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Elephantopus scaber is an ethnomedicinal plant used by the Zhuang people in Southwest China to treat headaches, colds, diarrhea,
hepatitis, and bronchitis. A new 𝛿-truxinate derivative, ethyl, methyl 3,4,3,4-tetrahydroxy-𝛿-truxinate (1), was isolated from the
ethyl acetate extract of the entire plant, along with 4 known compounds. The antioxidant activity of these 5 compounds was
determined by ABTS radical scavenging assay. Compound 1 was also tested for its cytotoxicity effect against HepG2 by MTT assay
(IC
50
= 60 𝜇M), and its potential anti-inflammatory, antibiotic, and antitumor bioactivities were predicted using target fishing

method software.

1. Introduction

Elephantopus is a genus comprised of about 30 species
worldwide, mainly distributed in South America, with only 2
species E. scaber and E. tomentosus found in Southwest China
[1]. From 2008 to 2012, our ethnobotanical investigation in
the traditional medicinal market, held during the Dragon-
Boat Festival in the fifthmonth of the Chinese lunar calendar
with a history of over 700 years, found that Elephantopus
scaber L. (Asteraceae) is a common medicinal plant used by
the Zhuang people in Jingxi County of Southwest China.The
local Zhuang people use E. scaber commonly as a traditional
herbal medicine to treat many ailments including headaches,
colds, diarrhea, hepatitis, and bronchitis.

To date, 30 compounds have been reported from E.
scaber, including 4 sesquiterpene lactones, 9 triterpenes, and
5 flavones. Previous bioactivity studies on E. scaber demon-
strated that the extracts or compounds from this species
have antibiosis, antivirus, and cytotoxicity activities [2]. The
sesquiterpene lactones in particular have been explored for

their anti-inflammatory and hepatoprotective activities [3],
which partially proved the traditional knowledge of E. scaber.

In this paper, the isolation and structure elucidation
of a new ethyl, methyl 3,4,3,4-tetrahydroxy-𝛿-truxinate (1,
Figure 1) is reported, together with 4 known compounds, 5-
O-caffeoylquinic acid (2) [4], chlorogenic acid methyl ester
(3) [5], deoxyelephantopin (4), and isoscarbertopin (5) [6].
The radical scavenging activity of these 5 compounds was
conducted using the ABTS method. The cytotoxicity effect
againstHpeG2 cell line of the new compoundwas determined
byMTT assay, and the IC

50
value (24.0 𝜇g/mL) was obtained.

In addition, the potential activity of 1, calculated with target
fishing, which used 3D structures of compounds to identify
their interacting proteins by virtual screening [7], is also
presented.

2. Materials and Method

2.1. Plant Material. The whole plant of E. scaber was
collected from the traditional medicinal market during the

Hindawi Publishing Corporation
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 569594, 7 pages
http://dx.doi.org/10.1155/2014/569594

http://dx.doi.org/10.1155/2014/569594


2 Evidence-Based Complementary and Alternative Medicine

OH

OH
OH

OH

OH
OH

OH

OH

OH
OH

OH OH

O

O

O
OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

HO
HO HO

CH3

179

17911

5

3

3

5

1 2 3

4 5

Figure 1: The chemical structures of compounds obtained from Elephantopus scaber.

Dragon-Boat Festival of Jingxi County (Guangxi), Southwest
China, and identified by Professor Chunlin Long. A voucher
specimen was deposited in the Herbarium of Minzu Univer-
sity of China, numbered 201006023.

2.2. Extraction and Isolation. Theair-dried and groundwhole
plant of E. scaber (4.0 kg) was extracted with EtOH :H

2
O

(90 : 10) at reflux for 3× 3 h.The solvent was evaporated under
reduced pressure to yield dark brown material (372.4 g). The
latter was suspended in H

2
O (3 L) and individually parti-

tioned with petroleum ether (3 × 3 L), Chloroform (2 × 3 L),
EtOAc (3 × 3 L), and n-BuOH (3 × 3 L) to obtain petroleum
ether (169.4 g), Chloroform (33.8 g), EtOAc (46.9 g), and n-
BuOH (122.3 g) phase.

