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Abstract

Background: Deviations in the amount of genomic content that arise during tumorigenesis, called copy number
alterations, are structural rearrangements that can critically affect gene expression patterns. Additionally, copy
number alteration profiles allow insight into cancer discrimination, progression and complexity. On data obtained
from high-throughput sequencing, improving quality through GC bias correction and keeping false positives to a
minimum help build reliable copy number alteration profiles.

Results: We introduce seqCNA, a parallelized R package for an integral copy number analysis of high-throughput
sequencing cancer data. The package includes novel methodology on (i) filtering, reducing false positives, and (ii) GC
content correction, improving copy number profile quality, especially under great read coverage and high correlation
between GC content and copy number. Adequate analysis steps are automatically chosen based on availability of
paired-end mapping, matched normal samples and genome annotation.

Conclusions: seqCNA, available through Bioconductor, provides accurate copy number predictions in tumoural data,
thanks to the extensive filtering and better GC bias correction, while providing an integrated and parallelized workflow.
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Background

Genomic structural rearrangements are a hallmark of can-
cer. Among them, deviations in the amount of genomic
content that arise during tumorigenesis, called copy num-
ber alterations (CNAs), can critically affect gene expres-
sion patterns [1,2]. A priori, expression could be expected
to correlate with gene dosage. However, although a cer-
tain global correlation exists, individually, it has not been
observed to be linear and, in some cases, it can even be
inverse [3]. This is due to a range of dosage regulation
mechanisms [4] that confer the cell with robustness to
the presence of CNAs. Still, greater expression variability
arises from such regulation [5] and, if large amounts of
DNA are affected by CNAs, cell control cannot be kept [6].
Furthermore, post-transcriptional and post-translational
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modifications, folding stability and gene-protein and
protein-protein interactions greatly mask the effect of
copy number changes, but correlation between gene
dosage and protein expression has been found to be
greater in the case of oncogenes [7]. Indeed, the impor-
tance of CNAs in cancer is demonstrated by the existence
of CNA patterns that allow to differentiate between can-
cer types [2,8] and to analyze cancer progression and
complexity [9].

High-throughput technologies, including array compar-
ative genomic hybridization (aCGH), single nucleotide
polymorphism (SNP) arrays and high-throughput se-
quencing (HTS) follow a similar computational analysis
workflow for the detection of CNAs: preprocessing of raw
data, copy number profile segmentation and CNA calling,
based on the average values of the resulting segments. The
first step, preprocessing, is vital for improved CNA detec-
tion and is often underrated [10]. For HTS data, this step
starts with read summarization, which involves counting
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the number of reads that fall within genomic windows,
typically non-overlapping and fix-sized. The result is a
window read count (RC) profile, which is a proxy to the
true copy number profile. Some reads, such as those with
low mapping quality [11], can be filtered during summa-
rization, while whole windows can be filtered afterwards.
Preprocessing may continue with normalization, which
corrects for technical or biological factors that confound
the true copy number profile, mainly the GC content [12].
Normalization against a matched normal sample allows a
better correction of confounding factors [13] and reduces
the need for filters, but it is not always available [14], hence
the relevance of optimal filtering and GC content bias
correction.

Here, we present a user-friendly and highly-parallelized
R package, called segCNA, which allows an integrated
copy number analysis workflow. The package includes
novel methodology on (i) window filtering, reducing false
positives in comparison to assessed existing methods,
and (ii) GC content correction, improving profile quality,
especially under great read coverage and high correlation
between GC content and copy number.

Implementation

seqCNA is available as an R package through the Bio-
conductor project [15]. It depends on the GLAD [16],
adehabitatLT [17], doSNOW [18] and seqCNA.annot R
packages, which are automatically downloaded from the
Bioconductor and CRAN [19] repositories as needed. The
seqCNA.annot companion package contains annotation
on GC content, mappability and presence of common
CNVs for the included genome builds, enabling several
optional steps of the analysis.

An integrated read summarization function, seqsumm,
written in C++ and interfacing with the R code through
Repp, makes segCNA the only tool required to obtain copy
number profiles from SAM alignment files (SAMtools
[20] is necessary to read BAM files). The subsequent func-
tions in the package return visual feedback throughout
the analysis and require little parameterization. A vignette
with a worked example and detailed help on functions and
parameters are included within the package.

