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Abstract
The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The

velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by

pressure. The research findings show that the position of maximum flow is below the water

surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is

mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of

velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is

mainly affected by the contractive tube wall and the secondary flow, and the variation of the

velocity is relatively small. Literature retrieval results show relatively less research has been

shown on the practical expression to describe the velocity distribution of partially-filled circular

pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe

flow was derived based on the principle of maximum entropy (POME). Different entropies

were compared according to fluid knowledge, and non-extensive entropy was chosen. A new

cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow

depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was

derived, and the position of maximum velocity distribution was analyzed. The experimental

results show that the estimated velocity values based on the principle of maximum Tsallis

wavelet entropy are in good agreement with measured values.

Introduction
In city drainage, conveying stormwater, wastewater discharge and other occasions, many water
treatment parameters need to be determined according to the stage-discharge relationship [1].
Because the circular transmission pipeline is often in a state of partially-filled, the relationship
is general determined based on Manning Equation [2, 3]. But more precise relationship
requires knowledge of the cross-sectional velocity distribution. Knight et al. [4–6] found that
the maximum velocity of partially-filled circular pipe occurs axially below the water surface by
experimental research, and the velocity distribution near the water surface is mainly influenced
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by the secondary flows [7]. Using a stereoscopic particle image velocimetry system, Yoon et al.
[8] measured the three-dimensional velocity distribution in partially-filled circular pipe, and
the measurement results confirmed the above findings. These studies greatly improved the
research of partially-filled pipe flow. However, according to literature search, relatively little
work has been shown on the theoretical solutions of partially-filled circular pipe turbulent
velocity distribution.

In recent years, based on Shannon entropy[9], the theory of entropy develops rapidly, and
has been applied in many areas. Some well-studied generalized entropy, such as network
entropy, graph entropy [10–13] and Tsallis entropy [14], can measure the complexity and
robust of engineering, These research results provide a very good approach for the research of
two-dimensional (2D) velocity distribution in partially-filled pipe flow. Assuming the cumula-
tive distribution function (CDF) is the function of flow depth, Chiu [15] derived a 2D velocity
distribution formula with Shannon entropy [9], which represented the observed data reason-
ably well in rectangular open channel, and the formula was employed in a series of studies in
following years [16–22]. Yoon et al. [8] proved that the Chiu’s method [15] is also suitable to
partially-filled circular pipe flow through experimental study. However, because Chiu’s method
[15] used too many empirical parameters that have little physical meaning, its practical use is
limited. In this paper, the principle of maximum entropy (POME) [23,24] was used to analyze
the flow velocity distribution. Based on POME, Luo and Singh [25] derived a 2D velocity distri-
bution expression of rectangular open channels using the Tsallis entropy. Though the approach
was either superior or comparable to Chui’s method, the application was limited because of a
large number of parameters used. Marini et al.[26] put forward a new 2D velocity distribution
method of rectangular open channels with Shannon entropy, in which a new CFD was hypoth-
esized, and the method shown advantage over Chiu’s distribution. Cui and Singh [27] proposed
another new method for deriving 2D velocity distribution with Tsallis entropy, and the
approach can reasonably describe the velocity near the boundary. These methods were all used
in rectangular open channels, but these research results proved that it is feasible to analyze the
flow velocity distribution by using POME.

The objective of this study is to derive a 2D velocity distribution expression in partially-filled
circular pipe based on the principle of maximum entropy, and interpreted the distribution
parameters in terms of hydraulic characteristics. The 2D velocity distribution was tested using
experimental data.

Methods
Derivation of an entropy-based velocity distribution in partially-filled circular pipe includes (1)
comparison and selection of entropy, (2) definition of the non-extensive Tsallis wavelet
entropy, (3) probability distribution model based on POME, (4) hypothesizing CDF function
in the 2D case, (5) 2D velocity distribution, (6) location of maximum velocity, (7) experimental
measurement

Comparison and Selection of Entropy
For arbitrary uncertain systems, let X as a random variable to represent the system state fea-
tures, and pi(i = 1,2,. . .,N) as its probability distribution function (PDF). Then, the Shannon
entropy [9] of X is defined as