The EtOAc phase was separated by silica gel column
chromatography (CC) eluted with CHCl

3
: CH
3
OH in order

of increasing polarity to give seven fractions on the basis
of TLC. Fraction 3 was subjected to MCI CC eluted with
CH
3
OH :H

2
O to seven fractions A

1
–A
7
. Fraction A

1
was

isolated by Sephadex LH-20, ODS CC (CH
3
OH :H

2
O =

44 : 56), and Si gel CC (CHCl
3
: CH
3
OH = 14 : 1) successively

to afford compound 1 (24.0mg). Fraction A
2
was purified

with Sephadex LH-20 to give six subfractions. Subfraction
2 was subjected to ODS CC (CH

3
OH :H

2
O = 30 : 70) and

silica gel CC (CHCl
3
: CH
3
OH = 12 : 1) successively to give

compound 3 (17.0mg). Subfraction 3 was subjected to ODS
CC (CH

3
OH :H

2
O = 48 : 52) and Sephadex LH-20 to afford

compound 2 (27.0mg).
The petroleum ether phase was separated by silica gel

CC eluted with petroleum ether : EtOAc (100 : 1–0 : 100) to
give ten fractions. Fraction 8 was purified by MCI CC using
CH
3
OH :H

2
O (60 : 100–100 : 0) to afford four fractions B

1
–

B
4
. Fraction B

2
was subjected to Sephadex LH-20 and ODS

CC (CH
3
OH :H

2
O = 83 : 17) to give compound 4 (9.0mg).

FractionB
3
was isolated byODSCC (CH

3
OH :H

2
O=80 : 20)

and Sephadex LH-20 to give compound 5 (7.0mg).

2.3. Antioxidant Assay. The antioxidant activity of com-
pounds 1–5 was evaluated with ABTS radical scavenging
assay as described previously [8]. The IC

50
was expressed as

millimoles per liter (mM).

2.4. Cytotoxicity Assay. Compound 1 was tested for cytotoxi-
city using a slightly modifiedMTTmethod [9]. Briefly 150𝜇L
(10 𝜇M, 20𝜇M, 30 𝜇M, and 40 𝜇M) of samples was added to
96-well plate containing a confluent HepG2 cell monolayer
in sextuplicate; 10 𝜇g/mL of norcantharidin (NCTD) and
blank medium were used as the positive and control group,
respectively. After a 72 h incubation at 37∘C, 100 𝜇L MTT
solution (5mg/mL phosphate buffered saline) was added
to each well, which was further incubated for 4 h for the
formation of the formazan product. After removing the
medium, 150 𝜇L DMSO was added to dissolve the formazan
crystals. The optical density (OD) was measured at 550 nm
with amicroplate reader.The rate of inhibitionwas calculated
by the following formula: rate of inhibition = (1 − sample
OD)/control OD. The concentration causing inhibition of
viable cells by 50% (IC

50
) was determined from a dose-

response curve, which was based on triplicate measurements.

2.5. Virtual Screening. The potential activity of compound
1 was predicted by the “Target Fishing” functional model
software (Discovery Studio). The target fishing process was
conducted as follows. The DockScore energy function was
utilized tominimize the energy of compound 1 conformation.
Setting full minimization as minimization gave the smart
conformation of compound 1. Then, pharmacophore search
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was set to be screened and profiled. Screen and profile was
set to be ligand profiler. PharmaDB pharmacophores were
set to be all. Conformation generation was set to be the best.
Maximum conformation was set to be 200. Energy threshold
was set to be 10. Saved conformations were set to be true, and
other parameters were set to be default.

Top 14 candidate receptors were ranked according to
the fit value (as shown in Table 2), which is based on force
field approximation and specifically examined the compound
internal energy and the compound-receptor interaction
energy, which is taken as the sum of van der Waal force and
electrostatic energy [10].

