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Abstract

Developments in the genome organisation field has resulted in the recent methodology to

infer spatial conformations of the genome directly from experimentally measured genome

contacts (Hi-C data). This provides a detailed description of both intra- and inter-chromo-

somal arrangements. Chromosomal intermingling is an important driver for radiation-

induced DNA mis-repair. Which is a key biological endpoint of relevance to the fields of can-

cer therapy (radiotherapy), public health (biodosimetry) and space travel. For the first time,

we leverage these methods of inferring genome organisation and couple them to nano-dosi-

metric radiation track structure modelling to predict quantities and distribution of DNA dam-

age within cell-type specific geometries. These nano-dosimetric simulations are highly

dependent on geometry and are benefited from the inclusion of experimentally driven chro-

mosome conformations. We show how the changes in Hi-C contract maps impact the

inferred geometries resulting in significant differences in chromosomal intermingling. We

demonstrate how these differences propagate through to significant changes in the distribu-

tion of DNA damage throughout the cell nucleus, suggesting implications for DNA repair

fidelity and subsequent cell fate. We suggest that differences in the geometric clustering for

the chromosomes between the cell-types are a plausible factor leading to changes in cellular

radiosensitivity. Furthermore, we investigate changes in cell shape, such as flattening, and

show that this greatly impacts the distribution of DNA damage. This should be considered

when comparing in vitro results to in vivo systems. The effect may be especially important

when attempting to translate radiosensitivity measurements at the experimental in vitro level

to the patient or human level.
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Author summary

We have used a technique which allows us to understand how parts of our DNA are orga-

nised within a cell nucleus. This technique has previously shown differences in the organi-

sation between different cell-types. In this study, we show that these differences produce

significant change in the way our DNA is damaged when exposed to radiation. This is

important to understand as one of the primary ways we treat cancer is using radiotherapy.

However, whilst we attempt to target the cancer with radiation, some healthy tissue also

receives radiation. It is the radiation delivered to the healthy tissue which limits how

much radiation we can safely give to the cancer without causing significant side effects in

patients. To know how much radiation we can give, over time, we have learnt generally

safe amounts of radiation that can be given to healthy tissue. Even so, sometimes patients

will still have worse side effects than what we would have predicted. If we want to further

improve our treatments and patient safety, we need to better understand how this safe

limit varies between each patient. The first step in to fully understanding this process

comes from a better understanding of how different cell-types are affected by radiation,

which is partly driven by DNA organisation, shown in this work.

Introduction

The research fields of radiobiology and DNA structure have shared a symbiotic past. Radiation

has been used to infer the presence of chromosome territories [1], structural cytotoxic

responses [2, 3] and examinations of the chromatin dynamics [4]. In turn, as we gain a better

description of the DNA and chromatin structure we observe an intrinsic relationship with the

radiobiological properties of a cell [5, 6]. This is due to the radiobiological response being

majorly driven by damage to the DNA structure. The formation of double-strand breaks

(DSBs), which is where the sugar-phosphate backbone of the DNA is broken on both sides in

close proximity (<10 bp) has been shown to correlate strongly with cellular survival [7, 8].

This is thought to be partially caused by DSBs giving rise to the possibility of chromosomal

interchanges, whereby chromosomes that misrepair can form a whole variety of chromosome

aberrations [9]. It is believed that a major factor for misrepair events is the mobility and spatial

distribution of DNA break ends [10–12], increasing the importance of chromosomal arrange-

ment on cell fate. One of the more lethal chromosome aberration types are those that involve

two different chromosomes being misrepaired and plays a major role in the radiation-induced

cell death [13, 14]. The probability for these types of chromosomal translocation to occur has

been shown to relate to the intermingling of the different chromosomes [15]. Therefore, there

is an innate interest in being able to accurately predict the spatial distribution of interchromo-

somal DNA break ends as this will inform us to the probability of inducing interchromosomal

aberrations.

The field of chromosome organisation has made major strides, many of which surround

the microscopy technique fluorescence in situ hybridization (FISH). However, this cytogenetic

approach is ultimately limited by its sensitivity and resolution. The field has culminated in the

emergence and development of inference based methods to examine genome organisation

called chromosome conformation capture techniques [16]. Chromosome conformation cap-

ture uses DNA cross-linking to capture interactions between proximal regions of the genome,

the frequencies at which sections of the genome are captured proximal to one another gives a

mechanism by which to infer spatial proximity. One such method is Hi-C, which uses high-

throughput sequencing to capture proximal regions for the entire genome. The Hi-C
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technique has been rapidly developing, from initial work of experimental design [17] through

to the complex inferences, on both nuclear structure and function [18–22], which can be made

from the gathered data [23, 24]. Whilst, the field is still developing it has become clear that an

area of interest is the inference of the three-dimensional genome structure from the contact

probabilities observed in Hi-C experiments. This has been attempted using multi-dimensional

scaling [24], polymer [23, 25–27] and statistical [28, 29] type models with a varying structural

focus.

On the other side, radiobiological models of DNA damage and repair are a concept that

have been developing for several decades to better understand the effects of radiation in areas

such as, healthcare, public health and space travel. Some of these models have proved them-

selves critical for informing the use of clinical radiotherapy [30, 31]. The clinical efficacy of

radiotherapy treatment is limited by the compromise between cell kill in the tumour and in

normal tissue, resulting in tumour control and normal tissue complication respectively [32].

Radiobiological models aim to provide insights here, with the intention of better informing

the clinician when confronted with this compromise through exploitation of the 5 R’s of radio-

biology (repair, repopulation, reoxygenation, redistribution and radiosensitivity) [33]. In a

subset of radiobiological models, radiation track structure is simulated with an interpretation

of the genome structure [34–36], providing a detailed representation of the energy deposition

at the DNA level. These structural interpretations have varying levels of complexity but are

most commonly relatively uniform and mathematically driven. Furthermore, if cell-type spe-

cific geometric models are used, they will generally be the same for all simulations [37] absent

of any cellular variation that is found in populations of cells. This variation is prevalent within

the radiobiological experimental results and creates ambiguity when interpreting data for

clinical decision making [38, 39]. The results of DNA damage models can be used in radio-

response models [40] which try to identify effects at the cellular level [12, 41–43]. Ultimately,

radiobiological models aim to describe cellular radio-response, with the hope of transference

to patient-level response to better predict outcomes of radiation-based treatments.

In this study, we extend the overlap of these research areas by incorporating the chromo-

some structure, in the form of Hi-C data, in Monte Carlo radiation track structure simulations

of DNA damage. This improved geometric representation is crucial to accurately model types

of chromosome aberration and the subsequent effects of cell death, senescence or possible

radiation-induced mutations. These biological endpoints are key drivers of clinical outcome

following radiotherapy that will be benefited by an improved understanding of their origin. To

evaluate the effects of a Hi-C geometry we have developed G-NOME (G-NOME—Nuclear

Organisation Modelling Environment) to infer the geometry from the Hi-C data. G-NOME is

a highly extensible python library that allows for geometry inference using a Markov-chain

Monte Carlo polymer model with the ability to be directly fed into tool-kits of radiation track-

structure, such as Geant4-DNA [44] and TOPAS-nBio [45]. Through the combination of

inferred genome structure from experimental Hi-C data and radiation track structure, it is

possible to better encapsulate and therefore understand some of the biological variation seen

within experimental radiobiology. Furthermore, this study has highlighted that Hi-C derived

geometries for different cell lines have varying amounts of chromosomal intermingling, which

are likely to be fundamental drivers for differences in observed cellular radiosensitivity.

Results

Definition of terms

In the purpose of these definitions an object can refer to either polymer beads (when

describing geometry distribution) or DSBs (when describing DNA damage distribution).
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Cluster radius: the spherical radius of inclusion space which counts the objects (e.g. beads

or DSBs) within it. clustering: the number of objects that fall within a given radius averaged

for all objects in the simulation. Interchromosomal clustering: the number of objects that

fall within the cluster radius and are not on the same chromosome (including homologous

chromosomes) averaged for all objects in the simulation. Intrachromosomal clustering: the

number of objects that fall within the cluster radius and are on the same chromosome (not

including homologous chromosomes) averaged for all objects in the simulation. Inter/

Intra-chromosomal clustering ratio: the ratio of the averaged interchromosomal clustering

and the intrachromosomal clustering for the object being examined.

Effects of using LADs and ellipsoid nuclei in Hi-C geometries

The IMR90 (human fetal lung fibroblast) variant conformations, inclusion of Lamina-associ-

ated domains (LADs) and flattening of the nucleus to form an ellipsoid, were solved using the

G-NOME software and viewed for gross abnormalities (Fig 1A). For each of the three tested

cell types, 200 geometries were created. All ellipsoid and Lamina-associated domain (LAD)

geometries were solved for 4 million iterations using the G-NOME software, this was chosen

to achieve comparable nucleus-bead outliers compared to the spherical geometry, which were

solved for 2 million iterations (Fig 1B).

To examine differences in interchromosomal proximity within the modelled cell nucleus

the bead clustering of each cell variant is plotted (Fig 1C) for varying cluster inclusion radii.

The single value of interchromosomal bead clustering is the result of analysing every bead in

the model for the number of interchromosomal beads that are within the tested cluster radius

of the bead being analysed, the per bead clustering value is then averaged to obtain a per cell

geometry bead clustering. This allows for a coarse examination of differences in the “intermin-

gling” between chromosomes for each of the cells. When incorporating LAD objectives in the

geometries there is a slight increase in the amount of intermingling of the chromosomes.

Whereas, when the geometry is solved as an ellipsoid the intermingling decreases.

The optimised distribution of the chromosomes are reviewed by according to the position-

ing of their constituent beads, scored between central or peripheral of the modelled nucleus

(Fig 1D). Larger chromosomes (chr1-chr9) are predominately situated at the periphery and

smaller chromosomes (chr13-chrX) are situated centrally. This is similar to the chromosomal

ordering seen in other models [23]. The analysis shows an increased peripheral and decreased

peripheral bead positioning for IMR90 LADs and ellipsoid respectively when compared to the

standard IMR90 variant (no LADs and spherical). Although all analysis methods halved the

volumes to define the central and peripheral regions, in the ellipsoid geometry it becomes

harder for the optimiser to place beads within the periphery that doesn’t incur a cost due to

the constraint placed on fitting beads within the nucleus. This promotes central placement of

the beads within the cell nucleus as indicated by the percentage of DNA content placed in the

periphery in Fig 1D.