SBG ¼ �k
XW

i¼1
½pðiÞln pðiÞ� ð1Þ
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In which k = Boltzmann constant,W = the total number of samples. Since the Shannon
entropy is built on the basis of thermodynamic Boltzmann-Gibbs (B-G) entropy [9], and B-G
entropy belongs to extensive entropy. Then, for two independent subsystems A and B of the
system, the Shannon entropy has the following characteristics [28]:

SBGðAþ BÞ ¼ SBGðAÞ þ SBGðBÞ ð2Þ

That is, Shannon entropy has additivity. In partially-filled circular pipe laminar flow, the
total velocity information can be regard as the sum of the information contained in each part
of fluid. However, in partially-filled pipe turbulent flow, existing secondary currents phenome-
non, energy aliasing, and random interaction of the fluid motion etc, the total information of
each part fluid is not completely equal to the measured signal. So the application of Shannon
entropy is limited in turbulent flow.

Tsallis proposed a generalized form of entropy [14], which can be written in discrete form
as

Sq ¼ k
1�

XW

i¼1
pðiÞq

q� 1
q 2 Rn ð3Þ

where q = non-extensive parameter, used to describe the extensive degree of the system, q< 1
and q> 1 represent the super-extensive and sub-extensive characteristics of the system respec-
tively[28,29]. Then, for two independent subsystems A and B of the system, the Tsallis entropy
has the following characteristic

SqðAþ BÞ ¼ SqðAÞ þ SqðBÞ þ ð1� qÞSqðAÞSqðBÞ ð4Þ

Different system can choose different non-extensive parameter to calculate the entropy.
When q! 1, it’s immediately verified that

lim
q!1

Sq ¼ k lim
q!1

1�
XW

i¼1
pðiÞq

q� 1
¼ �k

XW

i¼1
pðiÞln pðiÞÞ ¼ SBG ð5Þ

The above analysis shows that the Tsallis entropy is the generalized form of Shannon
entropy, which can describe the system with extensive and non-extensive properties. Therefore,
the non-extensive Tsallis entropy was used to measure the velocity information in this study.

Non-extensive Tsallis Wavelet Entropy
LetWf = {d(n), n = 1,2,. . .,N} represent the set of discrete wavelet coefficients of flow velocity v
(t), and d is the wavelet coefficients component, and N is the total sampling points. Defined a
sliding data window inside wavelet coefficients set, in which wb 2 N is the window width, and
s 2 N is the sliding step, then the data window can be expressed as

Yðm;wb; sÞ ¼ fdðnÞ; n ¼ 1þms; 2þms; . . .;wb þmsg ð6Þ

Wherem = 0,1,2,. . .,(N − wb)/ s. Assuming that vkðmÞ ¼
XMw

i¼1
vkmðiÞ is the sum of flow

velocity within the data window Y, in whichMw is the wavelet coefficient scale, and

vkmðiÞ ¼
Xwbþms

n¼1þms
ðdiðnÞÞ2. Let pm(i) = vkm(i)/vk(m), and the condition

XMw

i¼1
pmðiÞ ¼ 1. Then
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at the center of the data window, the non-extensive Tsallis wavelet entropy can be expressed as

SveðmÞ ¼
1�

XMw

i¼1
ðpmðiÞÞq

q� 1
q 2 Rn ð7Þ

where q represents non-extensive parameter, Rn is real number. Eq 7 can be expressed in con-
tinuous form as

SveðmÞ ¼
1�

Z vmax

vmin

½pmðvÞ�qdv
q� 1

q 2 Rn ð8Þ

where vmin, vmax is the minimum and maximum value of velocity within the data window sepa-
rately, and pm(v) is the PDF of velocity at any scale, and

R
pm(v)dv = 1. Because the flow velocity

v is zero in pipe wall, the Tsallis wavelet entropy at the whole pipe cross section can be
expressed as

Sve ¼
1�

Z vmax

0

½pðvÞ�qdv
q� 1

q 2 Rn ð9Þ

where vmax is the maximum value of v(t) in pipe cross section, usually below the water surface.
The format of Eq 9 is similar to Tsallis entropy, but Eq 9 is to calculate the wavelet coefficient
entropy of flow velocity v(t), and the wavelet coefficient reflects the velocity distribution of the
flow rate signal within the data window, so the Tsallis wavelet entropy reflects the velocity dis-
tribution on the cross section of the pipeline.

