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With the advancement of second generation sequencing techniques, our ability to detect and quantify RNA editing on a
global scale has been vastly improved. As a result, RNA editing is now being studied under a growing number of biological
conditions so that its biochemical mechanisms and functional roles can be further understood. However, a major barrier
that prevents RNA editing from being a routine RNA-seq analysis, similar to gene expression and splicing analysis, for
example, is the lack of user-friendly and effective computational tools. Based on years of experience of analyzing RNA
editing using diverse RNA-seq datasets, we have developed a software tool, RED-ML: RNA Editing Detection based on
Machine learning (pronounced as “red ML"). The input to RED-ML can be as simple as a single BAM file, while it can also
take advantage of matched genomic variant information when available. The output not only contains detected RNA
editing sites, but also a confidence score to facilitate downstream filtering. We have carefully designed validation
experiments and performed extensive comparison and analysis to show the efficiency and effectiveness of RED-ML under
different conditions, and it can accurately detect novel RNA editing sites without relying on curated RNA editing databases.
We have also made this tool freely available via GitHub <https://github.com/BGIRED/RED-ML>. We have developed a highly
accurate, speedy and general-purpose tool for RNA editing detection using RNA-seq data. With the availability of RED-ML, it
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is now possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe this can greatly benefit the
RNA editing research community and has profound impact to accelerate our understanding of this intriguing

posttranscriptional modification process.
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RNA editing provides a dynamic and flexible means to alter the
sequence of RNA transcripts during development and in a cell-
type specific manner. Since discovered almost 30 years ago [1,
2], the biological importance of RNA editing, in particular adeno-
sine to inosine (A-to-I) editing which is the most prevalent type
in animals, has been well established [3-8]. Being a layer of post-
transcriptional modification, it could increase the proteomic di-
versity of mRNA transcripts, affect transcript stability and lo-
calization, interact with other primary RNA processing steps
such as splicing and polyadenylation, impact the biogenesis and
functions of small RNAs such as microRNA and long noncoding
RNA, and regulate gene expression. When misregulated, it con-
tributes to various diseases [9, 10], including neurological disor-
ders [11, 12] and cancer [13-16]. However, in spite of some well-
studied examples, there is still much to be learned about the
regulation and function of RNA editing in general.

In the last few years, large-scale, genome-wide analyses of
RNA editing finally became feasible with the availability of high-
throughput RNA sequencing [17, 18]. Even so, technical limita-
tions and computational challenges have made this task diffi-
cult, especially at the beginning [19]. Several groups have since
developed techniques to overcome many of the early difficul-
ties with considerable success [20-24]. Nonetheless, the detec-
tion and quantification of RNA editing are still mostly restricted
to a few specialized labs, partly due to the high demand of do-
main specific knowledge and skills to apply these methods ef-
fectively, as well as various usability issues of previous methods.
A common theme of many previous RNA editing detection (RED)
methods, including our own [17, 25], is to apply a series of care-
fully tuned filters to combat different types of errors affecting
RED, such as sequencing artifacts, mapping errors, contamina-
tion from genomic variants, etc., in addition to the possible use
of a second read alignment program [26]. While highly effec-
tive, these hard filters are difficult to adjust, tend to work well
only under specific conditions, and cannot be easily modified to
achieve different trade-offs between sensitivity and specificity.

Envisioning that deep, high-throughput RNA sequencing will
keep acting as a driving force of RNA editing research, we have
developed a fast, high performance, and user-friendly RED tool
based on machine learning (ML) to better serve the community
and advance the field. Our new tool RED-ML (RNA Editing De-
tection based on Machine Learning) can perform genome-wide
RED based on human RNA-seq data alone, can take advantage
of matching DNA-seq data if available, and integrates well with
other common RNA-seq data analysis steps. By adopting ML
principles [27], our new method can automatically and optimally
combine different sources of information to detect RNA editing
sites with adjustable confidence levels in a robust manner, and
comes as a computationally efficient, all-in-one software pack-
age. To facilitate training and testing of our ML model, we have
also carefully designed high-throughput RED validation exper-
iments. In the remainder of this paper, we will first describe
the design and components of our method, followed by com-
parisons and detailed analyses to verify its high performance,
before concluding the paper with a discussion on further im-
provements and future directions.

