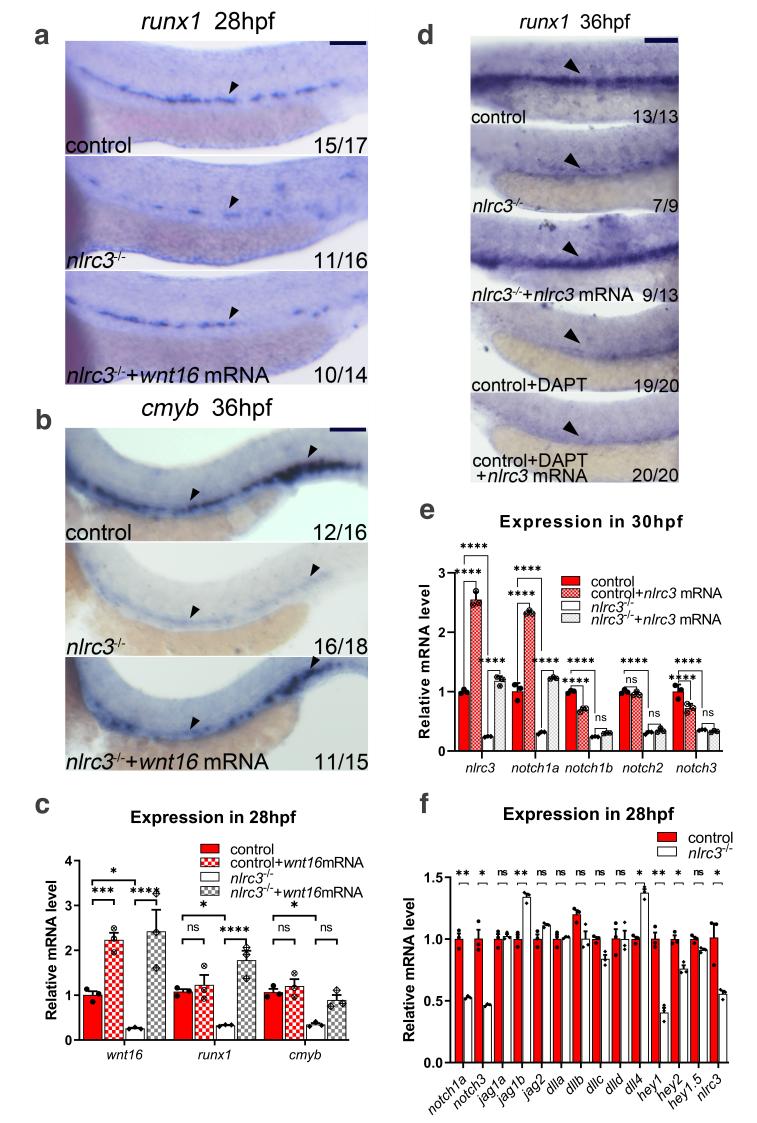




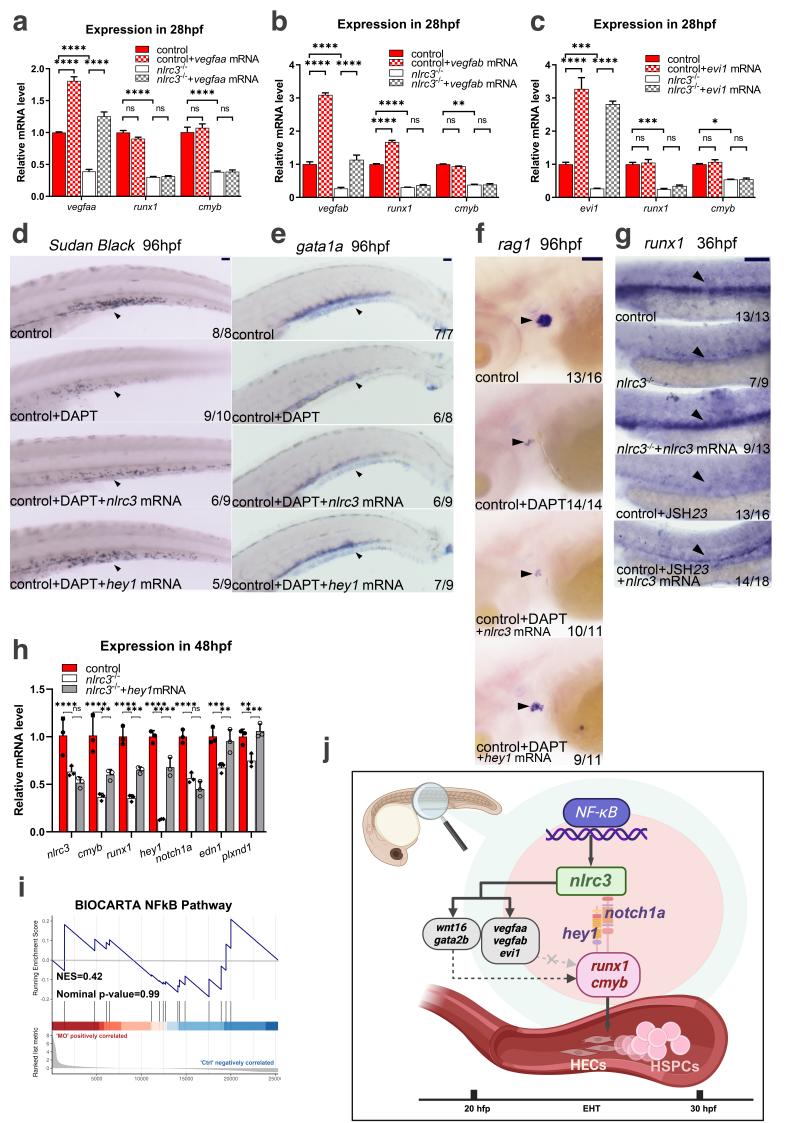

Supplement Figure 6. *Nlrc3*-deficient embryos displayed normal vasculogenesis and apoptosis.


a Expression of endothelial marker kdrl in control embryos and nlrc3 morphants at 26 hpf by WISH. **b** Expression of arterial marker dlc in control embryos and nlrc3 morphants at 26 hpf by WISH. **c** Expression of endothelial and arterial gene dll4, ephrinB2, kdrl, and deltaC in control embryos and nlrc3 mutants at 28 hpf by qPCR. ns = 0.0931, 0.1147, 0.2372, 0.0742, **P = 0.0043. Error bars, mean \pm s.d., by using two-tailed, unpaired student's t-test. n = 3 biological replicates. **d** Confocal imaging showing the endothelial marker Tg (kdrl:mCherry) in control embryos and nlrc3 morphants at 28 hpf. **e** Confocal imaging showing the maximum projections of the AGM region of 30 hpf Tg (fli1a:EGFP) embryos injected in control embryos and nlrc3 morphants and assayed for TUNEL (red). Each sample was composed of at least 5 embryos. Scale bars, 100 μ m in **a**, **b**, **d**, **e**. Illustrations created with BioRender.com. Source data are provided as a Source Data file.

