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Background: Unlocking phenotype plasticity (UPP) has been shown to have an

essential role in the mechanism of tumor development and therapeutic

response. However, the clinical significance of unlocking phenotypic

plasticity in patients with lung adenocarcinoma is unclear. This study aimed

to explore the roles of unlocking phenotypic plasticity in immune status,

prognosis, and treatment in patients with lung adenocarcinoma (LUAD).

Methods: Differentially expressed genes (DEGs) and clinical information of UPP

were selected from the cancer genome atlas (TCGA) database, and the GO,

KEGG enrichment analyses were performed. The independent prognostic

genes were determined by univariate and multivariate Cox regression, and

the UPP signature score was constructed. Patients with LUAD were divided into

high- and low-risk groups according to the median of score, and the

immunocytes and immune function, the gene mutation, and drug

sensitivities between the two groups were analyzed. Finally, the results were

validated in the GEO database.

Results: Thirty-nine significantly DEGs were determined. Enrichment analysis

showed that UPP-related genes were related to protein polysaccharides and

drug resistance. The prognostic results showed that the survival of patients in

the high-risk groupwas poorer than that in the low-risk group (p < 0.001). In the

high- and low-risk groups, single nucleotide polymorphism (SNP) and C > T are

the most common dissent mutations. The contents of immune cells were

significantly different between high- and low-risk groups. And the immune

functions were also significantly different, indicating that UPP affects the

immunity in LUAD. The results from TCGA were validated in the GEO.

Conclusion:Our research has proposed a new and reliable prognosis indicator

to predict the overall survival. Evaluation of the UPP could help the clinician to

predict therapeutic responses and make individualized treatment plans in

patients with LUAD.
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Introduction

Lung cancer is a malignancy with the highest mortality and the

second high incidence worldwide (Al-Dherasi et al., 2021; Zheng

et al., 2021). Lung cancer mainly includes non-small cell lung cancer

(NSCLC) and small cell lung cancer (SCLC). LUAD is one of the

main subtypes of lung cancer. However, most patients with LUAD

were usually diagnosed at advanced stages. EGFR-TKIs were the

primary treatment for patients with EGFR sensitive mutation.

However, about 20–30% of patients with EGFR mutant NSCLC

have immediate resistance to EGFR-TKIs (Shi et al., 2022). The

mechanism of the EGFR-TKI immediate resistance is still not fully

clarified. LUAD is a group ofmutant types of diseases, and patients in

the same pathological stage may have different prognoses, so it is

necessary to explore accurate and hopeful biomarkers to help

clinicians promote the accuracy and early diagnosis of LUAD and

improve the survival of and guide personalized therapy (Yoshizawa

et al., 2011; Gandhi et al., 2018).

Phenotype plasticity means that genotypes produce different

phenotypes under different environmental conditions and is a crucial

mechanism to adapt to environmental heterogeneity. Although

researchers have always believed that these biological

characteristics have been plaguing this biometric character.

However, this point of view has been controversial. Traditionally,

phenotype plasticity is considered to be decentralized and

differentiated during tissue regeneration or wound healing.

Although the degeneration process is the main link of the

organization, the decentralization itself has the risk of cancer.

Therefore, phenotype plasticity provides a new paradigm to

understand the occurrence, development of cancer, and resistance

to treatment.

Plasticity exists in various fields of life, and the role of phenotypic

plasticity is still seldom studied inmammalian (Matesanz et al., 2021).

Recently, in January 2022, the Cancer Discovery released the third

edition of Hallmarks of Cancer to explain the mechanism of

occurrence, development, and treatment of response

characteristics in malignant tumors (Haan, JC et al., 2022). Four

new tumor iconic features were introduced based on the previous

version, including unlocking phenotypic plasticity, which contributed

to a unique point of view. In this study, we aimed to use the clinical,

genomic, and transcriptome data of TCGA for prognosis and

bioinformatics analysis, to clarify the predictive significance of

UPP on the prognosis of LUAD patients and the relationship

between UPP and immunity and treatment. This study provided

a new insight for the prognosis and treatment of LUAD.