To identify which chromosomes have beads which are consistently proximal across multi-

ple inferences of chromatin arrangements, a series of chord plots (Fig 1E) were generated from

the 200 cell geometries. Each linking line represents chromosomes that share at least one prox-

imal (<500nm) interchromosomal bead in at least X% of the examined 200 geometries, where

X can be a particular threshold. When analysing consistent chromosomes with proximal inter-

chromosomal beads, there are no such examples which occur within 50% of the ellipsoid sam-

ple analysed. Therefore, all variants have been analysed at a 40% threshold to examine the

difference between the conformations. There are more chromosomes that share proximal

interchromosomal beads in the spherical geometries than the ellipsoid geometry. Interestingly,
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Fig 1. Geometrical properties of an inferred encapsulation of the 3D spatial chromatin arrangement. A) rendered 3D example

of IMR90 Hi-C data solved for variants of adding LADs or optimising for an ellipsoid geometry. Each colour represents different

chromosomes and the bead size represents the amount of DNA content. Rendered nuclear shell is to give an idea of scale for a 5 μm

radius spherical nucleus for IMR90 and IMR90 w/ LADs, the ellipsoid nucleus is shown for 1.0x11.8x11.8μm. B) comparison of the

fraction of beads that were not encapsulated by the optimiser objective nucleus. C) interchromosomal bead cluster analysis for the

IMR90 variants. D) chromatin positioning analysis for beads that have been scored based on being within the central or peripheral

half of the nuclear volume and is averaged over a 10 Mbp bin. The overall percentage of DNA content placed in the periphery is

displayed within each plot. E) chromosomes that have interchromosomal beads within a 500 nm radius of one another. Lines are

only displayed for the chromosomes that share proximal beads in at least 40% of the examined geometries. The data shown is

averaged for 200 inferred geometries for each of the cell variants. Error bars are the standard deviation of 200 geometries.

https://doi.org/10.1371/journal.pcbi.1008476.g001
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the chromosomes included in the chord plot for the ellipsoid geometries occur in the spherical

geometries also, suggesting these are interaction driven from the experimental Hi-C contact

maps rather than compromises due to other bead constraints. There are the same number of

chromosomes that share proximal interchromosomal beads for both the geometries with and

without LADs. However, there is an increase in the chord density with the inclusion of LADs,

suggesting an increased amount of consistent intermingling at the analysed 500 nm radius,

which is reasonable given the increase in constraints for these geometries.

Variations in Hi-C geometries for different cell-type

All spherical cell-type geometries (IMR90—human fetal lung fibroblast, HMEC—human

adult mammary epithelial and GM12878—human B-lymphocyte), were solved using the

G-NOME software with an optimisation limit of 2 million iterations of successful movements.

For each of the three tested cell types, 200 geometries were solved. The resultant conformations

were visually examined to check for gross abnormalities in the same manner as the cell variants

(Fig 2A). To examine the optimisation of the three cell-type Hi-C datasets, which have differ-

ent number of constraints, the average cost per constraint for the geometries are plotted for

comparison (Fig 2B). Whilst there is quite a large variation observed within the same cell type,

there is an overlap between the interquartile ranges of the different cell types, suggesting suit-

able optimisation of the different datasets and allowing direct comparison.

Cell type changes in the interchromosomal bead clustering are shown in Fig 2C. It can be

observed that the cell line GM12878 (human B-lymphocyte) had increased levels of intermin-

gling than the other two cell lines.

The spatial positioning analysis (Fig 2D) shows the same resultant distributions largely fol-

low the same pattern between the different cell-variants. Larger chromosomes (chr1-chr9) are

predominately situated at the periphery and smaller chromosomes (chr13-chrX) are situated

centrally.

The cell types were analysed for consistent chromosomes with proximal interchromosomal

beads (Fig 2E) in the same manner as the cell variants. However, due to the increase of consis-

tent shared proximal beads in comparison to the ellipsoid geometry the threshold was

increased to 50% to better compare amongst the three cell types. The inferred GM12878 geom-

etries share a higher amount of proximal chromosomes than both IMR90 and HMEC. The

observed number of chromosomes that share a 500 nm proximity matches the observed

amount of interchromosomal bead clustering, highlighting that this difference in Fig 2C is due

to having an increased number of intermingling chromosomes. The chromosomes that, on

average, have mutual proximal beads are those of the smaller and centrally located chromo-

somes observed in Fig 2D.

Comparison of Hi-C genome organisation and pseudo-random

organisation

To better quantify the genomic organisation of solved Hi-C geometries we compared the

interchromosomal bead clustering of the different cell-types and variants against a set of

pseudo-random geometries (Fig 3A). These pseudo geometries have no bead-bead con-

straints and can be placed anywhere within the specified nuclear volume (5 μm radius).

Through the removal of organisation constraints the geometries become devoid of chromo-

some territories, resulting in the upper achievable level of chromosome intermingling (Fig

3B). The corresponding bead clustering values from the pseudo-random geometries were

used to obtain a normalised value for all the Hi-C cell-types and variants (Fig 3C). The lack

of chromosome territories results in a linear log-log relationship for the pseudo-random

PLOS COMPUTATIONAL BIOLOGY Hi-C implementation of genome structure for in radiobiological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008476 December 16, 2020 6 / 26

https://doi.org/10.1371/journal.pcbi.1008476


Fig 2. Geometrical properties of the inferred 3D spatial chromatin arrangement. A) rendered 3D example geometries for

different cell-type Hi-C data. Each colour represents different chromosomes and the bead size represents the amount of DNA

content. Rendered nuclear shell is to give an idea of scale for a 5 μm radius spherical nucleus. B) evaluation of G-NOME’s ability to

optimise the geometries of different Hi-C datasets. The cost function has been normalised to the total number of constraints which

differs between cell types. Orange line represents the median and green triangle is the mean of the distribution. C) The resultant

bead clustering for an increasing cluster inclusion radius. D) chromatin positioning within the nucleus for the different cell lines.

Beads are scored based on being within the central or peripheral half of the nuclear sphere and is averaged over a 10 Mbp bin. The

overall percentage of DNA content placed in the periphery is displayed within each plot. E) each line represents chromosomes that

have interchromosomal beads within a 500 nm radius of one another. Lines are only displayed for the chromosomes that share
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geometries between interchromosomal bead clustering and cluster radius, which is not

seen by the geometries formed from Hi-C data suggesting that they are not mathematically

repeating arrangements (Fig 3D). This aids in the definition of an upper limit of comparison

for the structured Hi-C solved geometries and shows that solved geometries contain order.

To spatially analyse the geometries the normalised Ripley-K function was calculated for the

3D geometries (Fig 3E). The pseudo random geometry resulted in a straight y = 0 line for all

cluster radii, suggesting it is completely spatially random. The IMR90 Ellipsoid geometry dis-

played an increase in clustering with a positive non-linear trend at a magnitude that was dis-

tinct to the other geometries. Whereas, the remaining geometries showed a lesser, but still

non-linear separation to the y = 0 line of complete spatial randomness, suggesting some

amounts of clustering, but less than the IMR90 ellipsoid geometry.

To further evaluate the spatial arrangements of the 3D geometries compared to the pseudo

random geometry a proximity score was produced based on the solved 3D geometries ability

proximal beads in at least 50% of the examined geometries. The data shown is averaged for 200 inferred geometries for each of the

cell types. Error bars are the standard deviation of 200 geometries.

https://doi.org/10.1371/journal.pcbi.1008476.g002

Fig 3. Geometric comparison of solved Hi-C geometries and pseudo random geometries. A) visualised example of

a pseudo random geometry, beads are placed randomly within the restricted nuclear volume with no restriction of

neighbouring beads. B) averaged interchromosomal bead clustering for all Hi-C cell-types and variants including the

corresponding pseudo random values plotted on a linear-linear scale. C) normalised values of interchromosomal bead

clustering for all Hi-C cell-types and variants using the corresponding pseudo random value as the normalisation

parameter. D) same results as B) but on a log-log scale. E) Normalised 3D Ripley-K function (Eq (1)). The

normalisation results in complete spatial randomness giving a y-value = 0 (shown by the dotted black line) for all

cluster radii. Edge correction is applied for as 1/Vs, where Vs is the fraction of overlapping volume of the cluster radius

and the nuclear radius. All values are the average of 200 inferred geometries and error bars are the standard deviation.

F) proximity score (lower value indicates a better optimisation of the contact constraints), which is a measure of the

average euclidean distance constraint placed on TADs being proximal to one another from the Hi-C data. G) Spatial

distribution of DNA content within the inferred geometries being place in either the central of peripheral half for the

nuclear volume.

https://doi.org/10.1371/journal.pcbi.1008476.g003
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to appease the Hi-C derived of TAD (bead) contact constraints. The proximity score is an aver-

aged measure of euclidean distance for each bead with all of it’s contact constraints. A lower

value equivalent to a better optimisation score, for the Hi-C constraints, but ignores the con-

straints of all the beads being within the nucleus or lamina-based constraints. In theory this

can equal zero if the analysed bead is next to all other beads it has a contact for, but given

that beads have a physical size and cannot overlap this value is likely to always have some

value > 0. The proximity score analysing (Fig 3F) shows similar levels of optimisation for all

cell type and variants which are much less than the pseudo random geometry which represents

a non-optimised solution. This helps justify that the optimiser is in fact promoting the con-

straints derived from the Hi-C data. The spatial positioning of DNA content was also evaluated

(Fig 3G) to get an idea of spread in either the central or peripheral half of the nucleus volume.