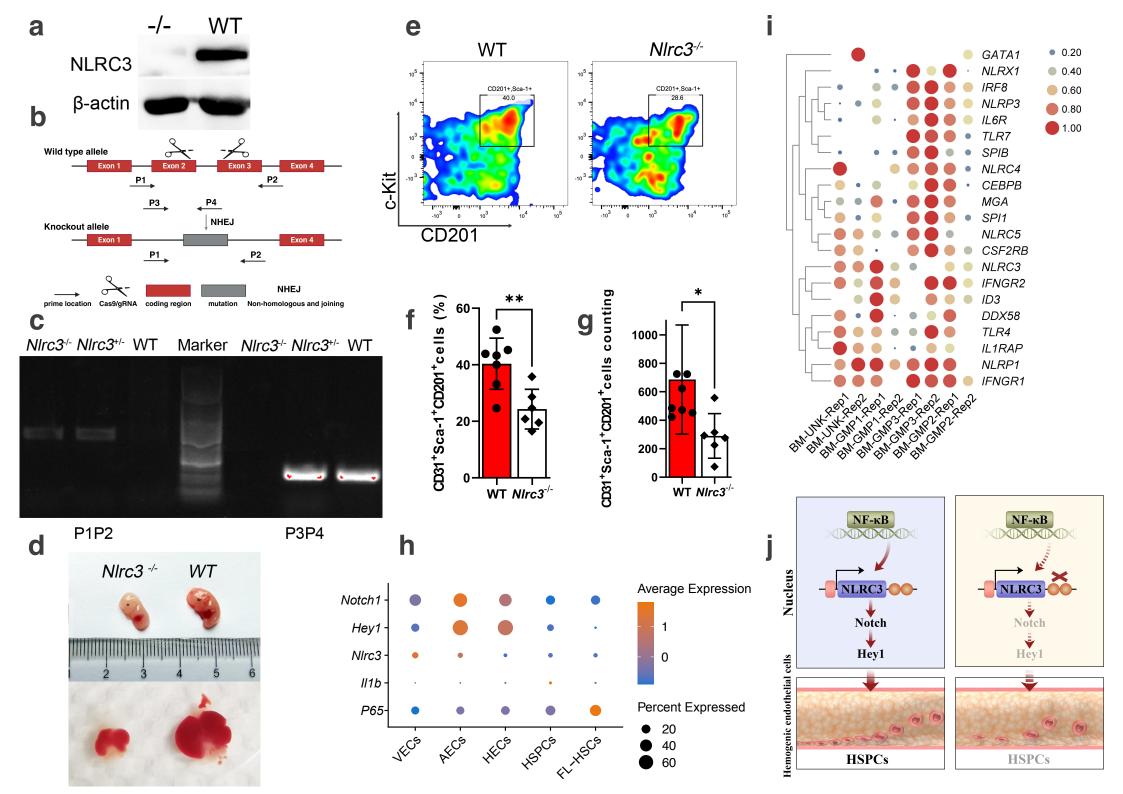




b


Supplement Figure 7. Notch signaling was in downstream of *nlrc3* during HSPC production.

a Confocal imaging showing the Tg (tp1:EGFP) embryos at 48 hpf in the floor of the DA in control embryos, nlrc3 morphants and nlrc3 morphants with overexpression of nlrc3 mRNA. **b** Representative histogram of Tg (tp1:EGFP) cells in control embryos, nlrc3 morphants and nlrc3 morphants with overexpression of nlrc3 mRNA at 48 hpf. **c** Flow cytometry results showed the changes of Tg (tp1:EGFP) cells in control embryos, nlrc3 morphants and nlrc3 morphants with overexpression of nlrc3 mRNA at 48 hpf. **d** nlrc3 morphants and nlrc3 morphants with overexpression of nlrc3 mRNA at 48 hpf. **d** nlrc3 morphants and nlrc3 morphants with control embryos and nlrc3 morphants were heat shocked at 18 hpf and WISH for nlc3 was performed at 36 and 48 hpf. Error bars represents means nlc3 morphants was composed of at least 5 embryos. Scale bars, 100 nlc3 min nlc3 morphants are provided as a Source Data file.


Supplement Figure 8. *NIrc3* regulated HSPC production via activating the Notch signaling.

a Expression of HSPC marker runx1 in control embryos, nlrc3 mutants, nlrc3 mutants with overexpression of wnt16 mRNA at 28 hpf by WISH. **b** Expression of HSPC marker cmyb in control embryos, nlrc3 mutants, nlrc3 mutants with overexpression of wnt16 mRNA at 36 hpf by WISH. c Expression of wnt16, runx1 and cmyb in control, control with overexpression of wnt16 mRNA, nlrc3 mutants, and nlrc3 mutants with overexpression of wnt16 mRNA at 28 hpf by qPCR. ns = 0.9358, 0.9488, 0.1737, *P = 0.0366, 0.0343, 0.0457, ***P = 0.0004, ****P < 0.0001. d Expression of HSPC marker runx1 in control embryos, nlrc3 mutants, nlrc3 mutants with overexpression of nlrc3 mRNA, treatment group with DAPT and treatment group with DAPT and with overexpression of nlrc3 mRNA at 36 hpf by WISH. e Expression of NOTCH genes in control embryos, control with overexpression of *nlrc3* mRNA, *nlrc3* mutants and *nlrc3* mutants with overexpression of *nlrc3* mRNA at 30 hpf by qPCR. ns = 0.5877, 0.8516, 0.8594, 0.9470, ****P<0.0001. f Expression of NOTCH genes in control embryos and nlrc3 morphants at 28 hpf by qPCR. ns = 0.7233, 0.0518, 0.7827, 0.0730, 0.0742, 0.9558, 0.0771, *P = 0.0120, 0.0198, 0.0121, 0.0417, **P = 0.0071, 0.0028, 0.0046. Error bars, mean \pm s.d., by using two-tailed, unpaired student's t-test in f, two-way ANOVA with Tukey's post hoc test in c, e, n = 3 biological replicates in c, e, f. Scale bars, 100 µm in a, b, d. Source data are provided as a Source Data file.