A flow chart of our RED pipeline using RED-ML is shown in Fig.
la. The input to RED-ML is a sorted BAM file. Based on this sorted
BAM file, RED-ML will extract candidate RNA editing sites and
their corresponding features, with optional filtering if individual
genotype information is available, then apply a logistic regres-
sion (LR) classifier to detect true RNA editing sites with an asso-
ciated confidence score. Below we provide further details about
the features used by RED-ML and the construction of the LR
classifier.

There are three broad classes of features used by RED-ML, based
on insights obtained from previous hard filtering approaches,
our own experience of tuning these filters, and current under-
standing of RNA editing mechanism. The first class is basic read
features, including the number of supporting reads of a candi-
date site and the putative editing frequency. The second class of
features is related to possible sequencing artifacts and misalign-
ments, including mapping qualities of the supporting reads, the
relative position of the candidate site in the mapped reads, indi-
cation of strand bias, whether the candidate site falls into simple
repeat regions, etc. The third class is based on known properties
of RNA editing, such as the editing type (whether it is A-to-I),
whether the candidate site is in an Alu region, and its sequence
context. Note that while the first two classes of features could
be directly used in hard filtering, the third class cannot, since
it is inappropriate to make hard decisions based on them, that
is, they cannot be used as criteria to directly filter out non-RNA
editing sites. However, they still provide valuable information to
ML-based approaches where different sources of evidence can
be combined to make soft decisions. In total, we extracted 28
features for every possible editing site, and full details of each
feature are provided in Table S4.

To construct a classifier by supervised machine learning, itis im-
perative to have a high quality, adequate-sized training set on
RNA editing. Unfortunately, the lack of a gold standard dataset
is a well-known challenge in the field [19]. Here, we overcame
this difficulty with a two-step strategy: first, we overlapped re-
sults of three previously developed RED methods on the same
male Han Chinese individual RNA-seq and DNA-seq data [17],
abbreviated as the YH dataset hereafter; second, we designed
high-throughput experiments to validate RNA editing with high
accuracy.

The three computational methods considered include the
original one developed with the publication of the data by Peng
et al. [17], a second method developed by a different lab shortly
after by Ramaswami et al. [20], and an adapted and optimized
version of RES-scanner [25] on the YH dataset (details in SM).
Roughly speaking, the method by Peng et al. tends to be very
accurate at the price of reduced sensitivity; the method by Ra-
maswami et al. substantially improved sensitivity but could be
less accurate, while our own hard filters attempt to strike a
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Figure 1: Flow charts of our RED-ML pipeline: (a) overview of the entire pipeline;

balance between accuracy and sensitivity (Fig. S2 showing the
Venn diagram, details in SM). Overall, due to the many differ-
ences among the three methods and independent validation ex-
periments carried out in the first two, it is very likely that the
overlap of these three, which is shown in Fig. S2, consists of gen-
uine RNA editing sites.

To further validate these predicted RNA editing sites, we
carried out high-throughput Ion Proton sequencing [28] (de-
tails in SM) using the same YH sample. Although both Ion Pro-
ton sequencing and Illumima Hiseq are referred to as second
generation sequencing platforms, they differ in many key as-
pects, including the underlying chemistry, base calling method,
as well as read alignment strategies. We took advantage of these
differences to perform independent, high-throughput validation
of the RNA-editing sites detected by Hiseq. In contrast, other
validation methods that have been used in the literature, such
as Sanger sequencing and mass spectrometry (MS), are of low-
throughout and limited sensitivity, and not able to generate a
dataset of reasonable size and diversity that can be used to
train a ML classifier. To confirm the effectiveness of our high-
throughput Ion Proton validation method, we checked whether
the sites predicted by Peng et al. could be confidently detected.
As shown in Fig. S1, most of the predicted sites with adequate
Ion Proton sequencing coverage are detected (details in SM),
with increasing validation rate as the sequencing coverage in-
creases. Since sites predicted by Peng at al. tend to be highly
accurate, this further justifies the soundness of our Ion Proton
validation approach. Based on the trend shown in Fig. S1, we
picked a coverage threshold of 20 when evaluating the perfor-
mance of RED-ML in the Results section.

