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Abstract: In light of recent advancements in machine learning, personalized medicine using pre-
dictive algorithms serves as an essential paradigmatic methodology. Our goal was to explore an
integrated machine learning and genome-wide analysis approach which targets the prediction of
probable major depressive disorder (MDD) using 9828 individuals in the Taiwan Biobank. In our
analysis, we reported a genome-wide significant association with probable MDD that has not been
previously identified: FBN1 on chromosome 15. Furthermore, we pinpointed 17 single nucleotide
polymorphisms (SNPs) which show evidence of both associations with probable MDD and poten-
tial roles as expression quantitative trait loci (eQTLs). To predict the status of probable MDD, we
established prediction models with random undersampling and synthetic minority oversampling
using 17 eQTL SNPs and eight clinical variables. We utilized five state-of-the-art models: logistic
ridge regression, support vector machine, C4.5 decision tree, LogitBoost, and random forests. Our
data revealed that random forests had the highest performance (area under curve = 0.8905 ± 0.0088;
repeated 10-fold cross-validation) among the predictive algorithms to infer complex correlations
between biomarkers and probable MDD. Our study suggests that an integrated machine learning
and genome-wide analysis approach may offer an advantageous method to establish bioinformatics
tools for discriminating MDD patients from healthy controls.

Keywords: genome-wide association study; machine learning; major depressive disorder; personal-
ized medicine; single nucleotide polymorphisms

1. Introduction

Significant progress has been made in the interdisciplinary fields of personalized
medicine, machine learning, and psychiatry in recent years [1–3]. In personalized medicine
research, machine learning models have been investigated to develop predictive algorithms
that can help facilitate studies of how genetic variants and clinical variables can impact
disease status and treatment outcomes in patients [1–3]. Advancements in machine learning
models have shown promising potential in terms of personalized medicine for patients with
psychiatric disorders [1–3]. For instance, machine learning models have been employed to
derive clinical treatment outcomes in patients with major depressive disorder (MDD) [4,5]
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as well as disease status in patients with schizophrenia [6,7] using clinical characteristics
and genetic variants such as single nucleotide polymorphisms (SNPs). Due to their wide
range of potential applications, it has been suggested that machine learning models can
play a pivotal role in the future of personalized medicine [8–10].

In the arena of personalized medicine, the use of machine learning models to predict
disease status in patients with MDD has been a focus of attention. To list several examples,
Kessler et al. [11] employed an ensemble regression tree machine learning approach to
forecast the persistence and severity of MDD using self-reported survey data (area under
the receiver operating characteristic curve (AUC) = 0.71 for forecasting high persistence).
Nemesure et al. [12] used an extreme gradient boosting machine learning method to de-
tect MDD using electronic health records (AUC = 0.67). Qi et al. [13] demonstrated an
extreme gradient boosting machine learning method to predict the severity of MDD using
microRNA expression data (AUC = 0.76). Ciobanu et al. [14] proposed a fuzzy forests ma-
chine learning model which was able to estimate recurrent MDD with an accuracy of 63%
in an elderly population using transcriptome data. Liu et al. [15] utilized an elastic net ma-
chine learning algorithm to predict MDD using self-reported questionnaires (AUC = 0.78).
Finally, a recent study by Arloth et al. [16] reported an integrated machine learning and
genome-wide analysis approach to identify regulatory SNPs which are associated with
MDD using expression quantitative trait loci (eQTLs) and methylation quantitative trait
loci information.

Numerous genome-wide association studies (GWASs) have been performed to iden-
tify genetic variants associated with MDD. For instance, Ripke et al. [17] performed a
GWAS meta-analysis study of MDD in individuals of European ancestry (9240 MDD cases
and 9519 controls) and found no SNPs at genome-wide significance level. In a subse-
quent GWAS meta-analysis study, Wray et al. [18] detected 44 variants at genome-wide
significance level for MDD in individuals of European ancestry (135,458 MDD cases and
344,901 controls). In a recent GWAS meta-analysis study, Howard et al. [19] identified
102 genome-wide significant variants in European populations (246,363 MDD cases and
561,190 controls). In addition, only a handful of studies have reported sex-specific loci for
male or female MDD [20]. For instance, Powers et al. [21] suggested that SNP rs6602398 in
IL2RA was closely related to male MDD in an African American GWAS. Wang et al. [22]
showed that SNPs rs619002 and rs644926 in EHD3 were linked to female MDD in a
Chinese population.