For geometries the three cell type geometries (GM12878, HMEC, IMR90) the distribution is

relatively balanced. Wheras, the IMR90 Ellipsoid cell has increased placement of DNA content

within the central portion of the cell nucleus. The IMR90 LADs have an increased amount of

DNA content places in the periphery which is expected given the lamina-based constraints

being applied.

Simulated DNA damage yields in Hi-C geometries

The solved Hi-C geometries for the three cell types (GM12878, HMEC and IMR90) along with

the two variants of IMR90 (IMR90-LADs and IMR90-Ellipsoid) were built in Geant4-DNA.

The built Geant4 geometries were subjected to irradiation from protons, helium- and carbon-

ions and the resultant energy depositions were classified into DNA damage (Fig 4A). The

Fig 4. Geant4 DNA damage simulation results. A) visualisation of Hi-C geometry within Geant4-DNA being

irradiated by a primary proton beam (red), generated secondary electrons (blue) and emergent gamma-rays from

excitation (green). B) damage yields DSBs and C) damage yields SSBs per Gy of dose from the irradiation of Co-60

photons, protons, helium- and carbon-ions. Error bars are the standard deviation between the 200 geometries, where

each geometry has 50 independent exposures.

https://doi.org/10.1371/journal.pcbi.1008476.g004
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yields of both DSB and Single-Strand Break (SSB) per unit dose (Gy) as a function of Linear-

Energy Transfer (LET) (keV/μm) shows the expected increase in DSBs and a corresponding

decrease in SSBs with increasing LET values (Fig 4). It can be seen that across the LET range

investigated all yields remain within error bars of one another and the cell-type geometry or

geometry alterations (LADs and ellipsoid shaping) do not affect resultant damage yields.

We investigated the markedly large drop in DSBs at>1000 keV/μm, which was due to

increased damage clustering which results in DSBs consisting of more than two backbones,

forming complex DNA damage (S1 Fig). To evaluate if there is substantial change on DNA

DSB yield between different geometries of the same cell type we investigated the DSB/Gy yields

as a function for each geometry (S2 Fig).

The yields per geometry were sorted (smallest to largest yields) as there was no clear corre-

lation to specific geometries within the same cell types leading to offsets in yields. Whilst, there

is some cell to cell DSB yield variation for the same cell-type it does not appear to be a signifi-

cant (S3 Fig), with most points falling within the standard error of the mean from different

exposures. Furthermore, to check if there were portions of the genome that were geometrically

more vulnerable to DSB induction, we examined the DSB/Gy/BasePair for each chromosome,

no differences were identified between cell types (S4 Fig).

To analyse how the yields of damage changes relative to the position within the cell nucleus

both the DSB normalised frequency and DSB density has been plotted for each cell type (S5

Fig), which show minimal change between the cell types. The effects of adding lamina-based

constraints in the IMR90-LADs geometries were evaluated against their counterpart IMR90

geometries, which do not have such constraints, in the same manner (S6 Fig). The increased

positioning of beads towards the periphery does cause a notable effect for the damage distribu-

tion, with higher levels of DSB density located at the periphery.

Simulated DNA damage distributions in Hi-C geometries

The spatial pattern of the DSBs within the cell geometry were analysed for clustering at various

radii, this provided a description of the total DSB clustering (S7 Fig), the interchromosomal

DSB clustering (S8 Fig) and the intrachromosomal DSB clustering (S9 Fig). These metrics can

then be used to discern the intrachromosomal DSB clustering and the ratio of inter-/intra-

chromosome clustering (Fig 5). Total DSB clustering, comprimised of both inter- and intra-

chromosome DSBs, increases with LET, whilst the inter/intra clustering ratio has the opposite

relationship with LET. This relationship is caused by the distribution of breaks making up the

1 Gy of absorbed dose within the cell nucleus. At higher LETs the distribution of damage

becomes more localised, increasing the corresponding intrachromosomal DSB clustering.

Conversely, at lower LETs the damage becomes more distributed, which increases the inter-

chromosomal DSB clustering.

To evaluate the relationship between the chromosome intermingling, in the form of

bead clustering (Fig 2C), and DSB interchromosomal clustering we plotted these metrics for

each of the 200 geometries per cell-type category against one another (Fig 6). Whilst, there

is a spread in the relationship between these two metrics it can be seen at 1 Gy of Co-60 (Fig

6A) there is a subtle increase in the mean value (denoted by the intersection of the black

lines) for both geometry and damage metrics. However, as the radiation is only damaging

within a small proportion of beads it was expected that the underlying relationship would

strengthen as the number of damages increases (essentially sampling the geometry further).

To evaluate this we also irradiated the geometries with 100 Gy of Co-60 and to show a

decrease in the variation due to the exposure and a stronger observable relationship between

the metrics at both a geometric and damage level. When analysing the relationship between
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geometry and DSB interchromosomal clustering for a range of LET values (Fig 6B) the

relationship persists within a particular LET band (colour marked). However, with the

inclusion of the two variations on the IMR90 geometry (Fig 6B-right) there is a separation

from the relationship seen between cell-types (Fig 6B-left). These results identify that whilst

differences between cell-types are able to be detected at the DNA damage level, the changes

at this level from resultant cell shape (i.e. flattened ellipsoid cell) are noticeably different to

the pattern seen across spherical shapes. The same can be said for the inclusion of LADs

when solving the geometries, but on a smaller scale than that of solving for a flattened ellip-

soid cell.

Fig 5. Ratio of inter- and intra-chromosome DSB clustering (inter/intra CD Ratio) for a range of simulated cell-types, LET (keV/μm) and cluster

radius (nm). A lower and higher ratio indicates increased and decreased spatially clustered breaks respectively. Values of total DSB clustering are given as

the floating numbers above points and are representative across cell-types. Interactive versions of this plot along with the corresponding total, inter- and

intra-chromosomal DSB clustering graphs are available in S1–S8 Files. The 2D version of this plot for each fixed LET value is in S10 Fig.

https://doi.org/10.1371/journal.pcbi.1008476.g005
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To examine if changes in interchromosomal DSB clustering were significant each group

was tested at all LET and cluster radius values shown previously (Fig 7). This identifies that

changes in the interchromosomal bead clustering (Figs 1C and 2C), shown to be statistical

significance (S11 Fig), translate to significant differences in the induced damage. Variation

between the cell-types (Fig 7A, 7B and 7C) are typically statistically significant at higher values

of LET and cluster radius (excluding carbon-ions at 1034.69 keV/μm). The largest difference

when comparing cell-types is between the solved GM12878 and HMEC geometries and the

smallest difference is between the IMR90 and HMEC geometries, matching the differences

observed in (Fig 6). Whereas, statistically significant differences can be seen for the majority of

tested LETs and cluster radii in the variant comparisons (Fig 7D, 7E and 7F).

Discussion

We have shown that the changing of cell-type, addition of LADs, or solving for an ellipsoid

does not have noticeable influences on the yields of DSB and SSB DNA damage, but there is a

difference in the pattern of damage. The resultant DNA DSB interchromosomal clustering

(Fig 6B) suggests that it is possible to detect statistically significant differences between cell

types (Fig 7), but the addition of LADs and especially ellipsoid shaping causes a distinct alter-

ation in how the interchromosomal geometric description propagates through to the damage

distribution. It is in this case that the normalised Ripley-K may be a better predictor of the

DSB interchromosomal clustering when you depart from spherical geometries as this accounts

for non-overlapping cluster radii volume and nucleus volume through boundary corrections.

These variations between cell-types are detectable in all types of clustering (interchromosomal,

intrachromosomal and total), with the magnitude of the values still dictated by radiation

parameters (e.g. LET). The observed changes in inter/intra chromosomal DSB clustering ratios

is an interesting parameter to analyse as it may be a predictor of inter- and intra-chromosomal

Fig 6. Evaluation of interchromosomal geometric bead clustering and subsequent damage clustering. A)

relationship between interchromosomal bead clustering and interchromosomal DSB clustering for Co-60 photons

irradiation at 1 Gy (left) and 100 Gy (right) at a 500 nm cluster radius. Black lines represent the standard deviation of

each metric with the intersection corresponding to the mean value, each point represents a single G-NOME solved

nucleus. B) same relationship of bead and DSB interchromosomal clustering, but for proton, helium- and carbon-ions

of varying LET at cluster radii of 500nm with different cell-types (left) and cell variants (right).

https://doi.org/10.1371/journal.pcbi.1008476.g006
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misrepair, which has a differing biological response [46]. We believe that interchromosomal

DSB clustering may be a good predictor of interchromosomal chromosome aberrations,

which are often toxic to the cell [47]. Experimental work has previously shown increased chro-

mosomal intermingling correlates with increased chromosomal translocation [15], we are able

to explore these findings at their intermediate step of DNA damage distributions.

Fig 7. Examination of statistically significant change in interchromosomal DSB clustering between cell-types (A—C)) and variants (D)—F)). The

values of the heat maps is the difference in the average interchromosomal clustering between the two cell types. The heat maps colouring shows the false

discovery rate adjusted P-values from the Kolmogorov–Smirnov two-sided test for the full range of LET (keV/mum) and cluster radius (nm). The null

hypothesis of the test is that two independent samples are drawn from the same continuous distribution. Colour codeing for adjusted P-values at varying

thresholds: red (P> 0.05), purple (0.05> P> 0.01), yellow (0.01> P> 0.001) and green (P < 0.001). In this case, distributions with adjusted P-

values< 0.05 are considered as statistically significantly different. Each of the tested distributions had 200 geometries per cell-type or variant group. Each

value of interchromosomal DSB cluster density is an averaged result which comes from 50 independent 1Gy exposures at the listed LET and cluster radius

values.

https://doi.org/10.1371/journal.pcbi.1008476.g007
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To resolve if it is feasible to detect differences at a DNA damage level when using different

Hi-C cell-type datasets we ensured that all geometries were solved for the same nuclear volume

and the total amount of DNA (6 Gbp). However, from the literature, it is apparent that cell

nucleus [48] size can vary substantially both between and within cell-type. This change in

cell size has also been linked to a change in the amount of DNA content [49], these features

have not been encapsulated here due to simulation time, but are within the capability of the

G-NOME software and our damage model. Due to the differences noted from changes in

cell shape, we would expect the differences in both size and DNA content to have a marked

response in the damage distribution produced. Furthermore, through changing the amount of

DNA content there is an alteration in the number of sensitive targets within the cell, which

would be expected to lead to a difference in the yields of damage.