Materials and methods

Patient and data acquisition

The LUAD tissue sample was downloaded in the TCGA

dataset (https://cancergenome.nih.gov/). TCGA provides

522 clinical, 569 genomes and mutated data, and the

Illumina Hi-SEQ RNA SEQ platform provides 594 RNA

sequencing (RNA SEQ) data. First, the expression of the

unlocked phenotype plasticity-related gene is screened

from the gene expression files for differential expression

analysis. Then, the differentially expressed genes (DEGs)

were analyzed by GO and KEGG. Finally, the data were

analyzed for prognosis, immunity, drug resistance, and so on.

Analysis of DEGs

The key step is to obtain DEGs of the unlocking phenotype

plastic-related genes between tumors and normal samples. This study

used “limma” package (http://www.bioconductor.org/) to calculate

the DEGs (Liu et al., 2021). Wilcox test was performed to obtain

DEGs between tumor and normal samples with the standard of |

logFC | > 1 and false discovery rate (FDR) value <0.05. Then, the
heatmap of DEGs was obtained to visualize their expression in

different samples through the “ggplots” package in R. The

longitudinal axis is displayed, and the color is used to distinguish

between different differential expressions.

The verification of unlocking phenotypic
plasticity-related genes by quantitative
real-time polymerase chain reaction

To validate the expression profiles of UPP-related genes in

LUAD, we performed quantitative real-time polymerase chain

reaction (qRT-PCR) using the A549 cells and normal human

bronchial epithelial (NHBE) cells. First, cells were cultured in

DMEM (high glucose) + 10% fetal bovine serum +1%

penicillin–streptomycin solution. Second, the A549 and NHBE

cells were harvested when the confluence of cells is more than

90%. Then, cells were lysed with TRIzol reagent (Invitrogen, CA,

United States). The concentrations of the total RNA of A549 and

NHBE cells were measured by the NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific, United States),

andwere synthesized into cDNAusing the PrimeScript™ RT reagent

kit (Takara, Japan). The qRT-PCR was conducted in the PCR

apparatus (Applied Biosystems, Singapore) following the

conditions: predenaturation at 95°C for 2 min, 95°C for 15 s, 60°C

for 30 s, and 72°C for 30 s. Finally, the gene expression levels were

calculated by the 2–ΔCtmethod. The primers of geneswere designed

and synthesized by Sangon Biotech (Shanghai) Co., Ltd., and are

available in Supplementary Table S1.

GO and KEGG enrichment analysis

The DEGs were analyzed by GO analysis through the

“ClusterProfiler” package in R software. GO aims to solve the
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problem of inconsistent gene description in different databases with

strictly defined concepts. GO function annotation mainly annotates

and classifies differential genes according to the biological process

(BP), molecular function (MF), and cellular component (CC). The

p < 0.05 and FDR <0.05 of the DEGs were used as the localization

conditions to obtain the GO item with the highest correlation with

the DEGs. The KEGG path with p-value <0.05 and at least five

genes were selected as the enrichment condition of DEGs.

Finally, the bubble map is drawn by the “ggplot”s package in the

R software.

Prognosis-related analysis

We use univariate and multivariate Cox regression

analyses to analyze the overall survival (OS) to determine

the significant correlation phenotype plasticity-related gene

prognosis significantly associated with LUAD. Survival

analysis was performed between high- and low-risk groups,

and the results were visualized by the Kaplan–Meier curve. To

explore the two groups of genetic mutations, we also draw a

waterfall map.