Probability Distribution Model based on the POME
The information of partially-filled circular pipe flow characteristics should be obtained to
apply the POME, and the velocity information can be obtained through the knowledge of fluid
mechanics and observations. Chiu [15] and Barbé et al. [30] found that the velocity distribution
can be derived only with mass conservation. Then the constraints of density function p(v) are
expressed as [15,25–27]

Z vmax

0

pðvÞdv ¼ 1 ð10Þ

and
Z vmax

0

vf ðvÞdv ¼ �v ð11Þ

where �v is the cross-sectional mean velocity. Eq 10 is the constraint of total probability, and the
Eq 11 is the constraint of mass conservation. In order to derive p(v), the entropy Sve must be
maximized in accordance with the POME, subject to Eqs 10 and 11. Then the lagrangian func-
tion G can be expressed as

G ¼ 1

q� 1
½1�

Z vmax

0

f ðvÞqdv� þ l1½
Z vmax

0

pðvÞdv � 1� þ l2½
Z vmax

0

vpðvÞdv � �v� ð12Þ
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where λ1 and λ2 are Lagrange multipliers. Differentiating Eq 12 with respect to p(v), results in

@G
@pðvÞ ¼

@

@pðvÞ
1

q� 1
½1�

Z vmax

0

pðvÞqdv� þ l1½
Z vmax

0

pðvÞdv � 1� þ l2½
Z vmax

0

vpðvÞdv � �v�
� �

ð13Þ

In accordance with the POME, the derivative is zero, this meaning that @G/@p(v) = 0, which
results in the expression of p(v) as

pðvÞ ¼ 1

q
ð1� l1 � l2vÞ þ l1 þ l2v

� �1=ðq�1Þ
ð14Þ

Substitution of Eq 14 in Eqs 10 and 11 gives the following equations about Lagrange multi-
pliers λ1 and λ2

1

q
ð1� l1 � l2vmaxÞ þ l1 þ l2vmax

� �q=ðq�1Þ
¼ l2 þ

1

q
� l1

q
þ l1

� �q=ðq�1Þ
ð15Þ

Z vmax

0

v
1

q
ð1� l1 � l2vÞ þ l1 þ l2v

� �1=ðq�1Þ
dv ¼ �v ð16Þ

If the values of non-extensive parameter q, vmax and �v were given, the value of Lagrange
multiplier can obtained by solving Eqs 15 and 16. But the solving process is complex, and there
is no direct analytical solution.

The Cumulative Distribution Function
The CDF was used to establish the relationship between the space domain and the entropy-
based probability distribution function in this paper, so CDF must be able to reflect the geome-
try of the partially-filled circular pipeline and some important characteristics of velocity distri-
bution. Then the CDF must have the following characteristics: (1) continuous and
differentiable, (2) defined between 0 and 1, (3) its value on the pipe wall must be 0, and it
reaches 1 at the position of vmax, (4) in the vertical axis of the center line, the CDF is a mono-
tonically increasing function from 0 to vmax, and (5) the same as to any vertical axis of the pipe
cross-section.

An idealized partially-filled circular pipeline channel is shown in Fig 1, in which R is the
radius, and H is the water depth, and h(0� h< H) is the distance from the position of vmax to
the bottom of pipe. A rectangular coordinate system is set in this way such that the coordinate
origin represents the bottom of the circular tube, and x presents the transverse distance from
the centerline, and y presents the vertical depth from x axis upward positive, and (x, y) is a ran-
dom point inside the pipe.

A CDF should be based on available experimental data and similar relationship in the veloc-
ity distribution, so that suitable parameters appear in the final equation depending on x, y and
R. The derivation of the CDF involves the following three steps.

The front three characteristics should be first considered. Because the velocity is assumed to
zero at the boundary, the corresponding CDF also should be zero, and the simplest equation
satisfying the properties(1), (2) and (3) as the parabolic equation

F1ðvÞ ¼ 1� x
R

� 	2

� y
R
� 1

� 	2

ð17Þ

At the position of maximum flow velocity, y = h, which is assumed to occur at the axis pass-
ing through the center of water surface, the corresponding CDF F1(v) = 1, then the CDF can be
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expressed as

F1ðvÞ ¼ 1� y
h
� 1

� 	2L
� �K

1� x
R

� 	D=H
� �

ð18Þ

where D is the diameter of the pipeline, when y� h, L = 1 and K = 1, while when y> h,
L = 2h / H and K = 2(H − h) / H.