In previous studies [4,5], machine learning models were leveraged to estimate antide-
pressant treatment outcomes with the top-rated key SNPs acquired from a GWAS. Here, we
investigated the feasibility of likely loci by performing a GWAS of probable MDD using a
sample of 9828 Taiwanese individuals in the Taiwan Biobank. From our data we identified
a genome-wide significant association with probable MDD that has not been previously
reported: FBN1 on chromosome 15. In our analysis, we further discovered associations be-
tween probable MDD and SNPs in 17 genes, which may also play a potential role as eQTLs.
We subsequently combined 17 eQTL SNPs and eight clinical variables to optimally forecast
probable MDD using machine learning models, including logistic ridge regression, support
vector machine (SVM), C4.5 decision tree, LogitBoost, and random forests. Moreover, we
utilized random undersampling [23] and synthetic minority oversampling [24] techniques
to cope with imbalanced data at the data level. To our knowledge, no previous studies
have investigated predictive algorithms for probable MDD with random undersampling
and synthetic minority oversampling techniques. We found that our random forests model
with synthetic minority oversampling showed the best performance in predicting probable
MDD based on 17 eQTL SNPs and eight clinical variables.

2. Materials and Methods

2.1. Study Population

Our original study cohort was composed of 10,939 Taiwanese subjects in the Taiwan
Biobank [25]. First, we excluded participants who reported a physician diagnosis of the
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following psychiatric disorders: bipolar disorder, schizophrenia, dementia, and Parkinson’s
disease. We also excluded participants who had a score of greater than or equal to 3 on the
Anxiety subscale of the Patient Health Questionnaire-4 (PHQ-4) scale [26]. Consequently,
we removed 1111 subjects. We then defined the probable MDD and control groups as
follows. For the probable MDD group, we included the remaining participants who
reported a physician diagnosis of MDD or had a score of greater than or equal to 3 on
the Depression subscale of the PHQ-4. For the control group, we included the rest of the
participants who neither reported a physician diagnosis of MDD nor had a score of less
than 3 on the Depression subscale of the PHQ-4. As a result, there were 9828 subjects for
further analysis, with 2457 subjects in the probable MDD group and 7371 subjects in the
control group.

Ethical approval for the study was granted by the Institutional Review Board of
the Taiwan Biobank before performing the study (approval number: 201506095RINC).
The approved informed consent form was signed by each subject. All experiments were
achieved by means of proper regulations and guidelines.

As part of the questionnaire, participants were asked if they had had physical activ-
ity recently, if they were current alcohol drinkers or ever-smokers, and their education
status [27]. Physical activity was defined as a participant having over 30 min of exercise
activity each time, over 3 times a week [27]. A current alcohol drinker was defined as cur-
rently drinking 150 mL of alcohol per week for more than six months [27]. An ever-smoker
was defined as a person who has ever been a cigarette smoker. A participant’s education
status included seven categories: no education (illiterate), homeschooling, elementary
school, middle school, high school, college, and graduate school.

2.2. Genotyping Data and Quality Controls

DNA was extracted from blood samples by employing QIAamp DNA blood kits
following the manufacturer’s instructions (Qiagen, Valencia, CA, USA). The quality of the
isolated genomic DNA was evaluated with agarose gel electrophoresis, and the quantity
was measured by spectrophotometry [28]. SNP genotyping was conducted by using custom
Taiwan BioBank chips and an Axiom Genome-Wide Array Plate System (Affymetrix,
Santa Clara, CA, USA). The custom Taiwan BioBank chips were created to collect genetic
profiles in Taiwanese subjects by utilizing SNPs on the Axiom Genome-Wide CHB 1 Array
(Affymetrix, Santa Clara, CA, USA) and the Human Exome BeadChip (Illumina, Inc., San
Diego, CA, USA) [29].

In this study, we implemented quality control procedures for subsequent analy-
sis [27,30], including the following quality criteria for SNP exclusion: failure to achieve
Hardy–Weinberg equilibrium (with a p value less than 1 × 10−6), minor allele frequency
(MAF) less than 1%, or a genotyping call rate less than 90%. We determined p values for
Hardy–Weinberg equilibrium, MAFs, and genotyping call rates using PLINK [31]. After
conducting the quality control procedures, there were a total of 477,260 SNPs remaining.

2.3. Statistical Analysis

The Kruskal–Wallis test was performed to appraise the difference in the means of
two continuous variables [7]. We conducted the chi-square test for categorical data [25].
The criterion for significance was set at p < 0.05 for all tests. Data are presented as the
mean ± standard deviation.