To build a high quality classifier based on ML principles, we care-
fully constructed the positive and negative training sets as fol-

(b) schematic of the ML component in RED-ML.

lows. The positive set contains the overlap of three hard-filtering
based RED methods (2960 sites) that are further validated by Ion
Proton sequencing with a minimum coverage of 15, which re-
sults in 1334 sites (the slightly reduced coverage threshold is to
obtain a large enough positive set). In addition, we also selected
sites detected by both Peng et al. and Ramaswami et al., but not
our own method, that are validated by Ion Proton sequencing
(Fig. S2). This gives us an additional 141 validated RNA editing
sites and results in a total of 1475 data points in the positive
set. To construct the negative set, we first selected seven highly
informative features used by our hard filtering method that are
also shared by RED-ML, and randomly sampled 150 sites each
that failed the corresponding hard filtering criterion, which re-
sults in 1050 data points. We also sampled 300 sites that were
aligned by TopHat2 but filtered out by BWA, and not validated
by Ion Proton sequencing. We further randomly sampled 1200
SNPs from dbSNP 138 so that the classifier can be trained to dis-
tinguish between typical SNPs and RNA editing sites. Finally, we
added those RNA editing sites that are detected by only one or
two of the three methods but not validated by Ion Proton se-
quencing even when the coverage is adequate (20x or more),
which results in an additional 375 data points. This gives us 2925
negative samples overall and a total of 4400 data points in the
training set (full details in SM).

We tried several popular ML techniques to build classifiers
for RNA editing detection and settled on logistic regression due
to its simplicity, efficiency of implementation, and relatively
good performance (further discussions later). The LR classi-
fier was trained and tested using the scikit-learn Python pack-
age (version 0.17.1), with a slightly higher weight (2.0) given to
positive points to minimize the Fys score, which is defined as
Fos =(140.5%) o % . Five-fold cross validation
and grid search were carried out to pick between L1 and L2
regularization and an appropriate regularization coefficient to
avoid overfitting. A LR classifier with weak L2 regularization was
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Figure 2: Evaluating RED-ML on the YH dataset. (a and b) Receiver operating characteristic and precision-recall curves on the test set when building the LR classifier.
Both curves were plotted to show a more comprehensive picture of RED-ML performance on this biased dataset, where the number of negative examples is about
twice of the positive ones, and they are obtained by varying the detection threshold in small steps. (c) The effect of varying the detection threshold: the Ion Proton
validation rate increases monotonically as more stringent classification thresholds are chosen. (d and f) Adjusting the detection threshold to compare RED-ML with
the methods of Peng et al, Ramaswami et al. and RES-scanner: the thresholds used are 0.96, 0.5, and 0.68, respectively.

selected as the final architecture. The final LR classifier was
trained on the full set of 4401 data points using the best hyper-
parameters picked by cross validation and grid search.

The set of 4400 data points just described would be very chal-
lenging for hard filtering based approaches. To test the per-
formance of our ML based approach, we randomly partitioned
these data points into training (80%) and test (the remaining
20%) sets. Performance on test data, which is not used when
training the model, is shown in Fig. 2a and b, where an area un-
der curve of 0.98 for the receiver operating characteristic curve
and an area under curve of 0.94 for the precision-recall curve
were obtained, demonstrating the good performance of our LR
classifier on this task. A key advantage of our ML based method
is that it also outputs a confidence score of detection, which
could be interpreted as the probability of a candidate site being
a true RNA editing site. Therefore, this score provides a turn-
ing knob to adjust between sensitivity and specificity to suit dif-
ferent research goals, which is missing in hard filtering based
approaches. As a test, we have applied our trained LR classifier
on the full YH dataset and adjusted this threshold between the
default 0.5 and the highly confident 0.9, and the Ion Proton val-
idation rate increases monotonically as expected (Fig. 2c).