2.6. Ethyl, Methyl 3,4,3,4-tetrahydroxy-𝛿-truxinate. Light
yellow oil; [𝛼]

𝐷
−2.0∘ (c 0.018, MeOH); UV (in MeOH): 𝜆max

284 and 228 nm; IR ]max ATR (cm−1): 3436, 2924, 2854, 1736,
and 1600–1450;HRESIMS (m/z): 403.1286 [M+H]+; 1HNMR
(300MHz, CD

3
OD): 𝛿H 6.73 (4H, d-like), 6.62 (1H, t, J = 6.0,

3.0Hz), 6.59 (1H, t, J = 6.0, 3.0Hz), 4.19 (2H, q, J = 7.1Hz),
3.73 (3H, s), 3.43 (1H, d-like, J = 2.9Hz), 3.40 (1H, d-like, J
= 2.5Hz), 3.30 (1H, d-like, J = 3.1Hz), 3.27 (1H, d-like, J =
3.5Hz), and 1.26 (3H, t, J = 14.2, 7.1 Hz). 13C NMR (75MHz,
CD
3
OD): 𝛿C 173.5, 173.0, 145.0, 144.1, 132.8, 117.6, 115.0, 113.5,

60.7, 51.2, 50.2, 50.0, 46.2, 45.8, and 13.2.

3. Results

Compound 1 (28.0mg) was separated from the ethyl acetate
extract of E. scaber whole plant as a light yellow oil. The
molecular formula C

21
H
22
O
8
was determined by themolecu-

lar ion observed atm/z 403.1359 [M+H]+ in the LC-TOF-MS
(positive mode), which requires 11 degrees of unsaturation.
The IR spectrum presented bands in the 1600–1450 cm−1,
1736 cm−1, 2854 cm−1, 2924 cm−1, and 3436 cm−1 region,
which corresponded to aromatic, ester, methyl or methylene,
and phenolic hydroxyl groups, respectively. The structure of
compound 1 was further elucidated by examination of its 1D
13C (75MHz), DEPT (90∘ and 135∘), and 1H (300MHz)NMR
spectra and HMQC, HMBC, COSY, and NOESY spectra in
MeOH-d

4
. Only 13 carbon resonance signals and the other

two carbon signals overlapped by the solvent carbon signals
were found in 13C NMR and DEPT spectra, respectively,
which suggested that there are many identical parts in this
molecule. Further analysis of the 13C NMR spectrum of
compound 1 suggested each signal of 𝛿C 145.0, 144.1, 132.8,
117.6, 115.0, and 113.5 is comprised of two overlapping carbon
signals [𝛿C 145.0 (C-3 and C-3), 144.1 (C-4 and C-4), 132.8
(C-1 and C-1), 117.6 (C-6 and C-6), 115.0 (C-5 and C-5),
and 113.5 (C-2 and C-2)]; the other signals were assigned
to two carbonyl carbon atoms [𝛿 173.5 (C-9) and 173.0 (C-
9)], one methoxy group (𝛿C 60.7, C-10), one submethoxy
(𝛿C 51.2, C-10), methyl (𝛿C 13.2, C-11), and four methine
carbons [𝛿C 50.2 (C-7), 50.0 (C-7), 46.2 (C-8), and 45.8 (C-
8)]. From the number of unsaturations and carbons, these
four methane carbons were deduced to be cyclobutane ring.
From the analysis of 1H NMR spectrum of compound 1, two
phenylpropanoid units were presented at 𝛿H 6.73 (4H, d-like,
H-2, H-5, H-2, H-5), 𝛿H 6.62 (1H, t, J = 6.0, 3.0Hz, H-
6/H-6), and 6.59 (1H, t, J = 6.0, 3.0Hz, H-6/H-6). Four

Table 1: The radical scavenging activity of 5 compounds from Ele-
phantopus scaber.

Compound Name IC50 (mM)a

1 Ethyl, methyl 3, 4, 3,
4-tetrahydroxy-𝛿-truxinate 0.44 ± 0.039

2 5-O-caffeoylquinic acid 0.96 ± 0.096

3 Chlorogenic acid methyl ester 0.89 ± 0.140

4 Deoxyelephantopin NR
5 Isoscarbertopin NR
6b Trolox 1.33 ± 0.187

aThe inhibition was recorded at 10min of reaction (ABTS method) and
IC50 value was measured using PROBIT model: PROBIT (𝑝) = intercept +
𝐵𝑋 (covariates 𝑋 are transformed using the base 10.000 logarithm). Each
value corresponds to the mean and standard deviation of duplicates at five
concentrations.
bPositive control group.
NR: No reaction at the conditions discribed.
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Figure 2: Selected HMBC (proton to carbon) correlations of
compound 1.