Results and discussion

Workflow

The seqsumm function summarizes read counts into win-
dows of the selected size, but it also classifies paired-end
mapping (PEM) reads based on their SAM flags - which
consider read pairing, separation and orientation - and
calculates mean window mapping quality, enabling two
of the five window filters available in segCNA. The first
filter involves PEM read classification, which has pre-
viously been used to select reads prior to summariza-
tion [21] and to detect the limits of structural genomic
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rearrangements, including CN'Vs [22]. Improper reads are
considered those that are not in read pairs with cor-
rect separation and orientation. We saw that genomic
windows with an elevated proportion of improper reads
tend to be outliers in the RC profile, probably indicating
the presence of intra-window structural polymorphisms.
If these windows are not of interest, they can be fil-
tered by setting a maximum proportion of improper reads
within each window. Second, directly filtering low map-
ping quality reads reduces the signal-to-noise ratio (SNR)
of the RC profile [23] so, instead, segCNA provides a
filter that discards windows, based on the mean map-
ping quality of proper reads. A third filter, the trimming
filter, removes windows with extreme RC values, with
the distinctive feature that a prior correction against GC
content is performed, avoiding trimming extreme RCs
that are only due to extreme GC content. The remaining
two filters discard windows with the presence of com-
mon CNVs described by Altshuler et al. [24] and low
mappability, where the mappability of a window reflects
the uniqueness of 35-nucleotide long sequences within
it [25].

A matched normal sample is preferable (but not neces-
sary) for the PEM-based, mapping quality and trimming
filters, in order to prevent biases that arise due to the
presence of CNAs. For instance, some extreme RCs on
an unpaired tumoural profile can be due to CNAs and
should be kept, so the process of trimming should be able
to spot them to avoid their filtering. For the matter, the
trimming filter in seqCNA uses an algorithm based on the
Wald-Wolfowitz runs test to tell apart CNAs from outliers
on unpaired tumoural profiles. It measures the random-
ness of the position of those windows with RC above
a certain threshold, where the higher the threshold, the
greater the randomness due to outliers. The threshold is
set where a sudden change in randomness occurs due to
the inclusion of adjacent windows, not likely to be out-
liers (see Additional file 1, Automatic trimming Section,
for more details). The five filters are independent and are
applicable based on availability of PEM reads, matched
normal sample and genome build annotation. While each
filter targets windows with a specific behavior, many win-
dows are captured by more than one filter, increasing the
filtering robustness (see Figure 1).

The next step of the analysis is normalization, which
accounts for confounding factors in the RC profile. If
a matched normal sample is not available, normaliza-
tion involves GC content bias correction, which removes
a great part of the observed bias. The described rela-
tionship between GC content and RC [12] is generally
non-linear, so, until recently, GC content correction has
been tackled through local regression (LOESS) or poly-
nomial fitting [10,11,26]. Such approach is adequate for
genomes where (i) gains and losses account for a small
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Figure 1 Window filtering on HCC1143 sample’s RC profile. Visual assessment of the filtering performed by seqCNA on sample HCC1143. The

profile (top) shows where the filtered windows lie within it. Mappability-filtered windows are marked as orange triangles; mapping quality-filtered,
as magenta crosses; and trimming-filtered, as purple dots. The Venn diagram shows the overlaps among the windows filtered by the three applied
filters. The plots on the right depict the density maps on which thresholds delimit the windows to be discarded based on the different filters.

fraction of the genome or they are rather balanced and (ii)
GC content distribution is similar among regions with dif-
ferent copy numbers, but this is not typically the case of
cancer genomes, where a linear relationship between copy
number and GC content produces a bias in the regres-
sion. The GC correction algorithm in FREEC [14] tries to
improve mere regression by looking for the GC content
curve of the main copy number, sampling window den-
sities at specific GC content levels. Thus, FREEC is able
to handle the possible correlation between copy number
and GC content, as long as the correlation does not affect
the convergence of the algorithm towards the main copy
number. Furthermore, such algorithm works under the
assumption of known sample ploidy and proportionality
between RC and copy number, which may be shifted by
the presence of subclones in the cell population.

The approach we propose for GC bias correction, called
seqnorm, accounts for the correlation between copy num-
ber and GC content independently of sample character-
istics. textitseqnorm is a two-iteration algorithm, with
a first pass regression that removes much of the GC
bias and a second step that accounts for the correlation
between GC content and copy number before a second
pass regression. While the first regression is sensitive to

the correlation and can, therefore, under- or over-correct
the GC curve, the GC bias generally decreases. After-
wards, GLAD [16] produces a segmented profile in a way
that segments represent the maximal neighbourhoods
in which the local constant assumption of the statisti-
cal model holds. Such property is interesting because
low intra-segment variability is key to the second regres-
sion, which is applied segment-wise. Namely, segments
with the highest RC variability, as well as those span-
ning few windows, may not provide robust enough fits.
In turn, those with little GC content variability do not
allow estimating the effect of extreme GC content. There-
fore, segments undergo a selection process (see Additional
file 1, seqnorm Section, for more details). Centering the
selected segments removes the read count differences due
to copy number changes, essentially removing the unde-
sired correlation. Thus, the subsequent segment-wise
regressions provide good approximations to the genome-
wide effect of GC content on read counts without the
bias that emerges from the correlation and their median
gives a robust estimate of the true effect (see Figure 2).
Although devised to improve GC content normalization,
seqnorm can also be used to normalize against matched
paired normal.
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Figure 2 GC correction of HCC1143 sample’s RC profile. GC correction results over the HCC1143 sample’s RC profile. (Left) Density plot of the
normalized RC profiles. The density of the seqnorm-corrected profile distinguishes better the different copy numbers in the mixture. (Right) Read
counts depending on the window’s GC content, with greater density as darker grey. In blue, regression line estimated through the typical approach.
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Existing tools for CNA detection on HTS data perform
a basic preprocessing and put their focus on the copy
number calling step, taking advantage of allele-specific
information [14,27,28] and automatically predicting copy
number profiles [10,14,27]. On the other hand, segCNA
focuses on preprocessing and provides additional simple
methods to obtain the final copy number profiles. Hence,
the analysis is completed by segmenting the segnorm-
corrected profile with GLAD and, through visual assess-
ment, defining copy number limits (Figure 3).