In this study, we have included the effects of solving the geometry of the same volume, but

for a flattened ellipsoid shape (which may be predominant in vitro) and comparing it to the

corresponding spherical geometry solved using the same Hi-C data. This was perfomed to

understand any radiation damage differences that may occur in a flattened nucleus, a phenom-

enon that is observed during cell spreading when cells are plated in a 2D system [50]. As it is

common to plate cells in some irradiation experiments the substantial change in the damage

distribution within the nucleus may indicate differences in the expected radio-response

between 2D and 3D cell system experimental techniques. The possibility to evaluate the geo-

metric effects of nuclear shaping in attached 2D versus 3D cell systems may help discern exper-

imental variability observed across different techniques analysing the same endpoint [51].

There are further implications of this when we move towards modelling patient radio-

response, previous work has shown that there is improved predictive power of clinical efficacy

when using 3D over 2D in vitro systems [52]. This is clearly an issue as a large quantity of pre-

vious and continuing experimental radiobiological work are carried out in 2D cell systems,

here we are able to understand the differences in radio-response due to nuclear shape change

and open the possibility of translation factors to be derived.

The geometries produced are representative of a single cell but are derived from a highly

averaged population dataset. By enforcing the polymer model to arrange itself through a series

of movements we are able to use the Hi-C data as a guide to achieving realistic single-cell con-

formations, rather than positioning beads with no heuristic limitation to achieve the smallest

cost function. With the increased development in single-cell Hi-C [53] a development of the

G-NOME software would be to use data to perform single-cell conformation modelling. This

would allow a method of validation for using the current population-based method as a suit-

able approximation for single-cell conformations. However, the benefits of single-cell Hi-C

extend beyond simple validation, it may allow for the ability to describe different cell sub-

types, which includes cell-cycle specific states [20, 54]. The ability to discern cell-cycle specific

geometries is a pertinent goal in radiobiological modelling, as there is a well establish variation

in radiosensitivity at different cell cycle phases [55]. Leveraging differences in chromatin con-

formation along with alterations in the active repair pathways could be a viable method of

modelling these effects.

The current model is limited in terms of its genomic resolution, at present the size of each

bead is defined by topologically associated domains (TADs), which are used widely as discern-

ing DNA segments of self-interacting regions. There may be a benefit in trying to build models

at smaller genomic resolutions, but there should be caution in the decreased signal-to-noise

ratio and the possibility of mis-classifying significant contact points. Although, as the field of

Hi-C moves to increasingly finer resolutions, including the recent inception of Micro-C [56],

there may be opportunity to model sub-structures (e.g. nucleosome) of the genome. These

sub-structures may be especially important when attempting to model the more granular
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configuration of the DNA damage, along with the ability to model regions of heterochromatin

and euchromatin.

In order to accurately model differences in intrinsic radio-sensitivity between cell-types we

must evaluate the the characteristic differences, starting with DNA damage. We have shown

that there is differences in DNA damage that are geometry-driven and believe this is key to

understanding the effects of LET on relative biological effectiveness through the explicit

modelling of chromosome aberration probability. Furthermore, through examination of the

effects of LET and cluster radius leading to significant differences in simulated interchromo-

somal DSB clustering of different cell types (Fig 7), it is possible to use this information to

design experiments to evaluate DSB end motion, a subject that will drive chromosome aberra-

tion probability, but remains elusive with proposed DSB end motion being in the range of 70

[57], 100 [58] and 500 nm [59]. The related topic of chromatin dynamics following irradiation,

that has recently been shown to be cell-type specific [60], will also need to be examined to pre-

dict the downstream biological effects from the cell-type specific damage patterns. Finally, we

acknowledge that to fully encapsulate the radiobiological differences between cell-types we

must include descriptions of the characteristic variation that are omics-driven [61].

The combination of Hi-C data to inform geometric structures for in silico modelling of

radiation track structure and DNA damage has been shown to be feasible in this study.

Through leveraging the genomic element of the Hi-C data it is possible to enrich the descrip-

tions of radiation damage and quantify the overall damage distribution. This will be used in

subsequent models of DNA repair, where cell-type differences of proliferation rate, protein

expression and micro-environment can be encapsulated to further investigate the observed

variation in cellular radio-response. Furthermore, through this expansion into Hi-C modelling

for normal cells in an attempt to better understand normal tissue response, we can look

towards incorporating the alterations in genomic structure found in cancer cells to improve

our understanding of target response [62–64]. It is thought that this relationship will work

symbiotically, as radiobiological response is strongly dependent on geometry (e.g. transloca-

tions) [15] and can be used as an additional experimental technique to validate the Hi-C geom-

etries. Finally, though the use of radiobiological modelling there forms a new translational

pathway to how the improved geometric understanding of Hi-C could benefit cancer patients

at a clinical level.

Materials and methods

Preparation of Hi-C data

This introduced model has been designed to utilise the same input gtrack file format as previ-

ous 3D inference model “Chrom3D”, enabling previous protocol work [65] that outlines how

to analyse and process gtrack files to still be applicable for the G-NOME software. Further-

more, this also enables the ability to incorporate lamina-associated domains (LADs) data into

the optimisation objectives to promote areas of the genome which have higher interaction

with the nuclear lamina to the periphery of the solved geometry [66, 67].

Whilst the previous protocol work [65] should be referred to for a detailed explanation of

how to process a Hi-C dataset to get a gtrack file for subsequent G-NOME solving, we provide

a short overview here. The gtrack file is a line by line summary of the TADs identified within

the Hi-C data, it includes the chromosome identity, genomic start position, genomic end posi-

tion, unique ID, contacts and optional periphery status (binary). To generate this information

tools such as aidenlab’s juicer (https://github.com/aidenlab/juicer/) should be used to pre-pro-

cess the raw contact data into �.hic files. After which the Arrowhead algorithm should be used

to deduce contact domains and will provide the starting files for the protocol outlined by
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Paulsen et al [65]. These domains can then be examined at a intrachromosomal and interchro-

mosomal level, to establish TAD interaction counts ready for analysis and resulting in the crea-

tion of a BEDPE-format file. This process can take significant time and will depend on the

resolution of the Hi-C matrix. It is at this point to account for domains with centromeres and

unmappable regions to avoid artifacts in the statistical tests. The P-values and odds ratios are

calculated for all the contacts detailed in the BEDPE files using the non-central hypergeometric

(NCHG). The data is then filtered using both the calculated false discovery rate (FDR) and the

odds ratio. It is at this point that the data can be formatted in the gtrack file format, along with

the chance to aggregate corresponding Lamina-associated domain (LAD) data if required.

When using the protocol for generating the gtrack files, we ensured that variation in the

analysed intra-chromosomal (down to 5 kbp) and inter-chromosomal (100 kbp—1 Mbp)

interaction matrix gave no discernible difference in the geometric analysis when solving the

geometry at a TAD resolution (S12 Fig). All cell-type and variant geometries shown in the

results have been solved using the 50 kbp intra-chromosomal and 1 Mbp inter-chromsomal

matrix for the production of the gtrack file.

This study uses the Hi-C data published by Rao et al., [68] (GEO Accession GSE63525),

which has been used widely within the literature as an exemplar test dataset. However, the pro-

posed model is suitable for inferring 3D geometries from other Hi-C datasets.

Hi-C solver

The G-NOME software uses a Markov-Chain Monte Carlo (MCMC) polymer model, which

can be optimised through both the metropolis-hastings and simulated annealing algorithms.

The resultant geometry is based on a series of optimised objectives applied to polymer beads,

which represent a defined number of base pairs of DNA along a chromosome (TADs), being

arranged so that areas of strong contact probability are spatially proximal. In order to arrange

the geometry a series of iterations attempt several bead movement types at random, if the

movement results in an improved objective score the iteration can be accepted and the next

iteration may take place. Running through many iterations allows for the overall solved geom-

etry to be realised. The movement types are as follows:

1. Crankshaft—rotates a random number of beads around two fixed beads points.

2. Arm Rotation—from a random position along the chromosome rotate all beads to the end

or start of the the chromosome. The start or end is chosen by random.

3. Arm Wiggle—from a random position along the chromosome re-position (via a self

avoiding walk) beads to the end or start of the chromosome. The start or end is chosen by

random.

4. Translation—move the whole chromosome by a random x, y, z between 0 and 1um.

5. Rotation—rotate the whole chromosome by a random amount.

The G-NOME software developed is a re-implementation of the Chrom3D model [23], but

includes modifications to better interface with track-structure models of DNA damage [57,

69]. The resultant 3D structures from G-NOME have been compared with Chrom3D for

DNA-content spatial placement (S13 Fig) and the optimisation score it delivers (S14 Fig)

to ensure no major deviation between the models given for the same set-up. This improved

interfacing allows for geometric solving and DNA damage models to be coupled, resulting

in generation of unique cell geometries for every run of the DNA damage model. Further

differences between the introduced G-NOME software and Chrom3D include: change in the
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programming language to Python, improved compute efficiency resulting in faster solving

times (S15 Fig), the ability to optimise for non-spherical geometries (here we demonstrate

ellipsoid) and custom optimisation routines. Custom optimisation routines refers to the ability

to be able to dynamically alter optimisation constraints during a run time session. We believe

this gives us additional flexibility that may be required in future work with G-NOME and

radiobiological modelling.

As Hi-C data is the averaged result of a large cell population it becomes apparent that the

solution space for solving these geometries may contain many suitable solutions of chromo-

some conformation. This has been shown in several studies [23, 24] and is the underpinning

for the hypothesis of encapsulating the biological variation by using different solutions output-

ted from the model. Variation in the output arises from the Monte Carlo approach of using

different random seeding for the initial distribution of the chromosomes, since the initial dis-

tribution has a strong influence on the end result.