Unlocking phenotypic plasticity and
immunity and drug sensitivity prediction

SsGSEA was used to evaluate the difference of immune

cell content and function between high- and low-risk groups.

p-value <0.05 and FDR <0.05 are considered statistically

significant. “c2. cp.kegg.v7.1. Symbol” was set as the

reference. “McPCounter” is an R-Package that quantifies

the absolute abundance of eight immunocytes and two

matrix cells using transcription group data. The Genomics

of Drug Sensitivity in Cancer database (GDSC; https://www.

cancerrxgene.org/) was used to estimate the sensitivity of

each patient to chemotherapeutic drugs. The half-maximal

inhibitory concentration (IC50) was quantified via the

“pRRophetic” package in R (Geeleher et al., 2014).

Statistical analysis

OS is defined as the time from the diagnosis of LUAD to

the patient’s death or last follow-up. “Survival” package was

used to draw the Kaplan–Meier survival curve, calculate the

hazard ratio (HR), and evaluate the 95% confidence interval

(CI) in R. Comparisons between two groups were calculated

via Wilcoxon rank-sum test. Chi square test or Fisher exact

test was used to compare categorical variables. p < 0.05 was

considered to be statistically significant. All statistical

analyses were performed in R (version 4.1.1).

Results

DEG screening and heat map

At present, there are a few researches about the unlocking

phenotype plasticity genes. In order to clarify the difference

of the gene transcription level of unlocking phenotypic

plasticity, we obtained DEGs between tumor samples and

normal samples using the data of expression profile. A total of

39 significant DEGs were retrieved, of which 20 genes were

significantly up-regulated in tumor samples; 19 genes

were significantly up-regulated in normal samples. Then,

we cluster DEGs and visualize them in the heat map

(Figure 1).

To further validate the UPP expression levels in LUAD,

we selected the top 10 genes with the most significant

expression differences to perform qRT-PCR, as described

above. The results showed that ACAN (Figure 2A),

CDKN3 (Figure 2C), GRIN2A (Figure 2D), IL17A

(Figure 2E), KCNQ2 (Figure 2F), TIMP1 (Figure 2I), and

UCHL1 (Figure 2J) were significantly up-regulated in lung

adenocarcinoma cells. However, BMP2 (Figure 2B), SELP

(Figure 2G), and SLC6A4 (Figure 2H) were significantly

down-regulated in lung adenocarcinoma cells compared

with NHBE cells. Collectively, these findings strongly

suggested that UPP-related gene expressions were

disturbed in LUAD.

GO and KEGG enrichment analyses

We use the gene expression of the ClusterProfiler in the R

software to perform GO enrichment analysis. The results of

BP analysis of GO enrichment suggest that DEGs are mainly

enriched in the positive regulation of anion transport, the

positive regulation of secretion, and the positive regulation of

proteolysis. The CC results showed that DEGs are mainly

enriched in the ion channel complex, transmembrane

transporter complex, and cation channel complex; MF

results showed that DEGs are mainly related to ubiquitin-

like protein ligase binding, signaling

receptor activator activity, histone acetyltransferase

binding, ion transport, cell cycle regulation, and cell

adhesion (Figure 3A).

Subsequently, the KEGG pathway enrichment analysis

was carried out, and we only showed the first 10 pathways

(Figure 3B). These DEGs are strongly correlated with the

AGE–RAGE signaling pathway, EGFR tyrosine kinase

inhibitor resistance, and other signaling pathways. It has

an important impact on cancer progression

through important biological processes related to drug

resistance.

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2022.941567

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.941567


Survival analysis

Eleven unlocked phenotype plastic-related genes (Figure 4A)

were screened by univariate Cox analysis. Next, multivariate Cox

analysis results showed that ABCB1, ADIPOQ, NGF, F9, CDKN3,

ACAN, and CEBPB are independent prognostic genes. According to

the expression level and coefficient of the separate prognostic gene,

we constructed the signature following the formula: Risk Score =

(1.267 × ADIPOQ) - (0.523 × ABCB1) - (0.233 × NGF) + (12.988 ×

F9) + (0.281 × CDKN3) + (0.605 × ACAN) + (0.168 × CEBPB). The

samples were divided into two groups according to themedian of the

risk score (Table 1). Survival analysis was conducted for high- and

low-risk groups. Compared to the low-risk group, patients in the

high-risk group had worse prognoses (p < 0.01) (Figures 4B–D).