In addition, we performed HaploReg (compbio.mit.edu/HaploReg accessed on 11 April
2021) [32] to measure if there is a functional role as eQTLs for the SNPs in the specific genes.

The Manhattan and quantile-quantile (Q-Q) plots were created using the R package ‘qqman’.

2.4. Key eQTL SNPs

For predictive modeling of probable MDD, we first selected top-rated SNPs showing
evidence of association with probable MDD at a significant association level of p < 1 × 10−4

in an odds ratio analysis. We next verified these selected SNPs using HaploReg (compbio.
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mit.edu/HaploReg accessed on 11 April 2021) [32] to see if these SNPs could be considered
as eQTLs. As a result, the final selected SNPs are eQTL SNPs that are associated with
probable MDD at a significant association level of p < 1 × 10−4 in an odds ratio analysis.

2.5. An Integrated Machine Learning and Genome-Wide Analysis Approach

Figure 1 illustrates the combination of the GWAS and machine learning models with
two techniques for imbalanced datasets. We employed five prediction algorithms (see
Section 2.6.) for the prediction of probable MDD. We also utilized a random undersam-
pling technique [23] and a synthetic minority oversampling technique [24] for handling
imbalanced datasets: the former technique eliminates instances in the majority class to
balance class distribution, and the latter is implemented by creating synthetic minority
class instances. We combined the machine learning algorithms with these two techniques.
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Figure 1. The schematic illustration of an integrated machine learning and genome-wide analysis
approach. First, a GWAS is conducted to obtain a set of top-rated SNPs (p < 1 × 10−4 in an odds
ratio analysis) in the Taiwan Biobank. Second, HaploReg (compbio.mit.edu/HaploReg, accessed
on 11 April 2021) [32] is used to verify if these top-rated SNPs can be considered as eQTLs. Then,
random undersampling and synthetic minority oversampling techniques are employed to eliminate
instances in the majority class for balancing class distribution. Finally, five machine learning models
(logistic ridge regression, SVM, C4.5 decision tree, LogitBoost, and random forests) with the repeated
10-fold cross-validation approach are utilized to predict probable MDD using eQTL SNPs and
clinical variables. eQTLs = expression quantitative trait loci; GWAS = genome-wide association
study; MDD = major depressive disorder; SNPs = single nucleotide polymorphisms; SVM = support
vector machine.

2.6. Machine Learning Algorithms for Benchmarking

For the benchmarking task in the present study, we employed five state-of-the-art
machine learning algorithms for comparison: logistic ridge regression, SVM, C4.5 decision
tree, LogitBoost, and random forests. We performed the analyses for these five machine
learning algorithms using WEKA software (which is available from www.cs.waikato.ac.
nz/ml/weka/ accessed on 11 April 2021) [33] and a computer with Intel (R) Core (TM)
i5-4210U, 4 GB RAM, and Windows 7. The tuning parameters of WEKA were determined
at the specific values using a grid search approach [5,34].

compbio.mit.edu/HaploReg
compbio.mit.edu/HaploReg
compbio.mit.edu/HaploReg
www.cs.waikato.ac.nz/ml/weka/
www.cs.waikato.ac.nz/ml/weka/
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The logistic ridge regression model utilizes the ridge estimation technique to enhance
the parameter estimates and to reduce the error produced by further predictions [35]. The
main method to obtain ridge parameters is the cross-validation approach, so that the model
can forecast new observations more accurately. Here, the tuning parameters of WEKA
were 10 for the ridge parameter and 100 for the batch size.

The SVM model [36] is a common method for pattern recognition and classification [7].
Given a training set of instance-label pairs, the SVM model leverages a kernel function to
map the training vectors into a higher dimensional space [36,37]. In this higher dimensional
space, the SVM model then finds a linear separating hyperplane with the maximal margin.
In this study, we applied the polynomial kernel with the exponent value of 1.0 [5].

The C4.5 decision tree model builds decision trees top-down and prunes them using
the concept of information entropy [33]. First, the tree is constructed by finding the root
node (for example, SNPs) that is the most discriminative for differentiating “probable MDD”
from “healthy control”. Then, the best single feature test is decided by the information
gain and by choosing a feature (for example, SNPs) to split the data into subsets. Here,
the tuning parameters of WEKA were 0.1 for the confidence factor and 4 for the minimum
number of instances per leaf node [38].