We further took advantage of such an ability to do pair-wise
comparison with the other three methods used in building our
model. For the method of Peng et al. and RES-scanner, we ad-
justed the threshold of RED-ML to roughly match the total num-
ber of detected RNA editing sites and compared the validation
rates by Ion Proton sequencing. For the method of Ramaswami et
al., we adjusted the threshold to match the number of detected

RNA editing sites in non-Alu regions only, since Ramaswami et
al. applied a very loose filter in the Alu region and included many
low frequency sites that are not able to be detected by RED-
ML (more details in SM). These results are shown in Fig. 2d, e
and f, where RED-ML clearly outperforms the other three meth-
ods by detecting slightly more RNA editing sites while achieving
higher Ion Proton validation rates at the same time. For exam-
ple, when detecting ~140 000 RNA editing sites similar to RES-
scanner (with a threshold of 0.68), the validation rate of RED-ML
is 0.88 while RES-scanner is 0.82. When using the default thresh-
old of 0.5, the validation rate of RED-ML only dropped slightly
to 0.86, still higher than that of RES-scanner, but it can detect
~27 000 more RNA editing sites (Table S5.1).

It should be emphasized that evaluating RED-ML on the YH
dataset is not truly unbiased, since a very small portion of the
YH dataset has been used in training our model. Moreover, other
methods have been more or less tuned on the YH dataset as
well. Most importantly, however, is that a critical goal of adopt-
ing ML principles for RED is to build a tool that can general-
ize well, that is, by learning the intrinsic, underlying character-
istics of RNA editing, it can reach high performance beyond a
specific dataset, experimental setup or tissue type, etc. To fully
test the real-world performance of RED-ML, we carried out inde-
pendent RNA-seq experiments on two prostate tumor samples
(CH24T and CH62T) and a HeLa sample to detect RNA editing
with RED-ML, and further performed Ion Proton validation ex-
periments on these samples. RED-ML detected ~30000-50 000
RNA editing sites using the default threshold of 0.5 (Fig. 3a, with
full details in Tables S5.1 and S11) and achieved Ion Proton val-
idation rates of 0.9 or higher in these three samples (Fig. 3b).
We also applied RES-scanner as a high performance baseline to
compare against, which has been demonstrated to be superior
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Figure 3: Evaluating RED-ML on two prostate tumor samples (CH24T and CH62T) and a Hela sample: (a) number of detected RNA editing sites and (b) Ion Proton validate
rates by RED-ML (using the default detection threshold of 0.5) and RES-scanner in the three samples; (c) MS validation of some RNA editing sites detected by RED-ML
and RES-scanner in CH24T and CH62T; (d) the effect of varying the detection threshold in CH24T.

among existing RED methods [25]. Once again, RED-ML substan-
tially outperforms RES-scanner on these three datasets (Fig. 3a
and b), by detecting more RNA editing sites and simultaneously
achieving higher validation rates. This clearly demonstrates the
advantage of our new ML based approach, which can generalize
well beyond the data used to train the model. We have also per-
formed MS validation experiments on some detected sites in the
prostate tumor samples, randomly selected across a wide range
of RNA editing levels (15-90%) with a slight bias towards sites
in non-Alu regions (Table S6) and achieved an overall validation
rate of 87.5% (35/40, Fig. 3c). As before, the detection threshold
can be further adjusted to detect fewer but more confident sites,
and it achieved even higher validation rates (Fig. 3d).