Mutations in high and low groups

In order to explore the cases of the genetic mutation of the two

groups, the waterfall map was drawn. High- and low-risk groups are

shown in Figures 3E,F, respectively (Figures 4E,F). TP53, TTN, and

MUC16 also have a highermutation rate. The top 20mutation genes,

PCDH15, MUC17, RPIL1, DAMTS12, and PAPPA219 mutations,

exist only in the high-risk group, while ANK2, NAV3, ZNF536,

APOB, and DANH9 mutations exist only in the low-risk

group. Single nucleotide polymorphism (SNP) was responsible for

such variants, and single nucleotide variants (SNVs) mostly occurred

as C>AandC>T in the high- (Figures 5A–F) and low-risk (Figures

5G–L) groups.

Unlocking phenotypic plasticity and
immune correlation

Immunocytes in tumor environments play important roles in

tumor progression.We use ssGSEA to assess the correlation between

immunocytocytes and related functions. The immune cells aDCs,

B_cells, DCs, iDCs, Mast_cells, Neutrophils, T_helper_cells, and TIL

have significant differences between two groups. The immune

function is significantly different in HLA, MHC_class_I, and

Type_II_IFN_Reponse (Figures 6A,B). The absolute abundance of

eight immune cells and two stromal cells was evaluated using

FIGURE 1
Identification of the UPP-related DEGs. The heatmap analysis of the top 39 DEGs between the tumor and normal samples.
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MCPcounter. The results showed that the abundance of B lineage,

endothelial cells, myeloid dendritic cells, neutrophils, and T cells was

higher in the low-risk group (Figures 6C–G), while the abundance of

fibroblasts was higher in the high-risk group (Figure 6H).

Relations between unlocking phenotypic
plasticity and therapeutic sensitivity

We compare the commonly used chemotherapy drugs,

including paclitaxel (Figure 7A), cisplatin (Figure 7B),

docetaxel (Figure 7C), etoposide (Figure 7D), gefitinib

(Figure 7E), gemcitabine (Figure 7F), methotrexate

(Figure 7G), sorafenib (Figure 7H), and sunitinib

(Figure 7I)-estimated IC50 levels. Our data showed that

the IC50 level of methotrexate in the low-risk group is

significantly lower than that in the high-risk group,

indicating that patients in the low-risk group are more

sensitive to methotrexate. On the contrary, paclitaxel,

cisplatin, docetaxel, etoposide, gefitinib, gemcitabine,

sorafenib, and sunitinib were more sensitive in the high-

risk group.

FIGURE 2
qRT-PCR results for the top 10 genes with the most significant expression differences. The mRNA expression levels of ACAN (A), BMP2 (B),
CDKN3 (C), GRIN2A (D), IL17A (E), KCNQ2 (F), SELP (G), SLC6A4 (H), TIMP1 (I), and UCHL1 (J). Expression levels of the 10 genes were normalized
against GAPDH expression. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org05

Wang et al. 10.3389/fgene.2022.941567

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.941567


External verification

In the GSM72094 dataset of GEO database, we further

verified the effectiveness of unlocking phenotypic plasticity

score in predicting prognosis and drug sensitivity. Consistent

with the results of the TCGA database, the prognosis of the high-

risk group was significantly worse than that of the low-risk group

in GSM72094 dataset (Figure 8A). In addition, the drug

sensitivity of the prognostic score was further evaluated to

speculate on the therapeutic benefits of LUAD patients. The

results showed that the low-risk group was more sensitive to

methotrexate, while the high-risk group was more sensitive to

paclitaxel, docetaxel, and sorafenib (Figures 8B–E), which was

consistent with the drug sensitivity results in the TCGA database.