Supplement Figure 9. *Nlrc3* signaling was in the downstream of NF-kB signaling pathway and upstream of *hey1* for regulating HSPC emergence.

a Expression of vegfaa, runx1, and cmyb in control, control with overexpression of vegfaa mRNA, nlrc3 mutants, and nlrc3 mutants with overexpression of vegfaa mRNA at 28 hpf by qPCR. ns = 0.4042, 0.9966, 0.6902, > 0.9999, ****P < 0.0001. **b** Expression of vegfab, runx1, and cmyb in control, control with overexpression of vegfab mRNA, nlrc3 mutants, and nlrc3 mutants with overexpression of vegfab mRNA at 28 hpf by qPCR. ns = 0.8504, 0.8351, > 0.9999, ****P < 0.0001. c Expression of evil, runx1, and cmyb in control, control with overexpression of evil mRNA, nlrc3 mutants, and *nlrc3* mutants with overexpression of *evi1* mRNA at 28 hpf by qPCR. ns = 0.9903, 0.9143, 0.9685, 0.9999, *P = 0.0346, ***P = 0.0005, 0.0004.**d**Expressionof Sudan Black in control embryos, treatment group with DAPT, treatment group with DAPT and with overexpression of *nlrc3* mRNA, treatment group with DAPT and with overexpression of heyl mRNA at 96 hpf. e Expression of gatala in control embryos, treatment group with DAPT, treatment group with DAPT and with overexpression of nlrc3 mRNA, treatment group with DAPT and with overexpression of hey1 mRNA at 96 hpf. **f** Expression of *rag1* in control embryos, treatment group with DAPT, treatment group with DAPT and with overexpression of nlrc3 mRNA, treatment group with DAPT and with overexpression of heyl mRNA at 96 hpf by WISH. g Expression of HSPC marker runx1 in control embryos, nlrc3 mutants, nlrc3 mutants with overexpression of nlrc3 mRNA, treatment group with JSH23, treatment group with JSH23 with overexpression of *nlrc3* mRNA at 36 hpf by WISH. **h** Expression of HSPC genes, Notch genes and genes in the downstream of heyl in control embryos, nlrc3 mutants and *nlrc3* mutants with overexpression of *hey1* mRNA at 48 hpf by qPCR. ns = 0.2636, 0.2743, **P = 0.0074, 0.0014, 0.0037, ***P = 0.0007, 0.0002, 0.0004, ****P< 0.0001. i Enrichment plot of the NF-kB pathway relative to differentially regulated genes in the nlrc3 morphant group compared to the control group by GSEA (Gene Set Enrichment Analysis). Normalized enrichment score = NES. P = 0.99. The statistical tests were one-sided and adjustments were made for multiple comparisons. j Model figure of *nlrc3* and its upstream and downstream pathways regulating zebrafish EHT. Error bars, mean \pm s.d., by using two-way ANOVA with Tukey's post hoc test, n = 3biological replicates in a, b, c. h. Scale bars, 100 µm in d, e, f, g. Illustrations created with BioRender.com. Source data are provided as a Source Data file.