RED-ML did not use information from existing RNA editing
databases when detecting editing sites, which enables it to de-
tect novel, sample-specific sites. This is a valuable asset in many
applications, especially disease studies. To investigate whether
it suffers from lower accuracy by not using curated databases,
we carried out the following analysis. We first checked the over-
lap of RED-ML detected sites in CH24T, CH62T and Hela sam-
ples with those in two curated RNA editing databases (DARNED
and RADAR) and plotted the results as Venn diagrams (Fig. 4a,
b and c). Significant portions of RED-ML detected sites are in
neither of the existing databases (46.5%, 60.1%, and 60.4% for
CH24T, CH62T, and Hela samples, respectively), probably be-
cause these are not normal tissues. We then partitioned the de-
tected RNA editing sites into three categories: (1) both: existed in
both DARNED and RADAR,; (2) one: existed in only one of DARNED
and RADAR but not both; (3) none: existed in none of the two
databases, and checked the validation rates of these three cate-
gories across three samples. As shown in Fig. 4d, there are no
significant differences on the validation rates among the cat-

egories in all three samples, which demonstrate that RED-ML
performed quite consistently independent of existing RNA edit-
ing databases. To study the effect of genomic variants on RED,
we compared the sites detected by RED-ML (without using ge-
nomic variant information) with the genomic variants detected
by DNA sequencing on the same sample (Fig. 4e). Even in the
highly challenging tumor samples, where there exist both so-
matic SNVs and SNPs, the percentage of genomic variants in
RED-ML detected RNA editing sites is quite low (no more than
1%), which confirms the high specificity of RED-ML in detecting
RNA editing sites.

Running the RED-ML pipeline from a sorted BAM file only
takes a single command, and it runs quite fast for typical RNA-
seq experiments, usually no more than an overnight job. For ex-
ample, using a single thread on a Linux machine with a quad-
core AMD Opteron 2.4-GHz processor, it takes 5-8 hours for
CH24T, CH62T, and Hela samples and ~16 hours for the much
larger YH dataset (Table S7.1), with no more than 5GB RAM
usage. Most of the computation time was on variant pileup,
while the ML step is extremely fast (~10 minutes for all sam-
ples). Compared to our previously published RES-scanner, the
improvement on speed is very substantial, achieving ~6x-10x
speedup (Table S7.2). This is mainly due to the removal of a time-
consuming realignment step by BLAT, as well as some optimiza-
tion of variant pileup.

Discussions

In conclusion, a highly effective and widely applicable RED tool
based on ML has been developed. We have also adopted care-
ful software design to make this tool easy to use and it comes
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as an all-in-one software package. In addition, by adopting ML
principles in building our model, further improvement can be
easily made when improved knowledge of RNA editing becomes
available. For example, when more accurate, large-scale RNA
editing validation results are available, we can retrain our model
with a better training set. When more characteristics of the RNA
editing mechanism are discovered, we can design more features
to reflect our improved knowledge.

One limitation of RED-ML is that it only detects RNA edit-
ing sites with relatively high editing levels. The lowest level in
our training set is 0.1, and RED-ML rarely detects sites with lev-
els lower than 0.1 in reality. This limitation is mostly by design,
since we aim to detect functional RNA editing sites, which are
unlikely to be of very low frequency, and it also helps to reduce
the impact of sequencing errors and artifacts. However, if the ac-
curacy in sequencing experiments and alignment tools could be
substantially improved, such a limitation can be readily lifted
when building our model. The speed of RED-ML can also be
further improved if multithreading is supported in the variant
pileup and feature extraction stage, and we plan to do so in the
future. Meanwhile, a user could process the BAM files of each
chromosome in parallel to speed up the pipeline.

Although RED-ML can accept BAM files produced by different
alignment tools, the current version has been specifically opti-
mized for BWA and TopHat2 due to the construction of model,
and we find that the choice of alignment tools and the associ-
ated parameters could have a large impact on RED. To help users
with proper alignment strategies, we have detailed some rec-
ommendations in the SM. We have also tested some alignment
tools other than those used in building our model. For exam-
ple, when we tried the BAM file produced by STAR [29] on the
CH24T dataset, we detected many RNA editing sites but with low
validation rate (~0.34, details in SM). When we tried the BAM
file produced by HISAT2 [30], which could be considered as the

successor of TopHat2, the result is much better (validation rate
~0.85, A-to-1 ~0.93, details in SM), probably due to its similarity
to TopHat2. Since designing accurate RNA-seq alignment strate-
gies, especially in the context of SNP and RNA editing detection,
is still an open research problem [24], we plan to incorporate
more popular alignment tools when building future versions of
RED-ML.