Discussion

Previous findings have shown that phenotypic plasticity is

directly related to the origin, progression, and treatment response

of cancer cells (Healy and Schulte, 2015). The environmental

factors affecting phenotype can be continuous or discontinuous,

and the influence of environment can last for the whole life cycle

of organism. Tumor heterogeneity stems, in part, from the ability

of cancer cells to switch between phenotypic states, but the

genetic of this cellular plasticity is still poorly understood.

In this study, we excavated the public database TCGA to

explore the influence of unlocking phenotypic plasticity on the

survival of LUAD patients, which proves that there is a worse

clinical outcome in patients with unlocked phenotype plastic-

related genetic mutations. The effect mechanism of unlocking the

phenotypic plasticity on LUAD was discussed by bioinformatics

for the first time. In what ways does unlocking the phenotypic

plasticity affects the prognosis of LUAD patients? In this study,

we were analyzed by the differential expression of the unlocked

population plasticity and obtained 39 DEGs. GO and KEGG

analyses were performed on DEGs to find the possible functions

of DEGs and the metabolic and signaling pathways mainly

involved.

The results of GO showed that the DEGs were related to the

positive regulation of anion transport, positive regulation of

secretion, positive regulation of proteolysis, and histone

acetyltransferase binding. Studies have found that the most

distinct group of protein modifiers is histone acetyltransferase

(HATS). Most groups of histone acetylationase have substrate

specificity to guide the acetylation of a particular residue within

one or more core groups (Salutari et al., 2022). However, these

substrate specificities are not fixed and can be changed by

FIGURE 3
Analysis of DEG distribution and function in LUAD patients. (A)GO enrichment analysis of biological process (BP), cellular component (CC) and
molecular function (MF) results ranked by the adjusted p-value. (B) KEGG enrichment analysis results showed that DEGs were strongly associated
with the AGE-RAGE signaling pathway and EGFR tyrosine kinase inhibitor resistance pathways.
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catalytic subunits and protein complexes. The presence of many

of HAT complexes expands the modified state of the

chromosome template. Therefore, more and more evidence

suggests that specific cellular processes are related to the

precise model of histone modification (Zhao et al., 2022). Ion

transport, protein catabolism, and other functions are also

indispensable physiological mechanisms for tumor cell

proliferation and metastasis. Tumor microenvironment is very

important for the heterogeneity and the plasticity of tumor cells

of LUAD.

We found that DEGs were mainly enriched in AGE-RAGE

signaling pathway, and EGFR tyrosine kinase inhibitor

resistance. The AGE-RAGE signal pathways promote

autophagy flux while inhibiting apoptotic signals in cancer

cells (Waghela, BN et al., 2021). The activation of

autogenesis, such as beclin-1 passes through autophagy to

promote cancer cell survival (Chhipa et al., 2019). The

activation of the AGE-RAGE signal also produces oxygen-

free radicals, leading to oxidative stress and activation of

NF-κB. The latter secretes proinflammatory cytokines,

FIGURE 4
Landscape of UPP and prognosis in LUAD. (A) 11 UPP-related geneswere obtained by univariate Cox analysis. (B) Survival analysis between high-
and low-risk groups. (C) The risk score curve of all LUAD patients in the TCGA. (D) The scatter plot of LUAD survival time periods in the TCGA. (E) The
Oncoplot of the low-risk group in LUAD. (F) The Oncoplot of the high-risk group in LUAD. Oncoplot shows the list of top 20 genes ordered by the
number of samples with the gene variants, and the percentage represents the ratio of samples with gene variation to total samples.
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growth factors, and adhesion molecules, such as intercellular

adhesion molecule-1 and vascular cell adhesion molecule-1,

which eventually lead to cancer progression. AGEs may change

the extracellular matrix (ECM) through the production of cell

surface receptors and proinflammatory cytokines. The

overexpression of RAGE increases the migration, invasion,

and epithelial mesenchymal transformation of human lung

adenocarcinoma cells through the ERK signaling pathway

(El-Far et al., 2020). Recent reports show that AGEs also

promote cell proliferation and migration of breast cancer

cells (Chen et al., 2020). Bhargav N. Waghela et al.’s recent

studies have shown that AGE-RAGE signaling pathways are

related to programmed cell death signal, apoptosis, and

autophagy (Waghela, BN et al., 2021).