methane carbons of the cyclobutane ring were observed at
𝛿H 3.43 (1H, d-like, J = 2.9Hz, H-7), 3.40 (1H, d-like, J =
2.5Hz, H-7), 3.30 (1H, d-like, J = 3.1Hz, H-8), and 3.27
(1H, d-like, J = 3.5Hz, H-8), and the relative configuration
of the cyclobutane ring was determined by comparing the
chemical shift of compound 1 with reported 1HNMR data of
other 𝛿-truxinate derivatives [11]. Other signals of 1H NMR
spectra were assigned to submethoxy [𝛿H 4.19 (2H, q, J =
7.1Hz, H-10)], methoxy [𝛿H 3.73 (3H, s, H-10)], and methyl
[𝛿H 1.26 (3H, t, J = 14.2, 7.1 Hz,H-11)].Meanwhile, theHMBC
spectrum of compound 1 presented the correlations from H-
10 toC-9,H-8 toC-9 andC-8, H-7 toC-2 andC-6,H-11 toC-
10, fromC-10 toH-9 andH-11, fromC-8 to C-9, and from
C-7 to H-2 and H-6, respectively (Figure 2). Consequently,
the structure of compound 1 was deduced to be ethyl,
methyl 3,4,3,4-tetrahydroxy-𝛿-truxinate, which was further
confirmed by HMQC, COSY, and NOESY spectra. This
paper reports a new 𝛿-truxinate derivative in Elephantopus
genus for the first time. Compounds 2–5 were identified,
respectively, as 5-O-caffeoylquinic acid (2), chlorogenic acid
methyl ester (3), deoxyelephantopin (4), and isoscarbertopin
(5) by comparing their NMR and MS data with reported
literature values.

The antioxidant activity of 5 compounds isolated from
E. scaber was evaluated by the ABTS radical scavenging
assay, and the results are presented as IC

50
in Table 1.
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Table 2: The potential bioactivity screening results of compound 1.

Pharmacophore Name of pharmacophore Type Fit value Biological function(s) Reference
2zb8-01-s Prostaglandin reductase 2 Protein 4.05271 Inflammation [14]

3kjs-01 Dihydrofolate reductase-thymidylate
synthase Protein 3.9615 Malarial parasites, anticancer, and

inflammation [15–17]

2uue-01 Cell division protein kinase 2 Protein 3.60758 Cell division [18, 19]
2w4i-01-s Glutamate racemase Protein 3.55547 Antibiotics [20–24]
3k6l-01 Peptide deformylase Protein 3.51102 Antibiotic [25, 26]
3md7-01 beta-lactamase-like Protein 3.41887 Antibiotic [27, 28]

2ovy-01 Phosphodiesterase 10A Protein 3.41834 Schizophrenia and
nervous system [29–31]

3ac8-01 Protooncogene tyrosine-protein kinase LCK Protein 3.39142 Antitumor [32, 33]
3f7z-01 G17 glycogen synthase kinase-3-beta Protein 3.30076 Antitumor and neurodegenerative disease [34]
3cgy-01 Virulence sensor histidine kinase phoQ Protein 3.28695 Antibiotic [35, 36]
2qe5-01 RNA-directed RNA polymerase Protein 3.28198 Antivirus [37, 38]
1dvx-01 Transthyretin Protein 3.27421 Antitumor and obesity [39, 40]

2brc-01 ATP-dependent molecular chaperone
HSP90 Protein 3.26648 Antitumor and antivirus [41, 42]

1c1b-01-s HIV-1 reverse transcriptase (A-chain) Protein 3.25549 Anti-HIV [43–45]

The most active radical scavengers were the new compound
ethyl, methyl 3,4,3,4-tetrahydroxy-𝛿-truxinate (IC

50
=

0.44 ± 0.039mM). The other 2 quinic acid derivatives 5-O-
caffeoylquinic acid and chlorogenic acid methyl ester also
showed radical scavenging potential (IC

50
= 0.96 ± 0.096 and

0.89 ± 0.140mM, resp.), while the antioxidant activity of the
other 2 sesquiterpene lactone compounds deoxyelephantopin
and isoscabertopin was not detected. Comparing the
structures of these 5 compounds, the different antioxidant
activities were attributed to the existence of phenolic
hydroxyl groups in compounds, which were supported by
the previous reports [12].