In total 1,000 geometries (200 geometries per group) have been calculated which include:

three cell types (IMR90—human fetal lung fibroblast, HMEC—human adult mammary epi-

thelial and GM12878—human B-lymphocyte), two cell shapes (spherical and ellipsoid) and

inclusion of LADs for the IMR90 cell line. All spherical cells were solved for the same target

nucleus size of 5 μm radius. The ellipsoid cells were solved for the target nucleus size of

1.0x11.8x11.8μm radii. All cells were modelled with the same amount of DNA content

(6Gbp) and as normal diploid human cells (46 chromosomes). All geometries have been

optimised with 2 million iterations of successful movements unless optimised solutions were

found before this or stated otherwise. All renderings of the 3D spatial chromatin arrange-

ment were made using the 3D visualisation tool Chimera [70] by loading the “�.cmm” files

created from the G-NOME software. All geometries were solved using additional nuclear

boundary constraints, which adds a cost based on if the beads were confined to the user-

defined nuclear boundary. The costs applied to these constraints are 0 if the bead is within

the cell nucleus and only occur cost on positioning outside of the nucleus based on the

euclidean distance from the nuclear boundary. This constraint can be toggled when using

the simulation run script provided through the flag “–ConstrainNucleus”. These additional

constraints were required as we wanted to preserve total volume across all cell geometries for

the subsequent Geant4 simulation.

DNA damage simulation

Details of the polymer beads, produced by G-NOME, are read into our DNA damage applica-

tion [57, 69]. Each bead is placed as a spherical geometry object in the Monte Carlo toolkit

Geant4 (geant4 10.5.1) [71], using the X, Y, Z and variable bead radius, within a bounding

nucleus volume. Simulation of cell nucleus irradiation is performed within Geant4, using the

default Geant4-DNA physics list [44]. Within Geant4 the track structure of a radiation source

is simulated as a series of interaction limited steps through a specified geometry, with each step

updating the energy and trajectory of the primary or secondary particle. For particle-induced

DNA damage, energy depositions occurring within beads are recorded. Two conditions are

applied to convert energy depositions into strand breaks. Firstly, a spatial sampling of 14.1% is

applied to the bead. Secondly, an energy range probability is applied, from 0 at 5 eV to 1 at

37.5 eV. Once passing both conditions an energy deposition is accepted as a strand break

and is randomly assigned to strand 1 or 2 of the double helix, with equal probability. The

chromosome of damage is directly assigned from the G-NOME bead. The position along the

chromosome is informed by the G-NOME bead. Since each bead contains a portion of the

chromosome a minimum and maximum base pair position is known, with the actual position
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of damage taken as a random point between the two. Following the simulation of all particles

required to deliver a dose the list of damages is analysed through a clustering algorithm. Dou-

ble Strand Breaks are formed by two or more strand breaks that are on opposite strands and

separated by 3.2 nm or less (equivalent to 10 bp). Strand breaks that don’t form a DSB are clas-

sified as Single-Strand Breaks.

The spatial sampling of 14.1% corresponds to a sensitive fraction of the bead and was deter-

mined to reproduce DSB yields seen in our previous work [57]. This fit is in good agreement

with other models [72, 73] which have been validated against experimental data. The energy-

based probability of damage induction was adapted from PARTRAC [73] and is based on

studies of DNA strand breakage after exposure to very low energy electrons [74].

For photon induced DNA damage, DSB induction is assumed to follow a Poisson distribu-

tion with an average of 25 DSBs/Gy. For each DSB the chromosome is chosen at random, with

probability weighted according to the chromosome size relative to total genome size. Similarly,

a bead within that chromosome is chosen randomly, with probability weighted according to

on bead size relative to the sum of all beads forming the chromosome. A random X, Y, Z

within the selected is bead is assigned to the DSB. All DNA damages are recorded in the Stan-

dard DNA Damage (SDD) format [40].

In this work, the G-NOME cell models are irradiated with 1 Gy of photons, protons (3

MeV—67 MeV), helium ions (4 MeV—80 MeV), or carbon ions (10 MeV—213 MeV). Ensur-

ing a range of particle type and track-averaged Linear Energy Transfer, with an overlap in LET

between the particles. A table of all particles, particle energies and calculated LET values are

given in the S1 Table. A reader for these geometries will be implemented in “TOPAS-nbio” to

further accessibility.

Statistical information

The statistical analysis used in Fig 7 was an adjusted P-value using the using the Benjamini-

Hochberg correction to control the false discovery rate (type I error). The P-values calculated

for adjustment are from a Kolmogorov–Smirnov test between different cell-type or variant

groups. The test was two-sided with the null hypothesis indicating that the two samples are

drawn from the same continuous distribution. The adjusted P-values was presented for all

cell-types and variants groups for a range of track averaged LET values and cluster radii. A

threshold of P < 0.05 was used to determine statistically significant differences between tested

samples. The Kolmogorov–Smirnov test was calculated using Python and the scipy (v1.4.1)

package. The Benjamini-Hochberg correction was calculated using Python and the statsmo-

dels (v0.12.0) package. All tests had 200 geometries in each group.

The Ripley-K function was calculated for the 3D distrubtion of polymer beads for each 3D

geometry produced by G-NOME. The calculation methodology follows the 3D implementa-

tion carried out by Jafari-Mamaghani et al [75]. The equation is detailed below:

KðCRÞ ¼ VNuc

Pn
i¼1

P
i6¼jI½Dði; jÞ � CR�
Vsn2

ð1Þ

where VNuc is the volume of the nucleus, CR is the cluster radius, n is the number of DSBs in

the nucleus, Vs the edge correction term is the fraction of overlapping volume of the CR vol-

ume and the VNuc and I is the indicator function which will be either 1 if the condition D(i, j)
� t is true or will be 0, D(i, j) is the euclidean distance from DSB i to DSB j.
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Supporting information

S1 Fig. DSB damage complexity. Average number of DSBs/Gy (filled symbols) and back-

bones per DSBs (empty symbols) for a range of LET values across different particle types.

Error bars are displayed as the standard error of the mean for 100 repeats.

(TIF)

S2 Fig. DSB yield variation across generated geometries. Yields of DSB per Gy of dose for

the each of the 200 geometries created. Results have been sorted from smallest to largest yields

to allow for easier interpretation. Different cell-types are shown as different line types with

each radiation quality presented as a different colour. Errors are the transparent area around

the line and are the standard error in the mean for 50 independent exposures per geometry.

(TIF)

S3 Fig. DSB yield distribution. Double-strand break yield histograms for 200 geometries of

each cell-type and variant.

(TIF)

S4 Fig. DSB yield chromosome distribution. Double-strand break per 1Gy of dose per DNA

basepair on each of the modelled 46 chromosomes for each cell-type and variant. Error bars

are displayed as the standard error of the mean for 200 geometries for each cell-type and vari-

ant with each geometry having 50 independent exposures.

(TIF)

S5 Fig. Spatial distribution of DNA DSB yields for different cell types. Dual axis plot—left

y-axis shows the histogram plot of the Normalised DSB frequency and right y-axis is the corre-

sponding average DSB density for the same x-axis bin per geometry. Both are given as a func-

tion of distance from the nucleus centre. The cell types are all solved for a spherical nucleus

and do not include LADs. The DSB frequency was normalised to the maximum number of

DSBs within any bin for a given cell type. DSB density is calculated as the average number of

DSBs per geometry (N = 200) within a bin divided by the volume (μm3) of the spherical shell

of the bin. Error bars in the DSB density are the standard error in the mean for all 200 geome-

tries for each cell type.

(TIF)

S6 Fig. Spatial distribution of DNA DSB yields for the addition of LADs. Dual axis plot—

left y-axis shows the histogram plot of the Normalised DSB frequency and right y-axis is the

corresponding average DSB density for the same x-axis bin per exposure. Both are given as a

function of distance from the nucleus centre. Comparison between IMR90 with and without

LADs constraints for a spherical nucleus. The DSB frequency was normalised to the maximum

number of DSBs within any bin for a given cell variant. DSB density is calculated as the average

number of DSBs per geometry (N = 200) within a bin divided by the volume (μm3) of the

spherical shell of the bin. Error bars in the DSB density are the standard error in the mean for

all 200 geometries for each cell variant.

(TIF)

S7 Fig. DSB clustering per Radiation Quality Plots. Double-strand break clustering as a

function of the cluster radius for all cell-types and variants. Error bars are displayed as the stan-

dard error of the mean for 200 geometries for each cell-type and variant with each geometry

having 50 independent exposures.

(TIF)
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S8 Fig. DSB Interchromosomal clustering per Radiation Quality Plots. Double-strand

break interchromosomal clustering as a function of the cluster radius for all cell-types and vari-

ants. Error bars are displayed as the standard error of the mean for 200 geometries for each

cell-type and variant with each geometry having 50 independent exposures.

(TIF)

S9 Fig. DSB Intrachromosomal clustering per Radiation Quality Plots. Double-strand

break intrachromosomal clustering as a function of the cluster radius for all cell-types and var-

iants. Error bars are displayed as the standard error of the mean for 200 geometries for each

cell-type and variant with each geometry having 50 independent exposures.

(TIF)

S10 Fig. DSB inter/intra clustering per Radiation Quality Plots. Double-strand break inter/

intra chromosomal clustering as a function of the cluster radius for all cell-types and variants.

(TIF)

S11 Fig. Statistical differences between interchromsomal bead clustering of different

cell lines. False discovery rate adjusted P-values from a 2-sided Kolmogorov-Smirnov test

on the interchromosomal bead clustering values for the different cell-types and variants.

Colour coding for adjusted P-values at varying thresholds: red (P > 0.05), purple (0.05 > P

> 0.01), yellow (0.01 > P > 0.001) and green (P < 0.001). In this case, distributions with

adjusted P-values < 0.05 will be considered as having significant statistical difference to

one another. Each of the tested distributions had 200 geometries per cell-type or variant

group.

(TIF)

S12 Fig. Nuclear positioning of beads at varying Hi-C contact resolutions. Bead positioning

between periphery and central locations for a range of different interchromosomal contact res-

olutions at the finest available intrachromosomal contact resolution. Each category consists of

200 geometries created from the corresponding gtrack file created from using different analysis

resolutions.