Although TKI-induced or selected genetic changes can drive

drug resistance, drug resistance occurs in tumor cells without

genetic changes. In the case of no gene changes, tumor cells are

plasticity; from tumors, the various components of the

microenvironment causing a change in tumor phenotypes

may be the driving factor of drug resistance (Tsai and

Nusinov et al., 2019; Gkountakos et al., 2022). A tumor

microenvironment (TME) is a mixture of active ingredients

and dynamic components, including a large number of

metabolites, which interact to promote carcinogenic survival

and proliferation. In particular, EGFR-TKI-resistant cell-

secreted lactic acid is swallowed by cancer-related fibroblasts

(CAFs), triggering the excess secretion of hepatocyte growth

factor (HGF) and subsequent MET signal activation, indicating

that there is a non-cellular autonomous metabolic EGFR-TkI

drug resistance mechanism (Zhao et al., 2019). Recent studies

have shown that extracellular matrix (ECM) has played a new

role in malignant cancer progression and targeted therapeutic

resistance (Levy et al., 2016; Chen W. et al., 2022). Yanan Yang

et al. studied ECM as a unique role in obtaining EGFR TKIS drug

resistance (Wang, et al., 2018).

Phenotype plasticity in the tumor process is also driven by

the activation of the developmental differentiation

procedure—epithelial–mesenchymal transition (EMT); an

EMT is the broadest example of phenotype plasticity. Its role

in tumor progression and metastasis has been fully confirmed. A

transfer is the cause of most cancer patients (Yang et al., 2018).

TABLE 1 Independent prognostic genes and coefficients.

Gene Coef

ABCB1 −0.523

ADIPOQ 1.267

NGF −0.233

F9 12.988

CDKN3 0.281

ACAN 0.605

CEBPB 0.168

FIGURE 5
Distributions of mutant genes in high- and low-risk groups. (A) Variant classification and frequency of genemutations in the high-risk group. (B)
Variant type in the high-risk group. (C) Frequency of SNV classes in the high-risk group. (D)Median of variants per sample in the high-risk group. (E)
Variant classification summary in the high-risk group. (F) List of top 10 mutated genes in the high-risk group. (G) Variant classification and frequency
of gene mutations in the low-risk group. (H) Variant type in the low-risk group. (I) Frequency of SNV classes in the low-risk group. (J)Median of
variants per sample in the low-risk group. (K) Variant classification summary in the low-risk group. (L) List of top 10 mutated genes in the low-risk
group.
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FIGURE 6
The landscape of immune infiltration in LUAD. (A) Differences of immune cells in the high- and low-risk groups. (B) Differences in the immune
function between high- and low-risk groups. (C) Violin plot of B lineage. (D) Violin plot of endothelial cells. (E) Violin plot ofmyeloid dendritic cells. (F)
Violin plot of neutrophils. (G) Violin plot of T cells. (H) Violin plot of fibroblasts. The horizontal line in the Violin plot represents the median, and blue
and red represent the high-risk and low-risk groups, respectively. p < 0.05 shows the significant statistical difference between two groups.
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Recently, researchers have discovered several transition

conditions that occurred during skin squamous cell carcinoma

and breast tumors (Rubin, MA et al., 2020). Tumor cells in

different differentiation stages, from epithelial to complete

mesenchymal cells, exhibited similar tumor proliferation

capabilities through intermediate hybridization. Tumor cell

subsets show other cell plasticity and invasiveness.