The LogitBoost model is a boosting ensemble model, which incorporates the perfor-
mance of many weak predictive models to produce a robust predictive model with higher
accuracy [5,7]. The base predictive model we utilized was linear regression. Here, the
tuning parameters of WEKA were 0.5 for the shrinkage parameter, 100 for the batch size,
3.0 for the Z max threshold, and 10 for the number of iterations.

The random forests model builds a collection of decision trees during training, and
then produces the class that is the mode of the classes among the individual trees [39].
Here, the tuning parameters of WEKA for the random forests model were 100 for the batch
size and 300 for the number of iterations.

2.7. Evaluation of the Predictive Performance

In this study, we applied one of the most common criteria to calculate the performance
of the predictive models, utilizing the receiver operating characteristic (ROC) methodology
to determine the area under the ROC curve (AUC) [37,38,40]—the higher the AUC, the
better the predictive model [38,40]. We also calculated sensitivity (that is, the proportion
of correctly predicted probable MDD subjects of all tested probable MDD subjects) and
specificity (that is, the proportion of correctly predicted healthy controls of all the tested
healthy controls). Additionally, we applied the repeated 10-fold cross-validation approach
to assess the generalization of the predictive models [37,38,40]. The whole cohort was
randomly divided into ten individual partitions. Then, a training cohort (i.e., nine-tenths of
the partitions) and a testing cohort (i.e., the remaining tenth of the partitions) were used to
estimate the predictive performance. Next, the previous step was repeated nine more times
by choosing different nine-tenths of the partitions for the training cohort and a different
tenth of the partitions for the testing cohort. Lastly, the final estimation was evaluated by
averaging the aforementioned ten runs.

3. Results

3.1. The Study Cohort in the Taiwan Biobank

There were 9828 participants in the Taiwanese population, including 2457 subjects with
probable MDD and 7371 healthy individuals. As shown in Table 1, age distributions were
different between the two groups (p = 0.009). The mean age (51.7 ± 10.0 years) of probable
MDD subjects was older than that of the healthy controls (51.0 ± 10.5 years). Gender
distributions were also different between probable MDD subjects and healthy controls
(p < 0.001). In addition, education status, marital status, social relationship (assessed by
whether or not the subject lived alone), employment status, and status of ever-smoker were
significantly different between probable MDD patients and healthy controls (Table 1; all
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p < 0.001). However, there were no significant differences between these two groups for
current alcohol drinker (p = 0.798) and physical activity (p = 0.297) (Table 1).

Table 1. Demographic and clinical characteristics of study subjects.

Characteristic Overall Probable MDD Control p

No. of subjects, n 9828 2457 7371
Mean age ± SD, years 51.2 ± 10.4 51.7 ± 10.0 51.0 ± 10.5 0.009

Male (%) 25.2% 19.8% 26.8% <0.001
Education 1, n

(seven categories)
12/7/619/835/
3133/4402/811

3/2/149/247/
857/1022/174

9/5/470/588
2276/3380/637 <0.001

Married, n 7006 1486 5520 <0.001
Lived alone, n 943 348 595 <0.001

Currently employed, n 4719 252 4467 <0.001
Current alcohol

drinker, n 433 106 327 0.798

Ever-smoker, n 2312 701 1611 <0.001
Any physical activity, n 4413 1081 3332 0.297

MDD = major depressive disorder; SD = standard deviation. Data are presented as mean ± standard deviation. 1 Education status is
defined as the following seven categories: no education (illiterate), homeschooling, elementary school, middle school, high school, college,
and graduate school.

3.2. GWAS of Probable MDD in the Taiwanese Population

We conducted a GWAS of probable MDD in the Taiwan Biobank using a sample of
9828 individuals. Figure 2 illustrates the Manhattan plots of the association p values for the
SNPs. The test statistics were properly calibrated genome-wide, as illustrated by the Q-Q
plot of the association results (Supplementary Figure S1) and a genomic control inflation
factor of 0.963.
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a higher point (higher negative log10 p value) demonstrates a more significant association. The
red horizontal line is displayed as the genome-wide significance level (p = 5 × 10−8). The blue
horizontal line is displayed as the significance level of p = 1 × 10−4. Hence, points above the blue
horizontal line illustrate SNPs with a p value of less than 1 × 10−4. Y-axis: -log10 (p value) of each
SNP; X-axis: chromosomes demonstrated with blue and orange colors. MDD = major depressive
disorder; SNPs = single nucleotide polymorphisms.
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SNP rs193922209 (p = 1.57 × 10−19) in the intron region of the FBN1 gene on chromo-
some 15 at 15q21.1 is novel, and is associated with probable MDD at the genome-wide
significance level (Supplementary Table S1). Supplementary Table S2 shows the genotyp-
ing call rate and p value for Hardy–Weinberg equilibrium for SNP rs193922209. To our
knowledge, this is the first GWAS to discover the genome-wide significance level variant
in the FBN1 gene for probable MDD. We confirmed that these GWAS results are novel for
probable MDD using the NHGRI-EBI GWAS Catalog [41].