The current version of RED-ML is designed for human RED
since we used various features specific to human RNA editing
as well as human data when building our ML model. With the
increased RNA editing data available in other species as well
as the growing interest of studying them, we could build future
versions to support more species, as our previous method RES-
scanner did. As a test, we have run RED-ML on ant BAM files
from RNA-seq data in Li et al [31] by disabling all human related
features. The result does not seem to be good qualitatively. For
example, the percentage of A-to-I editing is only ~60% (details
in SM), and it shows that more work needs to be done to make
RED-ML work well on other species.

A simple ML technique, namely LR, has been adopted in the
current version of RED-ML. We also tried other methods, includ-
ing decision trees, random forests, and SVMs, but the gain in per-
formance by more sophisticated techniques is very minor (data
not shown). As a result, LR was picked since it runs very fast and
can be easily incorporated into our existing RNA-seq pipeline.
However, when the need is warrantied, more sophisticated ML
techniques, including deep learning [32], could be applied. ML
may play a particularly large role when the accumulation of data
and knowledge on RNA editing reaches such a stage that compu-
tational models of RNA editing could be assembled to simulate
the process, such as what has been successfully accomplished
for RNA splicing [33], or even building joint models with other
RNA processing steps, and we believe this is a promising direc-
tion of future RNA editing research.
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by Peng et al. [1] binned according to Ion Proton sequencing cov-
erage depth. Validation rate increases with increased coverage,
and it roughly saturates at 20x depth.

Additional file: Fig. S2: overlapping detected RNA editing sites
among three methods (RES-Scanner, Peng et al. [1], Ramaswami
et al [5]).

Additional file: Fig. S3: the significance of features for RNA
editing detection by RED-ML. The features were sorted orderly
according to its weights.

Additional file: Fig. S4: comparison of RED-ML and RES-
Scanner (Tophat2). To ensure a fair comparison, we have com-
pared the RED-ML and RES-Scanner based on same alignment
file (Tophat2, because of RES-Scanner also accepted Tophat2
alignment file [6]) (a) The numbers of editing sites identified
by RED-ML are larger than those of RES-Scanner (Tophat2) in
CH24T, CH62T, and Hela. (b) The Ion Proton validation rates of
editing sites identified by RED-ML are higher than those by RES-
Scanner (Tophat2) in CH24T, CH62T, and Hela. RED-ML has a
greater advantage since TopHat2 has been used in constructing

our LR classifier while RES-Scanner has only been optimized for
BWA.

Additional file: Fig. S5: the number of RNA editing sites and
Ion Proton validation rate under different thresholds. With the
threshold increasing, the numbers of detected editing sites de-
crease and the Ion Proton validation rates increase. a, b, and ¢
show the CH62T and Hela samples, respectively.

Additional file: Fig. S6: comparison with known RNA editing
database. (a—c) The overlap of detected sites with two curated
RNA editing databases (DARNED and RADAR) in CH24T, CH62T,
and Hela samples were shown as Venn diagrams. Significant
portions of RED-ML detected sites are in neither of the existing
databases (37.5%, 36.5%, and 59.2% for CH24T, CH62T, and Hela
samples, respectively), probably because these are not normal
tissues.

Additional file: Fig. S7: Ion Proton validation rates for differ-
ent classes of sites (defined in the main text) in the three sam-
ples. The number of Ion Proton validated sites in each class is
also indicated on the top of each bar. There are no significant dif-
ferences on the validation rates among the categories in all three
samples, which demonstrate that RED-ML performed quite con-
sistently independent of existing RNA editing databases.

Additional file: Fig. S8: SNP evaluation. The percentage of ge-
nomic variants in detected RNA editing sites as quantified by
matching DNA sequencing data. And the percentage of genomic
variants in RED-ML detected RNA editing sites is quite low (no
more than 2%).

Additional file: Table S4. The definitions of 28 selected fea-
tures.

Additional file: Table S11. The RNA editing sites of CH24T,
CH62T, Hela and YH detected by RED-ML.
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