Supplement Figure 10. *Nlrc3* signaling was conserved in the regulation of vertebrate hematopoiesis.

a Protein level of NIrc3 in mouse embryonic mutants at E10.5. b Schematic illustration of Nlrc3 knockout mice construction and verifying the mutant type. c DNA fragments of mutant types are separated and visualized by gel electrophoresis. d The photo of E14.5 fetal mice and fetal liver of Nlrc3^{-/-} and wild-type. e Flow cytometry results showing the number of CD31⁺Sca-1⁺CD201⁺ cells in the AGM of Nlrc3 embryos decreased. **f** Percentage of CD31⁺Sca-1⁺CD201⁺ cells. **P = 0.0026. **g** Quantification of CD31⁺Sca-1⁺CD201⁺ cells. *P = 0.0370. **h** Bubble plot of published RNA-Seq data demonstrating the expression of Nlrc3, Notch and NF-kB genes in the clusters of venous endothelial cells (VECs), arterial endothelial cells (AECs), pre-hemogenic endothelial cells (pre-HECs), hemogenic endothelial cells (HECs), HSPCs, fetal liver (FL)-derived HSPCs in the mouse embryos. i Bubble plot of published scRNA-Seq data demonstrating the expression of Nlrc3, inflammatory factors, myeloid-promoting cytokines, and myeloid genes in three distinct types of granulocyte-macrophage progenitors (GMPs) derived from human bone marrow-derived CD34⁺cells. i Schematic illustration of the role of the NLCR3 signal during EHT in vertebrates. Error bars, mean \pm s.d., by using two-tailed, unpaired student's t-test. n = 8, 6 in f, g. Illustrations created with Photoshop. Source data are provided as a Source Data file.

Table S1. The Morholinos used in this work		
МО	sequence (5'-3')	Reference
nlrc3-spMO	TTATCCTGGGTACTGAATATACCTT	This work
Control-MO	GeneTools	*Espin-Palazon R, Stachura DL, Campbell CA, et al. Cell. 2014;159(5):1070-1085.

Table S2.	Table S2. The primers in qPCR assay		
species	Primer name	qPCR primer sequence (5'→3')	
zebrafish	nlrc3-F	ACTGCCACGCCTTGTTATCT	
	nlrc3-R	AAGTGTGGTGAGGGTTCGGT	
	runx1-F	GCCTCTCTGCAGAACTTTCC	
	runx1-R	GACGGCAGAGTAGGGAACTG	
	стуь-Б	TGATGCTTCCCAACACAGAG	
	cmyb-R	TTCAGAGGGAATCGTCTGCT	
	<i>Ikaros-</i> F	AGAAGGGTAACCTGCTCCGACAC	
	Ikaros-R	GGGCTTTCCAACCGAATGAGT	
	il7r-F	TACACCAAACATCCCACA	
	il7r-R	TCACTCACTGACGCACTT	
	rag1-F	AGAGGACAGTGGGTAAAGA	
	rag1-R	ATGGGTTCAGGTGTTGGTT	
	lck-F	AGATGAATGGTGTGACCAGTGTA	
	lck-R	GATCCTGTAGTGCTTGATGATGT	
	gata1a-F	TCTGAGCCTTCTCGTTGGG	
	gata1a-R	CTCTGGACGCTGGTGGAATA	
	<i>l-plastin-</i> F	TGTCTGTGCCCGACACCAT	
	l-plastin-R	GGCGGAGGCAGAGTTCAG	
	<i>pu.1-</i> F	AGGAGTGTATGAGAGACCACATCAG	
	<i>pu.1-</i> R	ATTTCGCAGAAGGTCAAGCA	
	csflr-F	TCCGGGACTCTCGAGTTCTCT	
	csf1r-R	CTTCACCTTCTTTCCGCACATA	
	lyz-F	GTGAAAATGGACGGGCTGAA	
	lyz-R	CTTTGTTTGCGCTGCTCACA	
	dll4-F	ACTCTTCTGCTACGGTATGTTT	
	dll4-R	CAATGCTGGTTGAAGGTTTT	
	ephrinB2a-F	CAAGGACAGCAAATCGAATG	
	ephrinB2a-R	TGAGCCAATGACTGATGAGG	
	deltaC-F	ATTATTGCACCGAACCCA	
	deltaC-R	AAAATAGACCGCCCAAC	
	<i>kdrl-</i> F	ACTTGCCCAGATTATGGTGATG	
	kdrl-R	TCAGCCTATCGTAGAGGTATCTTGTG	