We further investigated sex-specific SNPs for probable male and female MDD. SNP
rs114542799 (p = 2.95 × 10−8) in the intron region of the ALDH1L1 gene on chromosome
3 at 3q21.3 is novel and is associated with probable female MDD at the genome-wide
significance level (Supplementary Table S3). Supplementary Table S4 shows the genotyp-
ing call rate and p value for Hardy–Weinberg equilibrium for SNP rs114542799. To our
knowledge, this is the first GWAS to discover the genome-wide significance level variant
in the ALDH1L1 gene for probable female MDD. We confirmed that these GWAS results
are novel for probable female MDD using the NHGRI-EBI GWAS Catalog [41]. We did not
identify sex-specific SNPs for probable male MDD.

3.3. Key eQTL SNPs for Probable MDD Identified in the Taiwanese Population

In the next step, we investigated the association between probable MDD and key
eQTL SNPs assessed in the GWAS study (see Methods). First, we identified SNPs which
reached the significance level of p < 1 × 10−4 (Figure 2). We then directly verified these
significant SNPs to see if they have likely roles as eQTLs. For further investigation in the
subsequent analyses, we obtained 17 eQTL SNPs showing likely roles as eQTLs as well as
evidence of associations with probable MDD per se (Table 2).

Table 2. Odds ratio analysis with odds ratios after adjustment for covariates between probable MDD and 17 eQTL SNPs.

CHR Gene SNP A1 A2 Region MAF OR 95% CI p

1 LINC00624-BCL9 rs11240075 T C intergenic 0.247 1.68 (1.34–2.10) 5.60 × 10−6

1 TOMM40L,
MIR5187 rs3813628 A C 5′-UTR 0.465 0.77 (0.69–0.86) 2.04 × 10−6

1 NR1I3 rs2307424 G A synonymous 0.476 0.80 (0.72–0.89) 3.26 × 10−5

1 CEP350-QSOX1 rs12040314 G A intergenic 0.247 0.83 (0.76–0.91) 8.03 × 10−5

3 LOC105377123 rs1443524 G A intronic 0.326 1.39 (1.18–1.63) 5.18 × 10−5

5 CTNND2-RNU6-
679P rs12516830 T C intergenic 0.250 0.82 (0.75–0.90) 2.79 × 10−5

5 FBN2 rs11241959 G A intronic 0.180 0.82 (0.74–0.90) 4.94 × 10−5

6 MCUR1 rs3734669 T G 3′-UTR 0.453 0.80 (0.72–0.89) 5.87 × 10−5

8 BIN3 rs6558174 A G intronic 0.270 1.48 (1.22–1.81) 9.11 × 10−5

12 RPH3A rs4767012 G A intronic 0.275 0.72 (0.61–0.85) 7.34 × 10−5

13 CYCSP33-PARP4 rs9511242 A G intergenic 0.349 0.83 (0.75–0.91) 7.61 × 10−5

13 RAB20-NAXD rs9559849 A G intergenic 0.470 1.29 (1.15–1.44) 1.68 × 10−5

15 PWRN1 rs7403037 G T intronic 0.160 0.56 (0.43–0.74) 5.13 × 10−5

16 METRN rs66649828 A G intronic 0.405 1.21 (1.10–1.33) 6.98 × 10−5

16 LOC101928474 rs7188498 A G intronic 0.183 0.60 (0.48–0.75) 6.40 × 10−6

19 EEF1A1P7-
LINC01531 rs12978607 A C intergenic 0.490 1.24 (1.12–1.38) 3.19 × 10−5

19 PTGIR rs11083840 G T intronic 0.416 0.79 (0.70–0.88) 5.12 × 10−5

A1 = minor allele, A2 = major allele, CHR = chromosome, CI = confidence interval, MAF = minor allele frequency, MDD = major depressive
disorder, OR = odds ratio. Analysis was obtained after adjustment for covariates including age and gender.