Second, the fourth characteristic is considered. At the centerline of pipe cross-section, the
CDF increased with the increasing of the flow velocity. So the CDF can be assumed as

F2ðvÞ ¼ 2y=R�ðy=RÞ2 ð19Þ

Because the maximum flow velocity is assumed to occur on or below the water surface, that
is to say, when CDF F2(v) = 1, the position of maximum velocity yvmax � H, and the yvmax is
not the same at different water depths. Then Eq 19 changes to

F2ðvÞ ¼ 4½ðy=2RÞb � ðy=2RÞ2b� ð20Þ

where b is a adjustment factor related to water depth. At the position of maximum flow veloc-
ity, y = h and F2(v) = 1, so b can be expressed as

b ¼ ln2=½lnð2RÞ � lnh� ð21Þ

Inserting the expression of b into Eq 20 gives

F2ðvÞ ¼ 4
y
2R

� 	 ln 2
lnð2RÞ � ln h � y

2R

� 	 2ln 2
lnð2RÞ � ln h

2
4

3
5 ð22Þ

Third, the fifth characteristic is considered. Because the pipe cross section is circular, at any
vertical direction, the relative height should be adjusted to

y0 ¼ y � ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
Þ ð23Þ

Fig 1. Schematic of Rectangular Coordinate System

doi:10.1371/journal.pone.0151578.g001
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Then the CDF F1(v) and F2(v) also have been changed as

F1ðvÞ ¼ 1� y0

h0 � 1

� �2L
" #K

1� x
R

� 	D=H
� �

ð24Þ

F2ðvÞ ¼ 4
y0

2R

� � ln 2
lnð2RÞ � ln h0

� y0

2R

� � 2ln 2
lnð2RÞ � ln h0

2
4

3
5 ð25Þ

where h0 represents the vertical distance from maximum velocity to pipe bed in any vertical
axis. Integrating Eq 24 and Eq 25, the CDF of the velocity distribution of the partially-filled cir-
cular pipe flow can be expressed as

FðvÞ ¼ F1ðvÞF2ðvÞ ¼ 4 1� y0

h0 � 1

� �2L
" #K

1� x
R

� 	D=H
� �

y0

2R

� �s

� y0

2R

� �2s
" #

ð26Þ

where s = ln 2/[ln(2R) − ln h0]

2D Velocity Distribution
The next step is to compute velocity distribution with the CDF expressed by Eq 26. Because v is
the function of x and y, then v can be written as v(x, y), its PDF as p[v(x, y)], and the CDF as F
[v(x, y)]. Referring to the method proposed by Cui and Singh [27], to deal with Eq 14 and Eq
26, the expression of velocity distribution can be obtained as

v ¼ 1

l2
lq=ðq�1Þ
1 þ y0l2FðvÞ

y
q

q� 1

� �q=ðq�1Þ" #1�1=q

� l1

8<
:

9=
; ð27Þ

Eq 27 is the 2D velocity distribution equation in partially-filled circular pipe based on the
Tsallis wavelet entropy, and the details of derivation process are shown in Appendix. There
exist two Lagrange multipliers λ1 and λ2 in Eq 27, which are determined by Eqs 15 and 16,
respectively. But, by the above discussion, there is no direct analytical solution for λ1 and λ2.
To avoid solving these two parameters, following Chiu [15], Cui and Singh [27], we define a
dimensionless entropy parameterM by

M ¼ ðq� 1Þl2vmax=½1þ ðq�1Þðl1 þ l2vmax)] ð28Þ

At the point of maximum velocity, the CDF F(v) = 1, then the maximum velocity is obtained
as

vmax ¼
1

l2
lq=ðq�1Þ
1 þ y0l2

y
q

q� 1

� �q=ðq�1Þ" #1�1=q

� l1

8<
:

9=
; ð29Þ

Substitution of Eqs 28 and 29 in Eq 27 gives the general expression of velocity distribution

v ¼ 1� 1

M

� �
vmax þ

vmax

M
y0½1� ð1�MÞq=ðq�1Þ�FðvÞ

y
þ ð1�MÞq=ðq�1Þ

( )1�1=q

ð30Þ

Eq 30 is the 2D velocity distribution in terms ofM, q, vmax and 2D CDF. Then, for the cross
section of the partially-filled circular pipe, the average velocity can be expressed as
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�v ¼ Q
SA

¼

Z
SA

vdSA

SA

¼ 1

SA

Z
SA

1� 1

M

� �
vmax þ

vmax

M
y0½1� ð1�MÞq=ðq�1Þ�FðvÞ

y
þ ð1�MÞq=ðq�1Þ

( )1�1
q

dSA ð31Þ

where Q is flow discharge; and SA is flow cross section area.

Location of Maximum Velocity
In partially-filled circular pipe, the position of maximum velocity is beneath the free surface
[8]. But its exact position was difficult to determine due to the secondary currents [31] in
the central region [32]. The flow near the wall is significantly affected by the boundary
shear and the shape of lateral portion wall. So the position of maximum velocity point is
different in each vertical direction. According to the Newton inner friction law, the bed-
shear stress is

t ¼ m@v=@y ð32Þ

where μ is the coefficient of kinetic viscosity. And according to the Darcy-Weisbach for-
mula, we obtain

t ¼ rl�v2=8 ð33Þ

where λ is Darcy friction factor, ρ is fluid density. Thus

@v=@y ¼ rl�v2=8m ð34Þ

On the other hand, by Eq 30, we get

@v
@y

¼ vmax

ðq� 1Þ½1� ð1�MÞq=ðq�1Þ�
Mq

� f
y0
h
1� ð1�MÞq=ðq�1Þ

i
FðvÞ

y

þð1�MÞ
q

q� 1g
1

q � y0FðvÞ
y2

þ y0

y
@FðvÞ
@y

� � ð35Þ

Taking the partial derivatives of Eq 26 with respect to y, the expression of @F(v)/@y is
obtained

@FðvÞ
@y

¼ � 8ðy0 � h0Þ
ðh0Þ2 1� x

R

� 	D=H
� �

y0

2R

� �s

� y0

2R

� �2s
" #

þ4 1� x
R

� 	D=H
� �

1� y0

h0 � 1

� �2L
" #K

s
2R

y0

2R

� �s�1

� s
R

y0

2R

� �2s�1
" # ð36Þ

Substituting Eq 34 in Eq 35, one obtains
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1 ¼ 8mvmax

rlMq�v2
ðq� 1Þ½1� ð1�MÞq=ðq�1Þ� � fy

0½1� ð1�MÞq=ðq�1Þ�FðvÞ
y

þð1�MÞ
q

q� 1g
1

q � y0FðvÞ
y2

þ y0

y
@FðvÞ
@y

� � ð37Þ

Eq 37 can be used to calculate the position of the maximum velocity in any vertical direc-
tion. For x = 0, y = h, Eq 37 is simplified as

4
s
2R

h
2R

� �s�1

� s
R

h
2R

� �2s�1
" #

¼ Mrql�v2

8mðq�1Þvmax½1� ð1�MÞq=ðq�1Þ� ð38Þ

Eq 38 is the expression of the position of maximum flow velocity on the whole section.
Where λ is the Darcy friction factor, which can be obtained by Colebrook Equation [33]. Eq 38
yields the depth of maximum velocity of the whole cross section.

Experimental Measurement
The test equipment is shown in Fig 2. An accurate electromagnetic flow meter was adopted to
measure the mean velocity of fluid, and a Laser Doppler Velocimetry (LDA) was adopted to
measure the fluid velocity of single point. The diameter of the transparent acrylic test pipe is
l = 0.024m, and the pipe wall thickness is L = 0.003m. The distance between the pipe inlet and

Fig 2. Schematic diagram of experimental apparatus

doi:10.1371/journal.pone.0151578.g002
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the observation point is 20l, and the distance between the pipe outlet and the measuring point
is 15l. The hydraulic slope of the test pipe is S = 0.0033, the pipe wall was hypothesized to be
hydro-dynamically smooth, and the roughness coefficient is nrc = 0.0085. The refractive index
of light in acrylic pipe is nλ = 1.56 given by instruction book. A laser light emitted form a 30mJ
Nd:YAG laser to illuminate the test point, and the laser pulse period is 20ns. Some glass spheres
of 40 μm diameter were injected in order to seed the flow. The glass particles were captured by
the LDA.