illb -F	AGAATGAAGCACATCAAACC
il1b -R	AATCCACCACGTTCACTTC
<i>p65</i> -F	CATTCCCTACGGCTAAACGA
<i>p65</i> -R	AGAAAAAGGAGGTGGGTGGA
nfkbiaa-F	AGTCATGCCAGAGAGCGAAT
nfkbiaa-R	CAGAGCCGGATGTCATCATA
nfkbiab-F	CAGCTCGGCGCAGATATAA
nfkbiab-R	TCGATGAGAAGTTTGACCATGT
nfkb1-F	CGCAAGTCCTACCCACAAGT
nfkb1-R	ACCAGACTGTGAGCGTGAAG
nfkb2-F	CATATGTCCCACACAATCAAGAC
nfkb2-F	AGCCACCATAATGATCTGGAA
notch1a-F	CGGGCCTGACGGATTCAC
notch1a-R	GGACTCCAGCAGACGTTTAGC
dla-F	GCAACTGAGGTGTAATGGGC
dla-R	CACCTAAGGTTTCGAGCAGC
dlb-R	GATGTTGCAGTCTCGCGTCC
dlb-F	TGTTGCAGTTGGTGGCTTCG
dlc-F	ACGAGCAGTGTGTAA
dlc-R	TGTTATTCTCTGTTGACTGG
dld-F	AGTACTGCACAGAACC
dld-R	TCTTGGTTACAGAAGAG
dll4-F	GCATTTTCACGACCGTTTT
dll4-R	CGGAAGAAGTCCTGCAGTC
jagla-F	TAAATGTCCAGAAGATTACG
jagla-R	ACACACTGGAAGAGATTAGC
jaglb-F	CTAGTTGCTTGTTGGTAAAC
jag1b-R	AAGGCAGTCTACAGTGTTTC
jag2-F	GCTCTGGATCTACCGACGTT
jag2-R	GTCCCAAGCTTCAAGGATGA
hey1-F	TTTGATGCTCACGCTCTGGC
hey1-R	ACCTGCTGAGATGGGACAAG
hey2-F	ATTGATGTGGGCAGCGAGAA
hey2-R	TGGGATGTGGATGTGGA
her15.1-F	CACGTCACTTATTCTCATCG
her15.1-R	TCCACAGGAGTTCAACATTG
edn1-F	TGCGTCTACTTTTGCCACCT
edn1-R	CCCTGTCTGACGCTGCTTTA
hand2-F	GACGCCAAAGAAGAAAGGCG
hand2-R	TCAGCTCCAATGCCCAAACA
hsp70l-F	CCGCTGACTAGGGCACAT
hsp70l-R	GACGCATCTTTATTCACATTA
wp/or IC	

β actin-R	TCCCATGCCAACCATCACT
efla-F	GAGAAGTTCGAGAAGGAAGC
ef1a-R	CGTAGTATTTGCTGGTCTCG

species	Primer name	qPCR primer sequence (5'→3')
Human	TLR4a-F	AGACCTGTCCCTGAACCCTAT
	TLR4a-R	CGATGGACTTCTAAACCAGCCA
	NLRC3-F	GTGCCGACCGACTCATCTG
	NLRC3 -R	GTCCTGCACTCATCCAAGC
	NLRP3-F	GATCTTCGCTGCGATCAACAG
	NLRP3-R	CGTGCATTATCTGAACCCCAC
	GAPDH-F	TCCCACTCTTCCACCTTCGATGC
	GAPDH-R	GGGTCTGGGATGGAAATTGTGAGG
species	Primer name	qPCR primer sequence $(5'\rightarrow 3')$
MOUSE	Notch1-F	GATGGCCTCAATGGGTACAAG
	Notch1-R	TCGTTGTTGATGTCACAGT
	Notch2-F	GAGAAAAACCGCTGTCAGAATGG
	notch2 -R	GGTGGAGTATTGGCAGTCCTC
	Hey1-F	GCGCGGACGAGAATGGAAA
	Hey1-R	TCAGGTGATCCACAGTCATCTG
	<i>GAPDH-F</i>	AAGCGCCCTTGTGAGGAAAC
	GAPDH-R	GGTAGTTGTCGGTGAATTGGAC
	Hey2-F	GATGGCCTCAATGGGTACAAG
	Hey2-R	TCGTTGTTGATGTCACAGT
	Hes5-F	AGTCCCAAGGAGAAAAACCGA
	Hes5 -R	GCTGTGTTTCAGGTAGCTGAC
	Runx1-F	ATGCCTGATCGTACCGAGAAG
	Ruxn1-R	GTCGTTGGCGTAAATGAGCTG
	GAPDH-F	TCCCACTCTTCCACCTTCGATGC
	GAPDH-R	GGGTCTGGGATGGAAATTGTGAGG