(TIF)

S13 Fig. DNA content position model comparison. Box plots of the DNA content positioned

either in the peripheral half or central half of the cell nucleus volume. These results are for 50

geometries from G-NOME and 50 geometries from Chrom3D (v1.0.2). In both models the

same input IMR90 noLADs gtrack file was optimised for 1 million iterations, 5-micron nuclear

radius and 0.15 occupancy volume.

(TIF)

S14 Fig. Proximity score model comparison. Box plots of the proximity scores which is the

average Euclidean distance between TADs which have a constraint to be proximal other TADs

(lower value indicates a better optimisation of the contact constraints). To put these differences

into perspective for a randomly distributed geometry where the proximity score is approxi-

mately 12. These results are for 50 geometries from G-NOME and 50 geometries from

Chrom3D (v1.0.2). In both models the same input IMR90 noLADs gtrack file was optimised

for 1 million iterations, 5-micron nuclear radius and 0.15 occupancy volume.

(TIF)

S15 Fig. Nominal evaluation of speed performance. Timing performance for a nominal

single IMR90 spherical cell 3D geometry generation using both G-NOME and Chrom3D

(v1.0.2). In this case for 2 million iterations (the number used for the evaluation of different
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cell types) is 23.5 hours in Chrom3D and 7.6 hours in G-NOME.

(TIF)

S1 Table. Incident particle range. Examination of particle range travelling through 20μm of

water. Simulation was carried out for each energy with the furthest depth of each particle

scored and averaged for 100 single-particle transversals. Particles which transverse beyond the

20μm of water are simply signified as having ranges beyond 20μm.

(TIF)

S1 File. Cell type interchromosomal clustering. Interactive 3D plot of interchromosomal

DSB clustering for a range of cluster radii and LET for the three cell types: IMR90, GM12878

and HMEC.

(HTML)

S2 File. Cell type intrachromosomal clustering. Interactive 3D plot of intrachromosomal

DSB clustering for a range of cluster radii and LET for the three cell types: IMR90, GM12878

and HMEC.

(HTML)

S3 File. Cell type inter/intra ratio clustering. Interactive 3D plot of the ratio of interchromo-

somal/intrachromosomal DSB clustering for a range of cluster radii and LET for the three cell

types: IMR90, GM12878 and HMEC.

(HTML)

S4 File. Cell type clustering. Interactive 3D plot of the total DSB clustering for a range of clus-

ter radii and LET for the three cell types: IMR90, GM12878 and HMEC.

(HTML)

S5 File. Cell variation interchromosomal clustering. Interactive 3D plot of interchromo-

somal DSB clustering for a range of cluster radii and LET for the three IMR90 cell variants:

IMR90, IMR90 with LADs and IMR90 ellipsoid.

(HTML)

S6 File. Cell variation intrachromosomal clustering. Interactive 3D plot of intrachromoso-

mal DSB clustering for a range of cluster radii and LET for the three IMR90 cell variants:

IMR90, IMR90 with LADs and IMR90 ellipsoid.

(HTML)

S7 File. Cell variation inter/intra ratio clustering. Interactive 3D plot of the ratio of inter-

chromosomal/intrachromosomal DSB clustering for a range of cluster radii and LET for the

three IMR90 cell variants: IMR90, IMR90 with LADs and IMR90 ellipsoid.

(HTML)

S8 File. Cell variation clustering. Interactive 3D plot of total DSB clustering for a range of

cluster radii and LET for the three IMR90 cell variants: IMR90, IMR90 with LADs and IMR90

ellipsoid.

(HTML)
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2. Zhang Y, Máté G, Müller P, Hillebrandt S, Krufczik M, Bach M, et al. Radiation Induced Chromatin Con-

formation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph

Theory. PLOS ONE. 2015; 10(6):e0128555. https://doi.org/10.1371/journal.pone.0128555 PMID:

26042422

3. Roti JLR, Wright WD, Taylor YC. DNA Loop Structure and Radiation Response. Advances in Radiation

Biology. 1993; 17(Cell541988):227–259.

4. Shukron O, Seeber A, Amitai A, Holcman D. Advances Using Single-Particle Trajectories to Recon-

struct Chromatin Organization and Dynamics. Trends in Genetics. 2019; 35(9):685–705. https://doi.org/

10.1016/j.tig.2019.06.007

5. Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, et al. Chromatin Compaction Protects

Genomic DNA from Radiation Damage. PLoS ONE. 2013; 8(10):e75622. https://doi.org/10.1371/

journal.pone.0075622 PMID: 24130727

6. Schneider U, Vasi F, Besserer J. The Impact of the Geometrical Structure of the DNA on Parameters of

the Track-Event Theory for Radiation Induced Cell Kill. PLOS ONE. 2016; 11(10):e0164929. https://doi.

org/10.1371/journal.pone.0164929

7. Dugle DL, Gillespie CJ, Chapman JD. DNA strand breaks, repair, and survival in x-irradiated mamma-

lian cells. Proceedings of the National Academy of Sciences. 1976; 73(3):809–812. https://doi.org/10.

1073/pnas.73.3.809

8. Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, et al. Modelling of Cellular Survival Following Radiation-

Induced DNA Double-Strand Breaks. Scientific Reports. 2018; 8(1):16202. https://doi.org/10.1038/

s41598-018-34159-3 PMID: 30385845

PLOS COMPUTATIONAL BIOLOGY Hi-C implementation of genome structure for in radiobiological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008476 December 16, 2020 22 / 26

https://doi.org/10.1371/journal.pone.0128555
http://www.ncbi.nlm.nih.gov/pubmed/26042422
https://doi.org/10.1016/j.tig.2019.06.007
https://doi.org/10.1016/j.tig.2019.06.007
https://doi.org/10.1371/journal.pone.0075622
https://doi.org/10.1371/journal.pone.0075622
http://www.ncbi.nlm.nih.gov/pubmed/24130727
https://doi.org/10.1371/journal.pone.0164929
https://doi.org/10.1371/journal.pone.0164929
https://doi.org/10.1073/pnas.73.3.809
https://doi.org/10.1073/pnas.73.3.809
https://doi.org/10.1038/s41598-018-34159-3
https://doi.org/10.1038/s41598-018-34159-3
http://www.ncbi.nlm.nih.gov/pubmed/30385845
https://doi.org/10.1371/journal.pcbi.1008476


9. Savage JR. Classification and relationships of induced chromosomal structual changes. Journal of

Medical Genetics. 1976; 13(2):103. https://doi.org/10.1136/jmg.13.2.103

10. Sachs RK, Chen AM, Brenner DJ. Review: Proximity effects in the production of chromosome aberra-

tions by ionizing radiation. International Journal of Radiation Biology. 2009; 71(1):1–19.

11. McMahon SJ, Schuemann J, Paganetti H, Prise KM. Mechanistic Modelling of DNA Repair and Cellular

Survival Following Radiation-Induced DNA Damage. Scientific Reports. 2016; 6(1):33290. https://doi.

org/10.1038/srep33290

12. Warmenhoven JW, Henthorn NT, Ingram SP, Chadwick AL, Sotiropoulos M, Korabel N, et al. Insights

into the non-homologous end joining pathway and double strand break end mobility provided by mecha-

nistic in silico modelling. DNA Repair. 2020; 85:102743. https://doi.org/10.1016/j.dnarep.2019.102743

PMID: 31759308

13. Ballarini F. From DNA Radiation Damage to Cell Death: Theoretical Approaches. Journal of Nucleic

Acids. 2010; 2010:350608.

14. Sia J, Szmyd R, Hau E, Gee HE. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A

Primer. Frontiers in Cell and Developmental Biology. 2020; 8:41. https://doi.org/10.3389/fcell.2020.

00041

15. Branco MR, Pombo A. Intermingling of Chromosome Territories in Interphase Suggests Role in Trans-

locations and Transcription-Dependent Associations. PLoS Biology. 2006; 4(5):e138. https://doi.org/10.

1371/journal.pbio.0040138

16. Fraser J, Williamson I, Bickmore WA, Dostie J. An Overview of Genome Organization and How We Got

There: from FISH to Hi-C. Microbiology and Molecular Biology Reviews. 2015; 79(3):347–372. https://

doi.org/10.1128/MMBR.00006-15

17. Lieberman-Aiden E, Berkum NLv, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive

Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science.

2009; 326(5950):289–293. https://doi.org/10.1126/science.1181369 PMID: 19815776

18. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-

to-cell variability in chromosome structure. Nature. 2013; 502(7469):59. https://doi.org/10.1038/

nature12593 PMID: 24067610

19. Chen H, Chen J, Muir LA, Ronquist S, Meixner W, Ljungman M, et al. Functional organization of the

human 4D Nucleome. Proceedings of the National Academy of Sciences. 2015; 112(26):8002–8007.

https://doi.org/10.1073/pnas.1505822112 PMID: 26080430

20. Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y, et al. Cell-cycle dynamics of chromo-

somal organization at single-cell resolution. Nature. 2017; 547(7661):61. https://doi.org/10.1038/

nature23001 PMID: 28682332

21. Bonev B, Cavalli G. Organization and function of the 3D genome. Nature Reviews Genetics. 2016; 17

(11).

22. Eagen KP. Principles of Chromosome Architecture Revealed by Hi-C. Trends in Biochemical Sciences.

2018; 43(Science 184 1974). https://doi.org/10.1016/j.tibs.2018.03.006 PMID: 29685368

23. Paulsen J, Sekelja M, Oldenburg AR, Barateau A, Briand N, Delbarre E, et al. Chrom3D: three-dimen-

sional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biology. 2017; 18

(1):21. https://doi.org/10.1186/s13059-016-1146-2 PMID: 28137286

24. Rieber L, Mahony S. miniMDS: 3D structural inference from high-resolution Hi-C data. bioRxiv. 2017; p.

122473.