As shown in Table 2, the top-rated 17 eQTL SNPs encompass rs11240075 near LINC00624-
BCL9, rs3813628 in TOMM40L (or MIR5187), rs2307424 in NR1I3, rs12040314 near CEP350-
QSOX1, rs1443524 in LOC105377123, rs12516830 near CTNND2-RNU6-679P, rs11241959 in
FBN2, rs3734669 in MCUR1, rs6558174 in BIN3, rs4767012 in RPH3A, rs9511242 near CYCSP33-
PARP4, rs9559849 near RAB20-NAXD, rs7403037 in PWRN1, rs66649828 in METRN, rs7188498
in LOC101928474, rs12978607 near EEF1A1P7-LINC01531, and rs11083840 in PTGIR. For
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instance, for SNP rs3813628 in the 5′-UTR region of the TOMM40L (or MIR5187) gene, there
was an indication of an association with probable MDD after adjustment of covariates such
as age and gender (Table 2; OR = 0.77; 95% CI = 0.69–0.86; p = 2.04 × 10−6). Supplementary
Table S5 shows genotyping call rates and p values for Hardy–Weinberg equilibrium for these
17 eQTL SNPs.

Supplementary Table S6 shows the likely roles of the above 17 SNPs as eQTLs. For
instance, rs66649828 in METRN is involved in regulating expressions of its own gene in
various tissues, such as brain cerebellar hemisphere, brain cerebellum, and nerve tibial
tissues [42] (Supplementary Table S4). Note that there was no potential mechanism for
rs193922209 in FBN1 or for rs114542799 in ALDH1L1 as an eQTL.

Supplementary Table S7 summarizes SNPs that were associated with MDD in the previous
GWAS reports from the NHGRI-EBI GWAS Catalog [41]. Among these SNPs, rs12516830 in the
CTNND2-RNU6-679P locus identified in this study is nearby to three SNPs, namely rs6893200,
rs2964802, and rs2964802, in the DAP-CTNND2 locus from a previous GWAS report [43]
(Supplementary Table S8). In addition, rs9559849 in the RAB20-NAXD locus is nearby to
rs4438172 in the RPL21P107-LINC00567 locus (Supplementary Table S8).

3.4. Prediction of Probable MDD with a Random Undersampling Technique

We employed 25 biomarkers, including the aforementioned 17 key eQTL SNPs and
eight clinical variables, to build the predictive models for differentiating probable MDD
from healthy controls by employing five machine learning algorithms with random un-
dersampling (see Methods). The selected eight clinical variables encompass age, gender,
education status, marital status, social relationship (assessed by whether the individual
lived alone), employment status, status of ever-smoking (Table 1; all p < 0.001), and current
alcohol drinking (Table 1; p = 0.798). The clinical variable regarding current alcohol drink-
ing was included as alcohol consumption might contribute to any underlying condition
of sadness/melancholy in MDD subjects with a comorbid condition of alcoholism [44,45].
The clinical variable regarding physical activity was not included, as this clinical variable
was not linked to probable MDD in this study (Table 1; p = 0.297).

To evaluate the performance of our approach for predictive models for probable MDD,
we compared five state-of-the-art methods, namely logistic ridge regression, SVM, C4.5
decision tree, LogitBoost, and random forests (Table 3). In terms of AUC for probable MDD,
the logistic ridge regression model obtained comparable performance as the LogitBoost
model (Table 3; AUC = 0.8242 ± 0.0176 and 0.8246 ± 0.0176, respectively). These two
models outperformed SVM, C4.5 decision tree, and random forests in terms of AUC
(Table 3). Supplementary Figure S2 shows the comparison of ROC plots between logistic
ridge regression and the other four benchmarking models. Based on the ROC plots, logistic
ridge regression had a similar performance as LogitBoost as the two curves were overlaid
(Supplementary Figure S2).

Table 3. The results of repeated 10-fold cross-validation experiments with a random undersampling technique for differenti-
ating MDD patients from healthy individuals, using logistic ridge regression, SVM, C4.5 decision tree, LogitBoost, and
random forests with biomarkers including eight clinical variables and 17 SNPs.