We divide patients into high- and low-risk groups through

univariate and multivariate Cox regression analyses, and the

results show that the high-risk groups are poorer than the low-

risk groups. After the differential expression gene is submitted to

the associated prognostic gene, seven intersection genes are

obtained, namely, ABCB1, ADIPOQ, NGF, F9, CDKN3,

ACAN, and CEBPB. ABCB1 is a member of the ABCB

subfamily located on chromosome 7q21. It consists of

28 exons, encoding 1280 amino acid glycoproteins (MDR1/

PGP). MDR1/PGP produces different interactions with

different drugs (Manna et al., 2015). In addition to a wide

range of substrate specificity, the unique feature of MDR1/

PGP is its base ATPase activity. MDR1/PGP can output most

neutral and cationic hydrophobic compounds, and cancer cells

can efficiently utilize this mechanism as the main barrier to

chemotherapy. Cells with higher MDR1/PGP levels have

selective advantages in adapting to harsh environments such

FIGURE 7
Box plots depicted the differences in the estimated IC50 levels of (A) Paclitaxel; (B) Cisplatin; (C) Docetaxel; (D) Etoposide; (E) Gefitinib; (F)
Gemcitabine; (G) Methotrexate; (H) Sorafenib; (I) and Sunitinib between the high- and low-risk groups.
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FIGURE 8
Verify the results in the GEO database. (A) Survival analysis between high- and low-risk groups. Box plots depicted the differences in the
estimated IC50 levels of (B) Paclitaxel; (C) Docetaxel; (D) Methotrexate; (E) and Sorafenib between the high- and low-risk groups.
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as hypoxia or inflammation. The study found that MDR1/PGP

confers cancer cell resistance by inhibiting caspase-dependent

apoptosis (Yang et al., 2022). The effectiveness of these

interesting conjectures is to be further confirmed and

confirmed by experiments such as the knockout model.

Human CDKN3 gene encodes cyclin-dependent kinase

inhibitor 3, which is a bispecific protein tyrosine phosphatase

of the CDC14 group. CDKN3 is used as CDK1 and

CDK2 inhibitory proteins, which are conventionally

considered a negative regulatory factor of the cell cycle

process (Li et al., 2022). Although CDKN3 has a negative

adjustment effect on CDK1 and CDK2, the carcinogenic effect

of CDKN3 is abnormally expressed, which is related to a variety

of human cancers. In esophageal cancer, CDKN3 affects the

progress of cancer by promoting cell cycle and chemotherapy.

Chao Fan found that CDKN3 has increased in NSCLC, and the

CDKN3 high expression is always related to the total survival of

these patients (Fan et al., 2015). There is also evidence to support

that CDKN3 in cervical cancer (CC) can not only be used as a

useful marker that survives and selects additional chemotherapy

or specific targeted cancer treatment but also as a specific small

drug for developing anti-CC potential target.

CCAAT/enhancer binding protein (CEBPS) is a leucine

zipper transcription factor family to participate in cell

proliferation and differentiation (Huang et al., 2020).

Although it is well known that CEBPB is a transcription

factor involved in adipocytes and immunocyte

differentiation. Still, the function of CEBPB in NSCLC has

been controversial, which may be because CEBPB depends on

the synergistic transcription factor and/or the apparent

genetic state of the respective gene sites in the intracellular

environment. Studies have shown that under the

transcription of CEBPB, long-coded RNA

LOC102724169 can enhance cisplatin on the therapeutic

effect of ovarian cancer cells (Lynch and May. 2011).

CEBPS enhances the drug resistance of cisplatin to

cisplatin by enhancing nasopharyngeal carcinoma cells in

combination with the serine protease inhibitor Kazal 5-type

promoter region. There is also evidence to support CEBPB-

NRF2 synergies to drive cancer malignancy by improving the

initial tumor activity and drug resistance (Perino et al., 2014).

Introduction to the mutation of high- and low-risk groups, in

the top 20 mutation genes, PCDH15, MUC17, RPIL1,

DAMTS12, and PAPPA219, exists only in the high-risk

group, while ANK2, NAV3, ZNF536, APOB, and

DANH9 exist only in the low-risk group. In the high- and

low-risk groups, the most common mutation is missense

mutation, followed by nonsense mutation. Single nucleotide

polymorphism (SNP) was responsible for such variants, and

single nucleotide variants (SNVs) mostly occurred as C > A

and C > T. However, the role of PCDH15, MUC17, RPIL1,

DAMTS12, and PAPPA219 expressed in a tumor

microenvironment remains to be studied.