Since the light refractive index is different in acrylic pipe and water, there will be deviation
between the measurement position of theoretical and actual. A circular measurement guide
device was made, as shown in Fig 3, which the diameter is equal to the test pipe diameter. The
measurement point marked on the device, and then LDA measured the velocity in accordance
with the mark.

The velocity distribution of different flow depths was measured. The flow depth H varies
from 30% to 70% of D. The hydraulic radius Rh was determined from the flow area SA and the
wetted perimeter χ as

SA ¼ D2ðy� sin yÞ=8 ð39Þ

w ¼ Dy=2 ð40Þ

Rh ¼ SA=w ¼ Dð1� sin y=yÞ=4 ð41Þ

where θ is angle between pipe center and free surface.

Results and Discussion

Experimental Results
The 2D velocity distribution measured by the LDA system on the cross-sectional plane for
36.2%, 50% and 70% flow depth. Because the flow is turbulent, the position of vmax below the
free surface, and its exact position is difficult to determine. So the central axis velocity distribu-
tion function was evaluated by applying a non-linear least-square fit. Then the location of max-
imum velocity h and velocity vmax can be obtained through the function according to the
measured data, in which the velocity of each point was measured ten thousands times, and the
average value is taken as the final result.

The values resulted from the least-squares fits are listed in Table 1, for the sake of brevity,
only 36.2%, 50% and 70% flow depths are listed. Where the Reynolds, Froude andWeber num-

bers are defined [8] as Re ¼ 4�vRh=u, Fr ¼ �v=ðgDmÞ1=2 andWe ¼ r�v2Rh=s, respectively, and υ
is the kinematic viscosity, g is the gravitational acceleration, Dm is the hydraulic depth defined

Fig 3. Schematic diagram of guide device

doi:10.1371/journal.pone.0151578.g003
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as the wet area divided by the free surface width. σ is the surface tension. The present flows are
turbulent.

Obviously, both the mean and maximum velocities gradually increase with the flow depth
for the given slope. But the height of maximum velocity is not fixed, the height at 50% depth is
higher than 36.2% depth, and the height at 70% depth is lower than 50% depth.

Comparisons and Discussion
The mean velocity comparison of measured data and Manning formula are listed in Table 2,
and the locations of maximum velocity were also compared in this table.

The mean velocity measured by electromagnetic flow meter is very similar to the average
velocity obtained from the Manning equation. The locations of maximum velocity estimated
with Eq 38 are greater than the measured values, because the estimated values are obtained
with hypothetical boundary conditions, and the measured values are obtained under the actual
boundary conditions, but error between the two sets of data is very small.

The measured and estimated one-dimensional (1D) axial velocity profiles were compared in
Fig 4 for flow depths of 36.2%, 50% and 70%.

According to Fig 4, the estimated data are better consistent with the measured data at differ-
ent depth, and the maximum velocity occurring below the water surface gradually increase
with the flow depth. But in the case of 70%D water depth, there is a big difference between the
estimated value and the measured value near the water surface because the gradually contrac-
tively tube wall.

Three different vertical data series of 70% flow depth were also compared, as shown in Fig 5.
In Fig 5, the vertical axis is the relative height from the bed. It is shown in Fig 5 that the

velocity increase to maximum and decrease to some value up to the free surface, and the maxi-
mum velocity decrease with the distance from the center due to the frictional force by the side
wall. At different x coordinates, the estimated velocity profile is in good agreement with the
measured velocity profile except near the water surface.

Table 1. Least-squares fits of velocity distribution function to measured data.

H/D (%) 36.2% 50% 70%

H(mm) 8.7 12 16.8

Rh(mm) 4.8 6 7.1

Re 3465.9 5029.0 6673.7

Fr 0.2568 0.3039 0.3811

We 2.20 3.70 5.51

�v (m/s) 0.1816 0.2108 0.2364

vmax(m/s) 0.2727 0.297 0.3323

h(mm) 6.82 8.98 8.32

doi:10.1371/journal.pone.0151578.t001

Table 2. Comparison of mean velocity and location of maximum velocity.