Algorithm AUC Sensitivity Specificity

Logistic ridge regression 0.8242 ± 0.0176 0.7618 ± 0.0177 0.7618 ± 0.0177
SVM 0.7576 ± 0.0185 0.7576 ± 0.0185 0.7576 ± 0.0185

C4.5 decision tree 0.7586 ± 0.0203 0.7571 ± 0.0187 0.7571 ± 0.0187
LogitBoost 0.8246 ± 0.0176 0.7619 ± 0.0171 0.7619 ± 0.0171

Random forests 0.8179 ± 0.0185 0.7588 ± 0.0186 0.7588 ± 0.0186

AUC = the area under the receiver operating characteristic curve; MDD = Major Depressive Disorder; SVM = support vector machine.
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3.5. Prediction of Probable MDD with a Synthetic Minority Oversampling Technique

Next, we employed the aforementioned 25 biomarkers to build predictive models for
differentiating probable MDD from healthy controls by employing five machine learning
algorithms with synthetic minority oversampling (see Methods). Table 4 shows experiment
results for predicting probable MDD with synthetic minority oversampling using five
state-of-the-art methods: logistic ridge regression, SVM, C4.5 decision tree, LogitBoost, and
random forests. In terms of AUC for probable MDD, the random forests model obtained the
maximal AUC among the predictive models for probable MDD, where the best AUC was
0.8905 ± 0.0088 (Table 4), outperforming logistic ridge regression, SVM, C4.5 decision tree,
and LogitBoost in terms of AUC (Table 4). Supplementary Figure S3 shows the comparison
of ROC plots between random forests and the other four benchmarking models.

Table 4. The results of repeated 10-fold cross-validation experiments with a synthetic minority oversampling technique for
differentiating MDD patients from healthy individuals, using logistic ridge regression, SVM, C4.5 decision tree, LogitBoost,
and random forests with biomarkers such as eight clinical variables and 17 SNPs.

Algorithm AUC Sensitivity Specificity

Logistic ridge regression 0.8557 ± 0.0100 0.7772 ± 0.0126 0.7674 ± 0.0146
SVM 0.7681 ± 0.0061 0.7592 ± 0.0082 0.7771 ± 0.0060

C4.5 decision tree 0.8370 ± 0.0110 0.7845 ± 0.0104 0.7636 ± 0.0124
LogitBoost 0.8559 ± 0.0100 0.7778 ± 0.0127 0.7688 ± 0.0145

Random forests 0.8905 ± 0.0088 0.8072 ± 0.0102 0.7860 ± 0.0124

AUC = the area under the receiver operating characteristic curve; MDD = Major Depressive Disorder; SVM = support vector machine.

After comparing all the predictive models (Tables 3 and 4), the random forests model
with synthetic minority oversampling had the highest performance overall. Our anal-
ysis indicates that the random forests model is well-suited for predictive models for
probable MDD.

4. Discussion

To our knowledge, this is the first study to date to explore an integrated machine
learning and genome-wide analysis approach for the prediction of probable MDD among
Taiwanese individuals in the Taiwan Biobank using eQTL SNPs and clinical biomarkers.
Moreover, we observed for the first time that the FBN1 gene on chromosome 15 is associated
with probable MDD at genome-wide significance level in Taiwanese individuals. In
addition, we conducted the first study to foresee plausible biomarkers, including 17 eQTL
SNPs and eight clinical variables, in influencing probable MDD. The findings indicate
that the random forests model with synthetic minority oversampling surpassed logistic
ridge regression, SVM, C4.5 decision tree, and LogitBoost in terms of AUC for forecasting
probable MDD.

Intriguingly, the present study is the first to raise the possibility that FBN1 is sig-
nificantly associated with probable MDD. The significant association between FBN1 and
probable MDD reached the genome-wide significance level. We confirmed that these GWAS
results are novel for probable MDD using the NHGRI-EBI GWAS Catalog [41]. The FBN1
gene, located on chromosome 15 at 15q21.1, primarily encodes the fibrillin protein, which
is an essential component of elastic fibers in connective tissue throughout the body [46].
The FBN1 gene is a strong candidate for probable MDD, as this gene has been previously
implicated in mental disorders. For example, Djurovic et al. [47] reported that FBN1 was
moderately associated with bipolar disorder in a Norwegian GWAS, where bipolar disorder
is a mental illness that causes severe high (mania) and low (depression) moods.