Compound 1 was also tested for in vitro cytotoxicity
against HepG2 cell line with norcantharidin (NCTD, 60 𝜇M)
as positive control at 72 h incubation (Figure 3). Compound 1
exhibited a dose-response inhibition curve from 27% growth
inhibition at 10𝜇g/mL to 81% at 40 𝜇g/mL, demonstrating
that it has significant and dose-dependent inhibition on the
growth of HepG2 (IC

50
= 60 𝜇M). Further work will be

conducted on the mechanism by which compound 1 induces
apoptosis.

With the rapid development of computer-aided drug
design (CADD), virtual screening technique has been used
more and more widely in drug design and bioactivity
screening of compounds [13]. The potential bioactivities of
compound 1 have been predicted by the target fishingmethod
which was based on the Discovery Studio software and
Protein Date Bank (PDB) including over twelve thousand 3D
macromolecular structure data determined experimentally
by X-ray crystallography and NMR. The top 14 biological
molecular targets ranked as the fit value (FV) are reported
(Table 2).

Theoretically, FV> 3means this target should be explored
experimentally. The strongest activity of compound 1 was
predicted to be anti-inflammatory (FV = 4.05271) and anti-
AIDS (FV = 3.25549), respectively (Table 2). Further exper-
iments on the biological functions of 1 should be directed
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Figure 3: Growth inhibition of compound 1 on HepG2 cell lines,
where each value represents mean ± standard deviation of 6 repli-
cates (𝑛 = 6), as compared to the positive control norcantharidin
(60𝜇M) ( ∗𝑃 < 0.001 for comparison of control cell with cells treated
with compound 1 andNCTD); 72 h for the incubation period of cells
after being treated with compound 1 and NCTD.

towards its potential anti-inflammatory, antibiotic, antivirus,
and anticancer activities.

4. Discussion and Conclusion

With more and more present modern drugs discovered from
traditional medical knowledge, the traditional knowledge is
getting more extensive attention, which also led to the devel-
opment of important drugs such as reserpine (a treatment
for hypertension) podophyllotoxin (the base of an important
anticancer drug), and vinblastine (used in the treatment of
certain cancers) [46].

Previous studies showed that pulmonary oxidant stress
can cause some disease conditions, such as acute lung injury,
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radiation injury, COPD (chronic obstructive pulmonary dis-
ease), and inflammation [47]. Meanwhile, previous clinical
and experimental studies described that antioxidant supple-
mentation including flavonoids and vitamins may inverse
the oxidant-mediated cough depression by modulating the
inflammatory process in lung disease [48, 49]. Interestingly,
our work using ABTS assay demonstrated that compounds
1–3 showed strong antioxidant activity, especially compound
1 (IC
50

= 0.44 ± 0.039mM). Moreover, E. scaber was also
reported as the source of a number of sesquiterpene lactones,
such as compounds 4 and 5, which have shown significant
contribution to the anti-inflammatory activity of plants [50].
Some of the sesquiterpenes from the genus Elephantopus
have demonstrated significant anti-inflammatory as well as
hepatoprotective activities and are being considered as drug
lead compounds [3]. Based on the above analysis, we hypoth-
esize that Zhuang people use this plant to treat headaches,
bronchitis, and hepatitis,due to its anti-inflammatory and
antioxidant effects.

According to the in vitro cytotoxicity assay with NCTD
(60 𝜇M) as control group and activity virtual screening,
compound 1 exhibited good (IC

50
= 60𝜇M) and dose-

response inhibition on HepG2 cell line and potential anti-
inflammatory, antibiotic, antivirus, and anticancer activities,
which indicated that the further research of E. scaber could
be focused on anticancer and anti-inflammatory activity.The
present work further developed the usage of this traditional
medicine plant.
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