The anti-PD-1 and anti-PD-L1 antibodies have proven

effective for certain LUAD patients (Zhang et al., 2020). Their

therapeutic response is related to immune infiltration and related

gene expression in the tumor environment. Therefore, it is very

important to identify immune-related cells in the tumor

environment. We found that aDCs, B_cells, DCs, iDCs,

Mast_cells, Neutrophils, T_helper_cells, and TIL infiltration

levels are related to the low-risk group. The immune function

is different in HLA, MHC_class_I, and Type_II_IFN_Reponse.

MCPcounter results show that B lineage, endothelial cells,

myeloid dendritic cells, neutrophils, and T cells have higher

abundance in the low-risk group, while fibroblasts are high in the

high-risk groups. These results indicate that patients with the

low-risk group may benefit from immune checkpoint inhibitors.

Phenotype plasticity may be related to the adjustment of tumor

microenvironment into fibroblast abundance, thereby affecting

tumor growth and progression.

Although there are more and more treatment programs, in

modern cancer medicine, the development of drug resistance is a

major challenge and the cause of failure and disease recurrence.

LUAD usually has chemotherapy to resist drug resistance (Dokla,

EME et al., 2019). Our data show that low-risk patients are more

sensitive to methotrexate. Methotrexate combined

immunosuppressive treatment may alleviate the drug

resistance mechanism. High-risk groups are more sensitive to

paclitaxel, cisplatin, docetaxel, etoposide, gefitinib, gemcitabine,

sorafenib, and sunitinib. Lowering the abundance of fibroblasts

in a tumor microenvironment may be a targeted treatment

direction (Chen J. et al., 2022).

Cancer cells have obtained two important malignant

characteristics of metastasis and drug resistance during

differentiation. The differentiation state of the tumor is a key

determinant of therapeutic resistance. It was studied in an

experiment that induced EMT or degeneration in a cancer cell

line and mouse model (ScheelWeinberg. 2011). The results show

that the deplified promotes drug resistance to various

chemotherapeutic drugs, and the decimalization increases

about 10 times the IC50 dose of chemotherapeutic drugs. This

requires further in vitro and in vivo studies. In addition, further

clinical research is needed to determine if phenotype plasticity is

of independent prognostic biomarker, as well as their

relationship with the therapeutic effect.

We first link the unlocked phenotype plasticity with LUAD.

Our study shows that ABCB1, ADIPOQ, NGF, F9, CDKN3,

ACAN, and CEBPB may be potential genes for resistance to drug

resistance. It may be a useful biomarker that affects the plasticity

of the phenotype. Phenotype plasticity may provide potential

biomarkers between tumor microenvironments, ICIS, and

treatment reactions, which may be valued for LUAD

treatment and prognosis.

Similar to previous studies (Yi et al., 2021), we successfully

divided patients with lung adenocarcinoma into high-risk and

low-risk groups by constructing the UPP-related model through
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gene signatures. This model can predict the prognosis and

evaluate the content of immune cells. In addition, the model

also evaluated the function of immune cells, the abundance of

stromal cells, and drug sensitivity. Immune cells and this model

can predict the sensitivity of patients to chemotherapy drugs and

help clinical patients formulate personalized treatment plans.

However, our research still has some limitations: first, the

lack of experiments to verify the association between ingredients

such as immune cells and prognosis in microtumor

environments. Second, the lack of large clinical samples to

forward the predictive value of prognosis characteristics of

LUAD patients. In addition, the experimental exploration of

potential functions and mechanisms in the signal and

immunization infiltration of unlocking phenotype plasticity-

related genes in LUAD progression. Therefore, further study

is required in a clinical trial of larger sample quantities to

verify the value of unlocking phenotype plasticity in LUAD

prognosis.
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