We pinpointed 17 eQTL SNPs in or near 17 loci which possess potential eQTL mech-
anisms, as well as associations with probable MDD, where the 17 loci are LINC00624-
BCL9, TOMM40L (or MIR5187), NR1I3, CEP350-QSOX1, LOC105377123, CTNND2-RNU6-
679P, FBN2, MCUR1, BIN3, RPH3A, CYCSP33-PARP4, RAB20-NAXD, PWRN1, METRN,
LOC101928474, EEF1A1P7-LINC01531, and PTGIR. It has been indicated that integrating
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regulatory information (such as eQTLs) enhances the power to identify functional SNPs
that may play a key role in the etiology of the disease [16]. In agreement with our results,
Li et al. [48] suggested that the BCL9 gene confers risk of MDD in the Chinese Han pop-
ulation. Nivard et al. [49] also reported evidence for an association between CTNND2
and MDD using GWAS data from the Psychiatric Genomics Consortium. In addition,
Dunn et al. [50] showed that SNP rs4652467 near CEP350 interacts with stressful life events
to influence MDD in an African American GWAS. In contrast, to the best of our knowledge,
no previous studies have shown that the other novel loci may contribute to MDD.

Another intriguing finding was that seven clinical variables were discovered to be
substantially linked to probable MDD: age, gender, education status, marital status, social
relationship (assessed by whether the individual lived alone), employment status, and
status of ever-smoking. In line with our study, it has been previously suggested that marital
status (or relationship status) is associated with the development and severity of MDD [51].
A link between MDD and unemployment was reported in an international study [52]
and a Finland study [53]. It has also been shown that MDD and smoking are highly
correlated [54,55]. Murcia et al. [56] observed that educational inequalities contributed to
MDD in a French national study. Finally, it has been indicated that social relationship [57],
age [58], and gender [59] are correlated with MDD.

The present study is the first to raise the possibility that ALDH1L1 is significantly
associated with probable female MDD. Furthermore, the significant association between
ALDH1L1 and probable female MDD reached the genome-wide significance level. We
confirmed that these GWAS results are novel for probable female MDD using the NHGRI-
EBI GWAS Catalog [41]. The ALDH1L1 gene, located on chromosome 3 at 3q21.3, is an
astrocyte marker, where astrocytes are glial cells in the central nervous system and linked
to various brain functions and MDD [60]. The ALDH1L1 gene is a strong candidate for
probable MDD, as this gene has been previously implicated in MDD and suicide [61,62].

This study had some limitations. First, due to a lack of time series data, we were unable
to perform time series-based deep learning models such as one-dimensional convolutional
neural network and long short-term memory models [63]. Similarly, due to a lack of time
series data, we were unable to divide training and testing datasets separately according to
a timeline, for example, patients before 2015 for training and the patients beyond 2015 for
testing in the cross-validation procedure. It is hypothesized that using the whole dataset
without a certain timeframe in the cross-validation procedure might disguise any cohort-
specific effects on how MDD might manifest in the patients as time passed [64–66]. On
the other hand, the main advantage of machine learning methods over deep learning
approaches is that extensive computing resources (i.e., general-purpose computing on
graphics processing units), which are normally utilized in deep learning algorithms, are in
general not required for implementing machine learning models [67,68].

5. Conclusions

In conclusion, we propose an integrated machine learning and genome-wide analysis
approach to identify eQTL SNPs and predict probable MDD in the Taiwan Biobank. The
present results suggest that our random forests model with synthetic minority oversam-
pling may present a feasible way to create predictive algorithms for forecasting MDD with
clinically meaningful accuracy. The analysis of the present study might be generalized for
machine learning studies of personalized medicine in predicting disease status and treat-
ment response for individuals. Moreover, the results can be utilized to build bioinformatics
tools for personalized medicine within the next few years. Finally, it is crucial to further
investigate the role of our proposed predictive framework by using various independent
samples of replication studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11070597/s1, Figure S1: The quantile-quantile (Q-Q) plot of probable major depressive
disorder (MDD) results, Figure S2: Plots of receiver operating characteristic (ROC) curves using
random undersampling, Figure S3: Plots of receiver operating characteristic (ROC) curves using

https://www.mdpi.com/article/10.3390/jpm11070597/s1
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synthetic minority oversampling, Table S1: Odds ratio analysis with odds ratios after adjustment for
covariates between MDD and rs193922209 in FBN1, Table S2: Genotyping results for rs193922209 in
FBN1, Table S3: Odds ratio analysis with odds ratios after adjustment for covariates between female
MDD and rs114542799 in ALDH1L1, Table S4: Genotyping results for rs114542799 in ALDH1L1,
Table S5: Genotyping results for 17 eQTL SNPs, Table S6: The eQTL roles of the 17 eQTL SNPs,
Table S7: Summary of SNPs associated with major depressive disorder in previous reports from
the NHGRI-EBI GWAS Catalog, Table S8: Nearby SNPs between the Taiwan Biobank and previous
reports from the NHGRI-EBI GWAS Catalog.
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