H/D (%) 36.2% 50% 70%

H(mm) 8.7 12 16.8

�vmeasure(m/s) 0.1820 0.2111 0.2362

�vmanning(m/s) 0.1816 0.2108 0.2364

h measure (mm) 6.82 8.98 8.32

hestimate(mm) 6.85 9.02 8.36

doi:10.1371/journal.pone.0151578.t002
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The contours of the 2D velocity distribution for the whole cross section are shown in Fig 6
(A) and Fig 6(B).

From Fig 6(A), in the proximity of the pipe wall, the flow velocity is smaller due to the fric-
tion force of the wall, and the flow velocity is increased with water depth. The farther distance
from the tube wall is, the smaller gradient of the velocity is. At the region of pipe center, espe-
cially from the water surface to the maximum velocity position, the velocity gradient is less
than the gradient from maximum velocity position to pipe wall.

Compare Fig 6(A) with 6(B), below the location of maximum velocity, the velocity distribu-
tion of measured value is similar to estimated value. But above the location of maximum veloc-
ity, especially near the water surface, the velocity distribution of estimated value is not good
match to measured value, due to the flow velocity is mainly influenced by the secondary cur-
rents and gradually contractively tube wall. However, the overall trend of estimated velocity
distribution contours same as the measured profile. Compared the two contours charts, the
estimated values fit the measured values well on the whole.

Fig 4. Comparison of measured and estimated axial velocity profiles for 36.2%, 50% and 70%D.

doi:10.1371/journal.pone.0151578.g004

Fig 5. Comparison of one-dimensional velocity distribution at 70% D.

doi:10.1371/journal.pone.0151578.g005
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Comparison with other Entropy-based Velocity Distributions
With the same coordinate system and the same CDF, the profiles based on the proposed veloc-
ity distribution were compared with the profiles of Chiu’s method, as Fig 7 shows.

In the central region, both Chiu’s velocity distribution and Tsallis wavelet entropy-based
distribution can reflect the measured velocity distribution. But more closer to the lateral wall,
for example x = 6mm, Chiu’s distribution did not capture most of the measured points. It is
shown in Table 3 that the two distributions were in good agreement with measured values,
with variance no higher than 0.0296m2/s2. The velocity distribution variance based on Tsallis
wavelet entropy is larger in the middle region, and smaller near the pipe wall, but Chui’s distri-
bution is just the opposite.

Fig 6. The contours of 2D velocity distribution: (a) measured data and (b) estimated data.

doi:10.1371/journal.pone.0151578.g006

Fig 7. Comparison of different methods (a) comparison at x = 2mm (b) comparison at x = 6mm.

doi:10.1371/journal.pone.0151578.g007
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Conclusions
This research has derived a new 2D velocity distribution based on the principle of maximum
entropy for partially-filled circular pipe flow. The hypothesized CDF can reasonable
describe the probability distribution of velocity. On the basis of this assumption, the esti-
mated velocity value based on Tsallis wavelet entropy is very close to the experimental mea-
sured value. The estimation of parametersM and q are determined by mean velocity,
maximum velocity and maximum velocity position at two different water depth. Compared
with other entropy-based velocity distributions, the velocity distribution method proposed
in this paper can reasonably describe the velocity distribution in most region expect near the
water surface. Under same boundary conditions, the CDF of velocity distribution have a cer-
tain similarity for different hydraulic diameters, so the velocity distribution should also have
a certain similarity. The assumption was already verified at 24mm and 50mm diameters
pipe by experiments.

In the future, we will continue to optimize the velocity distribution model of partially-filled,
and reduce the precondition of solving the model. Also, we intend to employ the model to pre-
dict the velocity distribution in partially-filled electromagnetic flow meter. To do so, the influ-
ence of hydraulic slope, pipe wall friction and other facts on the velocity distribution must be
considered in the model. Hence, this paper can be also seen as a preliminary study for working
on the latter problem.