Table S3. The zebrafish transgenic strain used in this work		
Tg(runx1:EGFP;kd	Double-positive cells are marked the emerging HSPCs	PMID: 2886
rl:mCherry)	from haemogenic endothelium.	9969
Tg(cmyb:EGFP;kdr	Item	Item
<i>l</i> :mCherry)		
Tg(CD41:GFP)	Positive cells mark the HSPCs and platelets in the CHT.	PMID: 2541
		6946
Tg(tp1:EGFP)	EGFP cells reflect Notch activity.	PMID:
		19595765
Tg(fli1a:EGFP)	Positive cells mark zebrafish blood vessels.	PMID: 1216
		7406

Tg(kdrl:mCherry)	Positive cells mark zebrafish blood vessels.	PMID: 2886
		9969
Tg(lck:EGFP)	EGFP cells mark T-cells.	PMID:
		30855581
Tg(mpeg:GFP)	EGFP cells mark macrophages.	PMID:
		31909502
Tg(lyz:DsRed)	DsRED expression under the neutrophil specific promoter	PMID:
	lysozyme.	33162327
Tg(mpx:EGFP)	EGFP expression under the neutrophil specific promoter	Item
	myeloperoxidase.	
Tg(gata1a:DsRed)	dsRED expression under the specific promoter erythroid	Item
	transcription factor Gata1.	
Tg(lcr:EGFP)	EGFP expression under the erythroid specific globin	Item
	regulatory sequence locus control region.	

Table S4. Deposited Data		
Nlrc3 knockdown RNA-seq	This work	PRJCA009166
scRNA-seq in zebrafish	Xia J, et al. Proc Natl Acad Sci USA.	GSE146404
	2021 Apr 6; 118(14): e2015748118.	
scRNA-seq in mouse	Zhu Q, et al. Blood 2020 Aug	GSE137117
	13;136(7):845-856.	
scRNA-seq in human	Calvanese V, et al. Nature 2022	GSE162950
	Apr;604(7906):534-540.	
bulk RNA-Seq in human	Buenrostro JD, et al. Cell 2018 May	GSE96811
CD34+ bone marrow CD34+	31;173(6):1535-1548.e16.	

Table S5. The antibodies used in this work	
anti-mouse TER-119 (clone: TER-119)	BD Biosciences #560509
anti-mouse CD31-APC (clone: mmab)	BD Biosciences #551262
anti-mouse CD45-FITC (clone: OX-1)	BD Biosciences #554877
anti-mouse CD41-PE/cy7 (clone: HIP8)	BD Biosciences #561424
anti-mouse c-Kit-PE/cy5 (clone: 2B8)	Biolegend #105810
anti-mouse Sca-1-APC (clone: D7)	Biolegend #108112
anti-mouse CD45.1-AF-700 (clone: A20)	BD Biosciences #110724,
anti-mouse CD150-FITC (clone: TC15-	Biolegend #115902
12F12.2)	
anti-mouse CD48-PE (clone: HM48-1)	Biolegend #103406
anti-mouse CD201-APC (clone: RCR-16)	Biolegend #141506
anti-mouse β-ACTIN	Sangon Biotech #D191047
anti-mouse Anti-Nlrc3	Abcam #ab77817