Methodology assessment
For the methodology assessment, we used data from
human samples according to the Declaration of Helsinki,
the European Guidelines on Good Clinical Practice,
relevant national and regional authority requirements
and Hospital Clinico San Carlos’s Clinical Investigation
Ethics Committee (Madrid, Spain). Informed consent was
obtained from every subject.

In a recent comparison [29], we found GAP [30]
to be the best performing CNA-detecting method on
SNP-array data. Knowing that, we compared the results

from segCNA, GAP and state-of-the-art CNA-detecting
methods on HTS data, namely FREEC [14], CNAnorm
[10] and Patchwork [28], over two colon cancer sam-
ples we hybridized on SNP-arrays and paired-end
sequenced (raw data is deposited at the European
Genome-phenome Archive (EGA) under accession num-
ber EGAS00001000558). segCNA’s copy number profiles
were the closest ones to GAP’s (Additional file 1: Table S3)
and presented the lowest departure from consensus pro-
files: 0.04% in both cases (Additional file 1: Table S2). The
novel PEM-based and mapping quality filters are the main
reason behind the reduced false positive rate in compar-
ison to FREEC and CNAnorm (Additional file 1: Figures
S1 and S3).

In order to assess seqnorm’s performance, we built a
semi-simulated dataset from the combination of the copy
number profiles of 676 cell-lines [31], determined using
PICNIC [32], and the RC variability of 7 non-tumoural
samples (see Additional file 1, Simulated dataset Section,
for more details). On the semi-simulated dataset, real cell-
line [33] and prostate cancer samples [34] the median
signal-to-noise ratio (SNR) improvement with respect to
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Figure 3 Copy number calling of HCC1143 sample’s segmented RC profile. Visualization of the GC corrected and segmented profiles of sample
HCC1143, together with the thresholds that delimit copy number calls. Chromosomes are delimited by black vertical lines. The GC corrected profile
is shown as a black-coded density map, the segmented profile is shown in green and the thresholds are marked in red.

typical regression ranged from 1% to 4% (Additional file 1:
Figure S9), with a maximum improvement between 27%
and 77%, where 2% already yields a visibly more defined
density map (see Figure 2). We investigated the factors
that affect this improvement and saw that it directly
depends on: (i) the SNR of the RC profile and (ii) the corre-
lation between GC content and copy number, which tends
to be greater when the top main copy number (spanning
at least 5% of the genome) is 4 or 5 and there are between
3 and 4 distinct main copy numbers (Additional file 1:
Figure S11).

Future development

As of the initial release, the annotation package covers
the human genome with builds /4gI8 and /gl9. In the
future, we aim at extending the package to include further
genomes and builds based on users’ necessities.

We are also pondering possible extensions to the main
package, including relevant region annotation and sup-
port for side-by-side displaying of copy number profiles
in existing databases. Increased automation is also plau-
sible, especially in the final calling step, but we reckon
that improved methodology needs to be developed in this
regard in order to replace human judgment. In general,
while GC bias correction is a mature issue, we expect the

filtering and calling steps to see further developments.
Specifically, additional intelligent filter threshold selection
and multifactorial filtering are issues that remain open.

Conclusion

We have presented segCNA, a tool that allows integral
analyses for the detection of CNAs in HTS tumoural data
and provides relevant advancements in the preprocess-
ing steps. Namely, it incorporates a novel normalization
method, seqnorm, which significantly improves the per-
formance of typical regression, especially on samples with
high SNR (e.g. due to greater coverage) and under high
correlation between GC content and copy number. The
tool also incorporates novelties for the filtering of win-
dows in RC profiles - thus reducing the amount of false
positives, including a PEM-based filter, a method that
automatically sets trimming thresholds and a sensible
window filter that replaces the removal of low quality
reads.

Availability and requirements
Project name: seqCNA

Homepage: http://www.bioconductor.org/packages/
devel/bioc/html/seqCNA .html

Operating system(s): Platform independent
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Programming language: R

Other requirements: SAMtools (only if using BAM
files)

License: GPL-3

Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplementary methods, figures and tables.
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