Appendix
In this appendix, the derivation of the velocity distribution function is presented. We start the
derivation from the relation of velocity distribution function and CDF. Taking the partial
derivatives of F(v) with respect to x and y, one obtains

@FðvÞ
@x

¼ pðvÞ @v
@x

¼ @v
@x

1

q
ð1� l1 � l2vÞ þ l1 þ l2v

� �1=ðq�1Þ
ðA1Þ

@FðvÞ
@y

¼ pðvÞ @v
@y

¼ @v
@y

1

t
ð1� l1 � l2vÞ þ l1 þ l2v

� �1=ðq�1Þ
ðA2Þ

Now defining a new variable

w ¼ 1

q
þ q� 1

q
ðl1 þ l2vÞ

� � q
q�1

ðA3Þ

Taking the partial derivatives of w with respect to x and y, the following equations are
obtains

Table 3. Variance, in m2/s2, of Velocity Distribution for Different Methods.

x(mm) Tsallis wavelet entropy-based velocity Chiu’s(1988) velocity

0 0.0248 0.0170

2 0.0223 0.0155

4 0.0124 0.0205

6 0.0173 0.0262

8 0.0170 0.0296

doi:10.1371/journal.pone.0151578.t003
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@w
@x

¼ l2

1

q
þ q� 1

q
ðl1 þ l2vÞ

� � 1
q�1

:
@v
@x

ðA4Þ

@w
@y

¼ l2
1

q
þ q� 1

q
ðl1 þ l2vÞ

� � 1
q�1

:
@v
@y

ðA5Þ

Substitution of Eqs A4 and A5 into Eqs A1 and A2 gives the following relationship between
F(v) and w

@w=@x ¼ l2@FðvÞ=@x ðA6Þ

@w=@y ¼ l2@FðvÞ=@y ðA7Þ

Eqs A6 and A7 can be integrated using the Leibniz ruleZ ðx;yÞ

ð0;0Þ

@w
@x

dx þ @w
@y

dy ¼ wðx; yÞ � wð0; 0Þ ðA8Þ

Because the point (0,0) lie on the pipe wall, and v(x, y) at the point is zero, then Eq A8
becomes

wðx; yÞ�wð0; 0Þ ¼ wðx; yÞ � 1

q
þ q� 1

q
l1

� � q
q�1

ðA9Þ

The definite integral of the left part of Eq A8 is calculated at a generic point (x, y), which is
identified by means of a polygonal curve that start from origin (0,0), pass through the point on

the wall ðx;R� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p Þ, and ends at (x, y). The CDF is zero at pipe wall below water surface,

and the CDF is constantly zero at point (0,0) to ðx;R� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p Þ, thenZ ðx;yÞ

ð0;0Þ

@w
@x

dx þ @w
@y

dy ¼
Z ðx;yÞ

ð0;0Þ
l2
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dy
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@x
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0

y
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The right side of Eq A10 can be equated to the right side of Eq A9 to obtain

wðx; yÞ ¼ y0l2

y
FðvÞ þ 1

q
þ q� 1

q
l1

� � q
q�1

ðA11Þ

Substituting Eqs 23 and A3 into Eq A11 gives the expression of velocity distribution

v ¼ 1

l2

lq=ðq�1Þ
1 þ y0l2FðvÞ

y
q

q� 1

� �q=ðq�1Þ" #1�1=q

� l1

8<
:

9=
; ðA12Þ

Eq A12 is the 2D velocity distribution equation in partially-filled circular pipes based on the
Tsallis wavelet entropy.
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Supporting Information
S1 Fig. Experimental Equipment. The moving accuracy of 3D traversing mechanism is
0.01mm.
(TIF)

S2 Fig. Schematic diagram of measurement reference point. Taking the intersection point of
fluid section and axial center line as the reference point. The determining of reference point
must be carried out in waterless condition.
(TIF)

S3 Fig. Schematic diagram of the measuring path. Take 50% depth ratio for example.
(TIF)

S4 Fig. Schematic diagram of the initial measurement point. Take 50% depth ratio for exam-
ple. (a) The position of initial measurement point. In actual fluid flow, the initial measurement
point is not on the water surface. (b) The data distribution of the initial measurement point.
(TIF)

S5 Fig. The distribution of experimental data of single point. The velocity of each point was
measured ten thousands times, and some unreasonable points were deleted according to the
hydraulics knowledge, and then the average value is taken as the final result. In the figure, the
symbols “-” only represent the direction.
(TIF)

S1 File. The experimental data of first measurement point at the condition of 70% depth
ratio.
(XLS)

S2 File. The experimental data of two-dimensional velocity distribution at the condition of
70% depth ratio.
(XLS)
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