25. Abbas A, He X, Niu J, Zhou B, Zhu G, Ma T, et al. Integrating Hi-C and FISH data for modeling of the 3D

organization of chromosomes. Nature Communications. 2019; 10(1):2049. https://doi.org/10.1038/

s41467-019-10005-6 PMID: 31053705

26. Caudai C, Salerno E, Zoppe M, Merelli I, Tonazzini A. ChromStruct 4: A Python Code to Estimate the

Chromatin Structure from Hi-C Data. IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics. 2018; PP(99):1–1.

27. Caudai C, Salerno E, Zoppe M, Tonazzini A. Estimation of the Spatial Chromatin Structure Based on a

Multiresolution Bead-Chain Model. IEEE/ACM Transactions on Computational Biology and Bioinformat-

ics. 2018; PP(99):1–1.

28. Oluwadare O, Zhang Y, Cheng J. A maximum likelihood algorithm for reconstructing 3D structures of

human chromosomes from chromosomal contact data. BMC Genomics. 2018; 19(1):161. https://doi.

org/10.1186/s12864-018-4546-8

29. Djekidel MN, Wang M, Zhang MQ, Gao J. HiC-3DViewer: a new tool to visualize Hi-C data in 3D space.

Quantitative Biology. 2017; 5(2):183–190. https://doi.org/10.1007/s40484-017-0091-8

30. Kellerer AM, Rossi HH. A generalized formulation of dual radiation action. Radiation research. 1978;

178(2). https://doi.org/10.1667/RRAV17.1

PLOS COMPUTATIONAL BIOLOGY Hi-C implementation of genome structure for in radiobiological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008476 December 16, 2020 23 / 26

https://doi.org/10.1136/jmg.13.2.103
https://doi.org/10.1038/srep33290
https://doi.org/10.1038/srep33290
https://doi.org/10.1016/j.dnarep.2019.102743
http://www.ncbi.nlm.nih.gov/pubmed/31759308
https://doi.org/10.3389/fcell.2020.00041
https://doi.org/10.3389/fcell.2020.00041
https://doi.org/10.1371/journal.pbio.0040138
https://doi.org/10.1371/journal.pbio.0040138
https://doi.org/10.1128/MMBR.00006-15
https://doi.org/10.1128/MMBR.00006-15
https://doi.org/10.1126/science.1181369
http://www.ncbi.nlm.nih.gov/pubmed/19815776
https://doi.org/10.1038/nature12593
https://doi.org/10.1038/nature12593
http://www.ncbi.nlm.nih.gov/pubmed/24067610
https://doi.org/10.1073/pnas.1505822112
http://www.ncbi.nlm.nih.gov/pubmed/26080430
https://doi.org/10.1038/nature23001
https://doi.org/10.1038/nature23001
http://www.ncbi.nlm.nih.gov/pubmed/28682332
https://doi.org/10.1016/j.tibs.2018.03.006
http://www.ncbi.nlm.nih.gov/pubmed/29685368
https://doi.org/10.1186/s13059-016-1146-2
http://www.ncbi.nlm.nih.gov/pubmed/28137286
https://doi.org/10.1038/s41467-019-10005-6
https://doi.org/10.1038/s41467-019-10005-6
http://www.ncbi.nlm.nih.gov/pubmed/31053705
https://doi.org/10.1186/s12864-018-4546-8
https://doi.org/10.1186/s12864-018-4546-8
https://doi.org/10.1007/s40484-017-0091-8
https://doi.org/10.1667/RRAV17.1
https://doi.org/10.1371/journal.pcbi.1008476


31. Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to

therapeutic irradiation. International Journal of Radiation Oncology*Biology*Physics. 1991; 21(1):109–

122. https://doi.org/10.1016/0360-3016(91)90171-Y PMID: 2032882

32. Mesbahi A, Oladghaffari M. An Overview on the Clinical Application of Radiobiological Modeling in Radi-

ation Therapy of Cancer. International Journal of Radiology & Radiation Therapy. 2017; 2(1).

33. Steel GG, McMillan TJ, Peacock JH. The 5Rs of Radiobiology. International Journal of Radiation Biol-

ogy. 1989; 56(6):1045–1048. https://doi.org/10.1080/09553008914552491

34. Henthorn N, Warmenhoven J, Sotiropoulos M, Mackay R, Kirkby K, Merchant M. Nanodosimetric Simu-

lation of Direct Ion-Induced DNA Damage Using Different Chromatin Geometry Models. Radiation

Research. 2017; 188(6). https://doi.org/10.1667/RR14755.1 PMID: 28792846

35. McNamara A, Geng C, Turner R, Mendez J, Perl J, Held K, et al. Validation of the radiobiology toolkit

TOPAS-nBio in simple DNA geometries. Physica Medica. 2017; 33:207–215. https://doi.org/10.1016/j.

ejmp.2016.12.010 PMID: 28017738

36. Friedland W, Jacob P, Kundrát P. Mechanistic simulation of radiation damage to DNA and its repair: on

the track towards systems radiation biology modelling. Radiation protection dosimetry. 2010; 143(2-

4):542–8.

37. Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in

the biophysical Monte Carlo simulation code PARTRAC. Mutation Research/Fundamental and Molecu-

lar Mechanisms of Mutagenesis. 2011; 711(1-2):28–40. https://doi.org/10.1016/j.mrfmmm.2011.01.003

38. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a

function of biological endpoint, dose, and linear energy transfer. Physics in Medicine and Biology. 2014;

59(22):R419–R472. https://doi.org/10.1088/0031-9155/59/22/R419

39. Underwood T, Paganetti H. Variable Proton Relative Biological Effectiveness: How Do We Move For-

ward? International Journal of Radiation Oncology*Biology*Physics. 2016; 95(1):56–58.

40. Schuemann J, McNamara AL, Warmenhoven JW, Henthorn NT, Kirkby K, Merchant MJ, et al. A New

Standard DNA Damage (SDD) Data Format. Radiation Research. 2018;. https://doi.org/10.1667/

RR15209.1 PMID: 30407901

41. Ingram SP, Warmenhoven JW, Henthorn NT, Smith EAK, Chadwick AL, Burnet NG, et al. Mechanistic

modelling supports entwined rather than exclusively competitive DNA double-strand break repair path-

way. Scientific Reports. 2019; 9(1):6359. https://doi.org/10.1038/s41598-019-42901-8 PMID:

31015540

42. McMahon SJ, McNamara AL, Schuemann J, Paganetti H, Prise KM. A general mechanistic model

enables predictions of the biological effectiveness of different qualities of radiation. Scientific Reports.

2017; 7(1):10790. https://doi.org/10.1038/s41598-017-10820-1

43. Friedland W, Jacob P, Kundrát P. Stochastic Simulation of DNA Double-Strand Break Repair by Non-

homologous End Joining Based on Track Structure Calculations. Radiation Research. 2010; 181

(6):677–688.

44. INCERTI S, BALDACCHINO G, BERNAL M, CAPRA R, CHAMPION C, FRANCIS Z, et al. THE

GEANT4-DNA PROJECT. International Journal of Modeling, Simulation, and Scientific Computing.

2010; 01(02):157–178. https://doi.org/10.1142/S1793962310000122

45. Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, et al. TOPAS-nBio: An

Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiation

research. 2019; 191(2):125. https://doi.org/10.1667/RR15226.1 PMID: 30609382

46. Wu H, George K, Kawata T, Willingham V, Cucinotta FA. Comparison of F Ratios Generated from Inter-

phase and Metaphase Chromosome Damage Induced by High Doses of Low- and High-LET Radiation.

Radiation Research. 2001; 155(1):57–62. https://doi.org/10.1667/0033-7587(2001)155%5B0057:

COFRGF%5D2.0.CO;2

47. Cornforth M, Shuryak I, Loucas B. Lethal and nonlethal chromosome aberrations by gamma rays and

heavy ions: a cytogenetic perspective on dose fractionation in hadron radiotherapy. Translational Can-

cer Research. 2017; 6(S5):S769–S778. https://doi.org/10.21037/tcr.2017.05.16

48. Edens LJ, White KH, Jevtic P, Li X, Levy DL. Nuclear size regulation: from single cells to development

and disease. Trends in Cell Biology. 2013; 23(4):151–159. https://doi.org/10.1016/j.tcb.2012.11.004

49. Gillooly JF, Hein A, Damiani R. Nuclear DNA Content Varies with Cell Size across Human Cell Types.

Cold Spring Harbor Perspectives in Biology. 2015; 7(7):a019091. https://doi.org/10.1101/cshperspect.

a019091

50. Li Y, Lovett D, Zhang Q, Neelam S, Kuchibhotla R, Zhu R, et al. Moving Cell Boundaries Drive Nuclear

Shaping during Cell Spreading. Biophysical Journal. 2015; 109(4):670–686. https://doi.org/10.1016/j.

bpj.2015.07.006 PMID: 26287620

PLOS COMPUTATIONAL BIOLOGY Hi-C implementation of genome structure for in radiobiological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008476 December 16, 2020 24 / 26

https://doi.org/10.1016/0360-3016(91)90171-Y
http://www.ncbi.nlm.nih.gov/pubmed/2032882
https://doi.org/10.1080/09553008914552491
https://doi.org/10.1667/RR14755.1
http://www.ncbi.nlm.nih.gov/pubmed/28792846
https://doi.org/10.1016/j.ejmp.2016.12.010
https://doi.org/10.1016/j.ejmp.2016.12.010
http://www.ncbi.nlm.nih.gov/pubmed/28017738
https://doi.org/10.1016/j.mrfmmm.2011.01.003
https://doi.org/10.1088/0031-9155/59/22/R419
https://doi.org/10.1667/RR15209.1
https://doi.org/10.1667/RR15209.1
http://www.ncbi.nlm.nih.gov/pubmed/30407901
https://doi.org/10.1038/s41598-019-42901-8
http://www.ncbi.nlm.nih.gov/pubmed/31015540
https://doi.org/10.1038/s41598-017-10820-1
https://doi.org/10.1142/S1793962310000122
https://doi.org/10.1667/RR15226.1
http://www.ncbi.nlm.nih.gov/pubmed/30609382
https://doi.org/10.1667/0033-7587(2001)155%5B0057:COFRGF%5D2.0.CO;2
https://doi.org/10.1667/0033-7587(2001)155%5B0057:COFRGF%5D2.0.CO;2
https://doi.org/10.21037/tcr.2017.05.16
https://doi.org/10.1016/j.tcb.2012.11.004
https://doi.org/10.1101/cshperspect.a019091
https://doi.org/10.1101/cshperspect.a019091
https://doi.org/10.1016/j.bpj.2015.07.006
https://doi.org/10.1016/j.bpj.2015.07.006
http://www.ncbi.nlm.nih.gov/pubmed/26287620
https://doi.org/10.1371/journal.pcbi.1008476


51. Bodgi L, Bahmad HF, Araji T, Choboq JA, Bou-Gharios J, Cheaito K, et al. Assessing Radiosensitivity

of Bladder Cancer in vitro: A 2D vs. 3D Approach. Frontiers in Oncology. 2019; 9:153. https://doi.org/

10.3389/fonc.2019.00153 PMID: 30941305

52. Gomez-Roman N, Stevenson K, Gilmour L, Hamilton G, Chalmers AJ. A novel 3D human glioblastoma

cell culture system for modeling drug and radiation responses. Neuro-Oncology. 2017; 19(2):229–241.

53. Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, et al. 3D structures of individual mammalian

genomes studied by single-cell Hi-C. Nature. 2017; 544(7648):59–64. https://doi.org/10.1038/

nature21429 PMID: 28289288

54. Ramani V, Deng X, Qiu R, Lee C, Disteche CM, Noble WS, et al. Sci-Hi-C: a single-cell Hi-C method for

mapping 3D genome organization in large number of single cells. Methods. 2019; 170:61–68. https://

doi.org/10.1016/j.ymeth.2019.09.012 PMID: 31536770

55. Hufnagl A, Herr L, Friedrich T, Durante M, Taucher-Scholz G, Scholz M. The link between cell-cycle

dependent radiosensitivity and repair pathways: A model based on the local, sister-chromatid confor-

mation dependent switch between NHEJ and HR. DNA Repair. 2015; 27:28–39. https://doi.org/10.

1016/j.dnarep.2015.01.002

56. Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh THS, et al. Ultrastructural Details

of Mammalian Chromosome Architecture. Molecular Cell. 2020;. https://doi.org/10.1016/j.molcel.2020.

03.003 PMID: 32213324

57. Henthorn N, Warmenhoven J, Sotiropoulos M, Mackay R, Kirkby N, Kirkby K, et al. In Silico Non-Homol-

ogous End Joining Following Ion Induced DNA Double Strand Breaks Predicts That Repair Fidelity

Depends on Break Density. Scientific Reports. 2018; 8(1):2654. https://doi.org/10.1038/s41598-018-

21111-8 PMID: 29422642

58. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, et al. Positional stability of single

double-strand breaks in mammalian cells. Nature Cell Biology. 2007; 9(6):675–682. https://doi.org/10.

1038/ncb1591 PMID: 17486118

59. Lucas J, Zhang Y, Dudko O, Murre C. 3D Trajectories Adopted by Coding and Regulatory DNA Ele-

ments: First-Passage Times for Genomic Interactions. Cell. 2014; 158(2):339–352. https://doi.org/10.

1016/j.cell.2014.05.036

60. Sanders JT, Freeman TF, Xu Y, Golloshi R, Stallard MA, Martin RS, et al. Radiation-Induced DNA Dam-

age and Repair Effects on 3D Genome Organization. bioRxiv. 2019; p. 740704.

61. Yard BD, Adams DJ, Chie EK, Tamayo P, Battaglia JS, Gopal P, et al. A genetic basis for the variation

in the vulnerability of cancer to DNA damage. Nature Communications. 2016; 7(1):11428. https://doi.

org/10.1038/ncomms11428 PMID: 27109210

62. Taberlay PC, Achinger-Kawecka J, Lun ATL, Buske FA, Sabir K, Gould CM, et al. Three-dimensional

disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alter-

ations. Genome Research. 2016; 26(6):719–731. https://doi.org/10.1101/gr.201517.115 PMID:

27053337

63. Jia R, Chai P, Zhang H, Fan X. Novel insights into chromosomal conformations in cancer. Molecular

Cancer. 2017; 16(1):173. https://doi.org/10.1186/s12943-017-0741-5

64. Dı́az N, Kruse K, Erdmann T, Staiger AM, Ott G, Lenz G, et al. Chromatin conformation analysis of pri-

mary patient tissue using a low input Hi-C method. Nature Communications. 2018; 9(1):4938. https://

doi.org/10.1038/s41467-018-06961-0 PMID: 30498195

65. Paulsen J, Ali TML, Collas P. Computational 3D genome modeling using Chrom3D. Nature Protocols.

2018; 13(5):1137. https://doi.org/10.1038/nprot.2018.009

66. Steensel Bv, Belmont AS. Lamina-Associated Domains: Links with Chromosome Architecture, Hetero-

chromatin, and Gene Repression. Cell. 2017; 169(5):780–791. https://doi.org/10.1016/j.cell.2017.04.

022

67. Lund E, Oldenburg AR, Collas P. Enriched domain detector: a program for detection of wide genomic

enrichment domains robust against local variations. Nucleic Acids Research. 2014; 42(11):e92–e92.

https://doi.org/10.1093/nar/gku324

68. Rao SP, Huntley M, Durand N, Stamenova E, Bochkov I, Robinson J, et al. A 3D Map of the Human

Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7):1665–

1680. https://doi.org/10.1016/j.cell.2014.11.021 PMID: 25497547

69. Henthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, et al. Clini-

cally relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC

Advances. 2019; 9(12):6845–6858. https://doi.org/10.1039/C8RA10168J

70. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—A

visualization system for exploratory research and analysis. Journal of Computational Chemistry. 2004;

25(13):1605–1612. https://doi.org/10.1002/jcc.20084 PMID: 15264254

PLOS COMPUTATIONAL BIOLOGY Hi-C implementation of genome structure for in radiobiological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008476 December 16, 2020 25 / 26

https://doi.org/10.3389/fonc.2019.00153
https://doi.org/10.3389/fonc.2019.00153
http://www.ncbi.nlm.nih.gov/pubmed/30941305
https://doi.org/10.1038/nature21429
https://doi.org/10.1038/nature21429
http://www.ncbi.nlm.nih.gov/pubmed/28289288
https://doi.org/10.1016/j.ymeth.2019.09.012
https://doi.org/10.1016/j.ymeth.2019.09.012
http://www.ncbi.nlm.nih.gov/pubmed/31536770
https://doi.org/10.1016/j.dnarep.2015.01.002
https://doi.org/10.1016/j.dnarep.2015.01.002
https://doi.org/10.1016/j.molcel.2020.03.003
https://doi.org/10.1016/j.molcel.2020.03.003
http://www.ncbi.nlm.nih.gov/pubmed/32213324
https://doi.org/10.1038/s41598-018-21111-8
https://doi.org/10.1038/s41598-018-21111-8
http://www.ncbi.nlm.nih.gov/pubmed/29422642
https://doi.org/10.1038/ncb1591
https://doi.org/10.1038/ncb1591
http://www.ncbi.nlm.nih.gov/pubmed/17486118
https://doi.org/10.1016/j.cell.2014.05.036
https://doi.org/10.1016/j.cell.2014.05.036
https://doi.org/10.1038/ncomms11428
https://doi.org/10.1038/ncomms11428
http://www.ncbi.nlm.nih.gov/pubmed/27109210
https://doi.org/10.1101/gr.201517.115
http://www.ncbi.nlm.nih.gov/pubmed/27053337
https://doi.org/10.1186/s12943-017-0741-5
https://doi.org/10.1038/s41467-018-06961-0
https://doi.org/10.1038/s41467-018-06961-0
http://www.ncbi.nlm.nih.gov/pubmed/30498195
https://doi.org/10.1038/nprot.2018.009
https://doi.org/10.1016/j.cell.2017.04.022
https://doi.org/10.1016/j.cell.2017.04.022
https://doi.org/10.1093/nar/gku324
https://doi.org/10.1016/j.cell.2014.11.021
http://www.ncbi.nlm.nih.gov/pubmed/25497547
https://doi.org/10.1039/C8RA10168J
https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1371/journal.pcbi.1008476


71. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment. 2003; 506(3):250–303. https://doi.org/10.1016/S0168-9002(03)

01368-8

72. Meylan S, Incerti S, Karamitros M, Tang N, Bueno M, Clairand I, et al. Simulation of early DNA damage

after the irradiation of a fibroblast cell nucleus using Geant4-DNA. Scientific Reports. 2017; 7(1):11923.

https://doi.org/10.1038/s41598-017-11851-4 PMID: 28931851

73. Friedland W, Jacob P, Bernhardt P, Paretzke HG, Dingfelder M. Simulation of DNA damage after proton

irradiation. Radiation research. 2003; 159(3):401–10. https://doi.org/10.1667/0033-7587(2003)159%

5B0401:SODDAP%5D2.0.CO;2

74. Sanche L. Low-Energy Electron Damage to DNA and its Basic Constituents. Physica Scripta. 2003; 68

(5):C108–C112. https://doi.org/10.1238/Physica.Regular.068a0C108

75. Jafari-Mamaghani M, Andersson M, Krieger P. Spatial Point Pattern Analysis of Neurons Using Ripley’s

K-Function in 3D. Frontiers in Neuroinformatics. 2010; 4:9.

PLOS COMPUTATIONAL BIOLOGY Hi-C implementation of genome structure for in radiobiological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008476 December 16, 2020 26 / 26

https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1038/s41598-017-11851-4
http://www.ncbi.nlm.nih.gov/pubmed/28931851
https://doi.org/10.1667/0033-7587(2003)159%5B0401:SODDAP%5D2.0.CO;2
https://doi.org/10.1667/0033-7587(2003)159%5B0401:SODDAP%5D2.0.CO;2
https://doi.org/10.1238/Physica.Regular.068a0C108
https://doi.org/10.1371/journal.pcbi.1008476

